
International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

DOI : 10.5121/ijcsit.2013.5509 127

SYSTEMS VARIABILITY MODELING: A TEXTUAL

MODEL MIXING CLASS AND FEATURE CONCEPTS

Ola Younis1, Said Ghoul1 , and Mohammad H. Alomari2

1Bio-inspired Systems Research Laboratory, Philadelphia University, Amman, Jordan
2Electrical & Computer Eng. Dept., Applied Science University, Amman, Jordan

ABSTRACT

System’s reusability and cost are very important in software product line design area. Developers’ goal is
to increase system reusability and decreasing cost and efforts for building components from scratch for
each software configuration. This can be reached by developing software product line (SPL). To handle
SPL engineering process, several approaches with several techniques were developed. One of these
approaches is called separated approach. It requires separating the commonalities and variability for
system’s components to allow configuration selection based on user defined features. Textual notation-
based approaches have been used for their formal syntax and semantics to represent system features and
implementations. But these approaches are still weak in mixing features (conceptual level) and classes
(physical level) that guarantee smooth and automatic configuration generation for software releases. The
absence of methodology supporting the mixing process is a real weakness. In this paper, we enhanced
SPL’s reusability by introducing some meta-features, classified according to their functionalities. As a first
consequence, mixing class and feature concepts is supported in a simple way using class interfaces and
inherent features for smooth move from feature model to class model. And as a second consequence, the
mixing process is supported by a textual design and implementation methodology, mixing class and feature
models by combining their concepts in a single language. The supported configuration generation process
is simple, coherent, and complete.

KEYWORDS

Class modeling, Configuration, Feature modeling, Mixing class and feature concepts, Software product
line design methodology, Variability.

1. INTRODUCTION

Designing product lines process has received potential attention recently. This is due to the need
of decreasing software product line steps and increasing system reusability. Software Product
Line (SPL) is the process of developing products’ components from pre-defined core assets rather
than developing each component individually [1]. SPL approaches attempt to increase system’s
productivity by designing a set of products that have many commonalities and shared
characteristics, which leads to increasing system’s reusability. On the other hand, SPL aims to
identify and manage the variations among the products [2]. Product line commonalities and
variabilities are composed together in the Domain Space model as feature models and these
models form the basic structure for future releases and system variant products [1]. A linked
model named Solution Space is connected to the Domain Space to represent the real assets for
variability elements associated with some rules to ensure valid selection and consistent system
release generation [3]. Several techniques are used to model domain space and solution space.
Feature modeling is the most famous technique for this purpose [1, 2]. For modeling solution
space, class models are used with some other options like Domain Specific languages (DSL)
compilers, generative programs and configuration files [4].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

128

Over the past few years, several research contributions were reported to handle SPL variability
process. They can be classified according to SPL’s development methodology (requirements,
analysis, design, and implementation) or the techniques they used to represent variability (text,
graph, or mixed). Approaches that used object-oriented paradigm [5, 6] to model variability
described system architecture by package diagrams that used class diagrams. Several approaches
[7-11] mix feature models with class models to present software product line engineering process.
These approaches designed the variability and commonalities between variants of a product based
on features with feature model, and implement these variations in class model. The mixing was
done using several techniques like constraints additions [8, 12], relation definition [7, 10] and
references links [11]. These approaches defined the way for instantiating objects (configuration)
that provides the final product (release) from selecting objects based on fixed features and
resolving constraints and relations among them. Approaches supporting SPL requirement and
analysis are good for providing general view of systems’ needs and characteristics, but, they do
not support system functionalities like approaches covering design and implementation steps.
Graphical object-oriented modeling approaches provide clear representation for system hierarchy
and components relations. While textual object-oriented approaches give very strong semantic
representation for system components and relations, but they are weak to represent the hierarchy
relations and structure. Both textual and graphical object–oriented approaches are limited in
modeling variability, because of absence of features. Approaches that mix feature and class
models encounter insufficient mixing techniques. This does not provide powerful languages that
mix system’s feature and variability implementation [1].

From the above research context, the following challenges may be stated: (1) Design and
implementation approaches are very challenging phases, because they bridge between conceptual
and implementation levels. (2) Variability design and implementation methodology are generally
missed; their introduction and specification will lead to a great enhancement of SPL. (3) Mixing
class and features models through new languages which are so far to be mature, evaluated, and
accepted. Conceptual enhancements and practice evaluation will promote these valuables
approaches to industrial level. (4) Configuration generating approaches are complex and aiming
to generate coherent and complete objects. Ensuring the simplicity, coherence, and completeness
of these kinds of objects remain always as open problems.

This paper, propose a Textual Software Product Lines Design Model, mixing class and feature
concepts, and aiming to bring significant solution elements to the previous problems, through its
specific SPL Methodology: (1) Provide a formal methodology supporting variability design and
implementation. It bridges between product lines design model and object oriented
implementation model. (2) Provide a new concise and rich textual notation for feature modeling
and class modeling. It allows simple and natural new way of mixing feature models and class
models using small number of concepts. And (3) allow simple, coherent, and complete
configuration generation as simple class instantiation. In the following, we start by the literature
review of approaches mixing class and features models, in order to provide evidences motivating
our work. The second section introduces our approach, A Textual Software Product Lines Design
Model Mixing Class and Feature Concepts, through a new developed methodology supporting
variability design and implementation. This approach will be evaluated and compared with
others’ works in the third section in addition to a conclusion and expected future works.

2. SIMILAR WORKS ON MIXING CLASSES AND FEATURES MODELS

Large systems that are composed by huge number of different components cover multiple ideas
and variant areas of interests. Thus, each of its components may have more than one possible
value to cover. These values came from domain analysis, stockholders’ needs, system evolution

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

129

and so many other cases. The ability of a system to be generalized specialized or customized [2]
to perform special needs is called system variability and specified using feature modeling. This
section starts with listing feature modeling fundamentals and then presents a review of previous
similar works that mix class models and feature models in system variability modeling.

2.1. Features modeling fundamentals

Over years of variability modeling, feature modeling using features diagrams was the most
popular technique to represent variability in clear and meaningful way [1]. Researches in feature
modeling can be classified in three main groups based on the technique they used. Some
approaches used pure graphical representation for their feature model’s syntax and semantics like
ECORE [11] and OOFM [13], and the work reported by Laguna and Marques [4], Razieh et al
[14], and Teixeira et al [15]. Other approaches choose to use textual representation for their
feature model’s syntax and semantics like TVL [16] and FEATUREIDE [17], and the work
reported by Arnaud et al [18]. In order to benefit from graphical and textual techniques, some
approaches mixed them for representing their feature model. These approaches like CLAFER [9,
12] and RBFEATURES [8].

Graphical feature modeling consists of tree hierarchy that shows the variable feature as the head
node and the variant features as children nodes [10]. Designers do not prefer to use graphical
representation for more than one reason [16]: firstly, designing feature models using graphical
representation is considered a very boring process and does not reflect the real semantic of system
components. Secondly, graphical representation is very weak in representing system reasoning
process [2]. Finally, graphical notation is still a “research prototype” [16] and can’t reaches text
notations for representing feature models. Its main concepts are [14]: (1) Meta-Features Model.
Previous researches did not mention the Meta-Models Clearly; they mentioned it as features that
may contain more than one sub features. (2) Features Meta-Model; this model is predefined and
domain independent. It defines different domain features with their relations. (3) Feature Model;
Compact model of features diagram and feature constrains. It is an instance of the Features Meta
Model. (4) Feature diagram; Graphical representation showing each feature and its relations with
its subs. And (5) Feature’s configuration; Set of selected features producing a release in SPL.
Configuration is permitted with feature model and preserves features’ constrains.

Textual feature modeling got rid of all these notations and modeling languages for representing
features and their relations. It used simple texts composed by grammars, and propositional
formulas [18] to show model structure and implementation.

2.2. Models mixing classes and features

Feature models used to design system’s variability and communality over its components [12].
Class models capture the implementation part of the products by showing the real values and
relations over components’ attributes. Thus, mixing both models (feature model and class model)
provides the full picture for SPL’s components. This section presents a review of the works
mixing feature models with class models in two phases: (1) how they mix feature models and
class models? And (2) how they instantiate objects (configuration) to create final products?
CLAFER model [12] presents a good approach for mixing class model with feature model based
on constraints and inheritance concepts. The feature model was presented as a collection of type
definitions and features. The mixing between feature model and class model via constraints is
added to class model as attributes and attributes’ values. The final model is restricted to one
configuration based on the mixed feature. Object instantiation in CLAFER is done by adding

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

130

constraints to the feature model resulting as constrained feature model. These constraints restrict
the feature model to single or dual configuration presenting one or more final product.

Gunther and Sunkle [8] reported feature oriented programming language called RBFEATURES
on top of dynamic programming language (ruby). The class model was reported as a first-class
entity and named ProductLine. Mixing feature model with class model was done via add-feature
method. After creating feature model in RBFEATURES, the ProductLine that is created via
configure method and collects number of conceptual features. It is allowed to set specific feature
configuration with activate_feature and deactivate_feature operations.

Sarinho and Apolinario [10] presented object-oriented feature model that combined feature
models’ concepts with object-oriented concepts. They proposed object-oriented feature model
(OOFM) profile that is composed by feature model and feature modeling package. Feature classes
were reported with object-oriented relationships and resources to provide new level of variability
documentation. Feature classes can be declared using feature-class stereotype that creates classes
according to designer’s intentions. This process composed by several steps starting by feature
package creation, followed by OOFM profile mapping and ended by class feature declaration.
Bio-inspired aspect-oriented paradigm was presented by Ghoul [7] to reflect biological principles
on the artificial systems. The author presented aspect models as Genomes components and class
models that implement them. The mixing was done using relation between feature models and
class models. Object instantiation is done by a Weaver that guarantees the consistency over all
selected components.

Stephan and Antkiewicz [11] reported ECORE, a class model notation that are presented as
feature models. Class model consists of a class compose-by hierarchy. Mapping between feature
models and class models was done in both ways: feature to class and class to feature. Object
model provides a conceptual view of the final product to give designer basic structure of
configuration model.

 2.3. The presented work

The review of the above and others similar works have mainly revealed the absence of: (1) a
specified and formalized methodology supporting systems variability engineering, (2) any
modularity of domain features with modeling concepts supporting it, (3) a satisfactory approach
mixing class and feature concepts, and (4) a suitable configuration technique. Thus, this paper
aims to provide some solutions these stated weaknesses. It proposes a software engineering
methodology bridging product lines design models and implementation models for creating object
oriented SPL. It introduces and specify some modularity concepts; Meta-Feature Model (as a
design pattern that specifies feature’s structure), Feature Meta-Model, Feature Model, Product
Meta-Model, Product Model. It provides a concise and rich textual notation for feature modeling
and class modeling. This feature model may be linked with class model in a way that reflects both
models concepts. Finally, a simple, coherent, and complete configuration generation method, as
simple class instantiation, is proposed.

3. A TEXTUAL MODEL MIXING CLASSES AND FEATURES

This section presents our approach for modeling SPL systems. A textual design methodology is
introduced with its supported feature modularity concepts and mixing technique. Graph notations
are used only for clarity purposes and not as basic syntax notation which is textual.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

131

3.1. A Textual Design Methodology (TDM)

In the following, we introduce the textual SPL design methodology (TDM), its features concepts,
its object-oriented concepts, its mixed class and features concepts, its illustration by an example,
and finally a conclusion on its specification. The TDM, with graph notations showing its ordered
steps for designing variable software, is shown in Figure 1.

Figure 1 Textual Design Methodology (TDM) mixing class and feature concepts

3.2. TDM Features Concepts

Designing steps are based on pre-defined features. A new development will be started by
instantiating the Features Meta-Model; which is composed by four feature modules: Features
types, Features Global, Features Control, and Features Configuration.

Meta-Features Models

It is a predefined design pattern that models all features in TDM. It is the template for features in
Features Meta-Model. Its structure is shown in Figure 2. Each feature is composed by a name; an
association component to determine its associations with other features, a constraint component
that specifies constraints which may affect its relations with others, and finally, a Product features
that form its possible values.

Figure 2 (a) Graphical and (b) textual representations of Meta-Feature Model.

Meta-Features Model
{
 Name: String;
 Association: Class;
 Constraint: Class;
 Product Feature:
Feature;
}

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

132

Features Meta-Model

It is the input features design pattern to the methodology. It is predefined and based on Meta-
Features Model design pattern. It is domain independent, and any feature model (which is domain
dependent) is instantiated from it. Figure 3 shows its graphical and textual representation.

Figure 3 (a) Graphical and (b) textual representations for Features Meta-Model

Below, each feature module is presented separately using graphical and textual notations.
Features Types. This feature module captures all features in the system with their possible
values. It is composed by Features_Types and Relation_Types. The former represents all systems’
features (characteristics); and the later represents all systems’ features possible relations. These
features and relations will specify the Global, Control, and Configuration features modules.
Figure 4 shows graphical and textual representation of Features Types.

Figure 4 Features Types

Features Global. This feature module specifies the Global features that will be shared between all
system components. A Global feature may be relation over components or just feature

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

133

(characteristic) that must be applicable everywhere. Figure 5 shows the graphical and textual
representations for feature Global.

Figure 5 Features Global graphical and textual representations

Features Control. This feature module specifies the controls over all systems’ components and
relations. Any configuration should reserve control’s relations to ensure system consistency. This
feature module is composed by relations only, and its main goal is to keep systems’ components
stable and avoid any conflicts. Figure 6 shows graphical and textual representation for feature
Control.

Figure 6 Features Control graphical and textual representations

Features Configuration. This feature module specifies required and discarded features for a
product configuration (release). Figure 7 shows the graphical and textual representation for
Feature Configuration.

Figure 7. Feature Configuration

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

134

Features Types, Global, Control and Configuration together compose the Features Meta-Model in
TDM. The second step is creating Feature Model from these Features Meta-Model.

Features Model

This is an intermediate model between the conceptual part (Feature Meta-Model) and the physical
part (Product Model). In this model, all features and relations in the Features Meta-Model are
instantiated for a specific domain. Figure 8 shows instantiation of Features Model from Features
Meta-Model. Meaning that each Feature Meta-Model may have one or more instances in its
Features Model. Thus, the cardinality relation between them is one to many.

Figure 8 Instantiation of Feature Model from Feature Meta-Model

3.3. TDM Object-oriented Concepts

In this section, we report the object-oriented concepts that TDM covers through its Product Meta-
Model (Figure 9, Figure 10).

Class Interface specifies services provided by a product component. It includes its provided
methods, its attributes (data) and its different implementations’ list. Figure 9 shows the graphical
and textual representations of Class interface.

Figure 9 Graphical and textual models for class interface

Figure 10 Product Meta-Model (graphical and textual models)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

135

3.4. TDM Mixing Class and Features Concepts

This section exposes the mixed class and features concepts that TDM covers through its Product
Meta-Model and Product Model.

Product Meta-Model: It is the TDM object-oriented meta-model mixed with features (defined
from domain), and inherent features (that are defined for each component based on its properties).
It is composed by Interface Meta-Model and Implementation Meta-Model as shown in Figure 10.
Each attribute or method can be defined in several ways depending on the features it composes.
Each time a new feature is added to an interface component, a new definition should be held.
Product Model: This is the final model. It is composed by class interfaces and their specified
attributes, methods, and implementations. Figure 11 shows the graphical and textual
representations for this model.

Figure 11 Product Model (graphical and textual models)

3.5. A case study

A Set is a variable class, having several model versions such as: Static stack, static queue,
dynamic stack and dynamic queue. In the following, we present some significant parts of this case
study. The complete example is presented in [19].

Feature Model: The Feature Model of the set is composed by its Features Types, Feature Global,
Feature control, and Feature Configuration. Figure 12 shows the features types model of Set.
The Figure 13 shows Set Features Control model. It is responsible of controlling the relations
over model components.

Figure 12 Set Feature Types (graphical and textual models)

Features Types.Feature
{
Name: Feature_Type;
Type: FTF;
Product Feature Scope;
{
Scope.name=Scope;

Scope.Num_of_values=2;
Scope.values[1]=shared;
Scope.values[2]=separated;
}//end of Feature_Type Scope

Product Feature Behavior;
{
…
Behavior.values[1]=Static;
Behavior.values[2]=Dynamic;
}//end of Feature_Type

Features Types.Rel
{
Name: Relation_Type;
Type: FTR;
Product Relation Exclude
{
Exclude.name=Exclude;
Exclude.Type= bi;
}
Product Relation Defualt;
{ …}
Product Relation Imply;
{ …}
Product Relation Require
{ … }

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

136

Figure 13 Set's Control Features (graphical and textual models)

Product Model: Figure 14 shows the final product model for Set example. The figure specifies the
Set interface, Stack sub-interface, Stack implementation, and a Stack configuration.

Figure 14 Set Product Model

4. IMPLEMENTATION ISSUES, EVALUATION, AND APPLICATION AREAS

Implementation issues

The implementation environment of this methodology requires a strongly typed Object-Oriented
Programming Language (OOPL). The checking process should guarantee the correct association
between the Meta-Features model, Features Meta Model, Features Types, Features Global,
Features Control, Features Configurations, Product Meta Model, and Product Model. We needed

Feature Control_Relation
{
Name: Control _Relation;
Type: CR;
Product Relation Exclude_1
{
Exclude_1.parts[1]=behavior.static;
Exclude_1.parts[2]=behavior.dynamic;
}
Product Relation Exclude_2
{
Exclude_2.parts[1]=datastr.static;
Exclude_2.parts[2]=datastr.dynamic;
}
Product Relation Exclude_3
{
Exclude_3.parts[1]=datastr.temporary;
Exclude_3.parts[2]=datastr.persistent;
}
….
}

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

137

to extend C++ for supporting the concepts of TDM. We are building on extensions that were
presented earlier in [7]. These extensions might be processed by any OOPL pre-processor.
Configurations can be created, as object instances, according to their Feature models.

Application areas

Software engineering processes will be strengthened by adding TDM to their feature modeling
techniques, since it TDM is more powerful than current conventional approaches in presenting
features and classifying them. TDM is highly recommended to be used in any feature modeling
area like configuration management, feature-oriented programming, product family engineering
and software product lines. A real example of systems that may use TDM in their programming is
operating system implementation, multi-agent systems and any system that needs variability.

Evaluation - TDM Concepts vs. conventional related concepts

In the following, we compare the power of TDM concepts (new or enhancement of old ones) with
similar conventional related ones in similar works. . The following table (Table 1) summarizes
this comparison.

Table 1 TDM Concepts vs. conventional related ones.

Concept Current approaches TDM approach

Features Meta-
Mode

Conventional approaches like
[4, 8, 9, 12] and other research
works have described meta-
model in term of features that
have more than one sub-features
as children.

Features Meta-Model is enriched by the
features modularity: Features Types,
Features Global, Features Control and
Features Configuration modules were
introduced. The relations between these
modules are specified.

Features
Types

Each feature is defined
individually. No support for full
declaration for systems’
features.

TDM provides strong typing of all
features (their possible values and
relation declaration in the Features
Types module).

Features
Global

Shared features are not
separated as a unit, but defined
in the feature diagram hierarchy.

Global features are separately defined
in the Feature Global module

Features
Control

Relations between features are
not separated as a unit, but
defined along with features.

Control features are relations that
specify coherence of configuration.
They are separated in the Feature
Control module

Features
Configuration

They are presented along with
the feature model.

They are separated in Feature
Configuration module.

Methodology
Conventional approaches are not
supported by a specified and
formalized methodology

TDM is fully supported by a
methodology integrating the variability
design and implementation

Product
Interface

Conventional approaches are
weak in support component’s
interfaces. Each class is created
based on its configuration
characteristics.

TDM supports component interface and
implementation increasing the
modularity and mixing the features
concepts with object-oriented ones

5. CONCLUSION AND PERSPECTIVES

Through our study about feature modeling and SPL engineering, we found that current feature
models did not support feature modularization. Linking feature models with class models is still

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

138

weak and does not reflects feature model’s concepts, and there is a lack in variability design and
implementation methodology. We proposed four enhancements. The first was the textual feature
design methodology that supports software product line engineering. The second was the
modularization of features through four meta-feature models that classify features according to
their functionalities. The third was the link between feature model and class model to allow
mixing features’ concepts with real implementation of classes. And finally, the last was an
approach to configuration generation based on pre-selected features. TDM might be extended and
developed in future to: (1) define other meta-feature models to capture all software’s variability
features. (2) Enhance current class model to be more realistic and reflects feature model in
uniform and formal way. (3) Enhance the configuration generation to be a smart automated
generation. And (4) Design a uniform language mixing features and classes.

REFERENCES

[1] J.-M. Jézéquel (2012) Model-Driven Engineering for Software Product Lines, Report 24.
[2] S. Marco and D. Sybren (2007) “Classifying variability modeling techniques”, Information and

Software Technology, Vol. 49, pp. 717-739.
[3] M. Marcilio, B. Moises, and C. Donald, S.P.L.O.T. (2009) “Software product lines online tools”,

Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented programming
systems languages and applications, Orlando, Florida, USA, pp. 761-762.

[4] M. A. Laguna and J. M. Marques (2009), “Feature Diagrams and their Transformations: An
Extensible Meta-model”, 35th Euromicro Conference on Software Engineering and Advanced
Applications, pp. 97-104.

[5] A. Savinov (2012), “Concept-oriented programming: classes and inheritance revisited”, 7th
International Conference on Software Paradigm Trends, Rome, Italy, pp. 381-387.

[6] T. Sim-Hui (2013), Problems of Inheritance at Java Inner Class, ArXiv e-prints.
[7] S. Ghoul (2011), “Supporting Aspect-Oriented Paradigm by bio-inspired concepts”, 4th International

Symposium on Innovation in Information & Communication Technology (ISIICT), pp. 63-73.
[8] S. Gunther and S. Sunkle (2012), “rbFeatures: Feature-oriented programming with Ruby”, Science of

Computer Programming, Vol. 77, No. 3, pp. 152-173.
[9] B. Kacper, C. Krzysztof, and W. Andrzej (2011), “Feature and meta-models in Clafer: mixed,

specialized, and coupled”, Proceedings of the Third international conference on Software language
engineering, Eindhoven, The Netherlands, pp. 102-122.

[10] V. T. Sarinho and A. L. Apolinario (2010), “Combining feature modeling and Object Oriented
concepts to manage the software variability”, IEEE International Conference on Information Reuse
and Integration (IRI), pp. 344-349.

[11] M. Stephan and M. Antkiewicz (2008), “Ecore.fmp: A tool for editing and instantiating class models
as feature models”, University of Waterloo, Waterloo, Technical Report.

[12] B. Kacper (2010), “Clafer: a unifed language for class and feature modelling”, Generative Software
Development Lab, Technical report.

[13] V. T. Sarinho, A. L. Apolinario, and E. S. de Almeida (2012), “OOFM - A feature modeling approach
to implement MPLs and DSPLs”, IEEE 13th International Conference on Information Reuse and
Integration (IRI), pp. 740-742.

[14] B. Razieh, N. Shiva, Y. Tao, G. Arnaud, and B. Lionel (2012), “Model-based automated and guided
configuration of embedded software systems”, Proceedings of the 8th European conference on
Modeling Foundations and Applications, Kgs. Lyngby, Denmark, pp. 226-243.

[15] L. Teixeira, P. Borba, and R. Gheyi (2011), “Safe Composition of Configuration Knowledge-Based
Software Product Lines”, 25th Brazilian Symposium on Software Engineering (SBES), pp. 263-272.

[16] A. Classen, Q. Boucher, and P. Heymans (2011), “A text-based approach to feature modelling: Syntax
and semantics of TVL”, Science of Computer Programming, Vol. 76, No. 12, pp. 1130-1143.

[17] T. Thaum, C. Kustner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich (2012), “FeatureIDE: An
extensible framework for feature-oriented software development”, Science of Computer
Programming, In Press, Corrected Proof, doi: 10.1016/j.scico.2012.06.002.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013

139

[18] H. Arnaud, B. Quentin, H. Herman, Rapha, M. l, and H. Patrick (2011), “Evaluating a textual feature
modeling language: four industrial case studies”, Proceedings of the third international conference on
Software language engineering, Eindhoven, The Netherlands, pp. 337-356.

[19] O. Younes (2013), A Textual Software Product Lines Design Model By Mixing Class and Feature
Concepts, MSc Thesis, Philadelphia University.

Authors

Ola A. Younis received her B.S. degree in Computer Science from Jordan Uneversity For Science
and Technology (JUST) in 2010 and the M.S. degree in Computer Science from Philadelphia
University, Jordan 2013. She has been working as an Assistant lecturer from 2011 to 2012.

Said Ghoul has obtained his Master and Ph.D. Degrees, in Software Engineering,
from University of Grenoble, France. His research interest includes Bio – inspired
systems modeling and supporting concepts and methodologies. He is actually Full
Professor at Philadelphia University - Faculty of Information Technology, Jordan.

Mohammad Alomari is an Assistant Professor at Applied Science University,
Jordan. He received his BSc and MSc degrees in Electrical Engineering
(Communications and Electronics) from Jordan University of Science and
Technology, Jordan, in 2005 and 2006, respectively and PhD in Computer Science
and Engineering from the University of Bradford, UK in 2010. His research
interests include Computer Vision, Space Weather, Brain Computer Interfaces, and
Digital Signal Processing.

