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ABSTRACT 

This paper addresses the automatic classification of X-rated videos by analyzing its obscene sounds. In this 

paper, obscene sounds refer to audio signals generated from sexual moans and screams during sexual 

scenes. By analyzing various sound samples, we determined the distinguishable characteristics of obscene 

sounds and propose a repeated curve-like spectrum feature that represents the characteristics of such 

sounds. We constructed 6,269 audio clips to evaluate the proposed feature, and separately constructed 

1,200 X-rated and general videos for classification. The proposed feature has an F1-score, precision, and 

recall rate of 96.6%, 98.2%, and 95.2%, respectively, for the original dataset, and 92.6%, 97.6%, and 

88.0% for a noisy dataset of 5dB SNR. And, in classifying videos, the feature has more than a 90% F1-

score, 97% precision, and an 84% recall rate. From the measured performance, X-rated videos can be 

classified with only the audio features and the repeated curve-like spectrum feature is suitable to detect 

obscene sounds. 
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1. INTRODUCTION 

The rapid development of multimedia technologies and advances in internet infrastructure have 

allowed general users to easily create, edit, and post their own content, and it is even easier to 

access any Internet content if so desired [1]. However, this has also led to a harmful side effect, 

which is the creation and distribution of uncontrolled X-rated videos. This is a particularly serious 

situation for pornographic videos [2]. Pornographic content makes up more than 70% of X-rated 

videos. In this paper, X-rated videos refers to pornographic or similar material, and obscene 

sounds are audio signals generated from sexual moans and screams during various sexual scenes. 

Recent sexual crime-related articles and reports show that X-rated videos can have impact on 

sexual crimes, both directly and indirectly. This is even more serious for youth and teenagers. 

Thus, there is a strong demand for more efficient technologies that can detect and classify X-rated 

videos for a clean Internet environment. 
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Most of studies on the X-rated video classification and detection have focused on image or video 

processing technologies. The Wavelet Image Pornography Elimination(WIPE) that is a multi-step 

screening method uses a manually-specified color histogram model as a pre-filter in an analysis 

pipeline [3]. Some studies uses skin color model as image-based features [4][7]. Especially the 

scheme of [4] has been incorporated and deployed into Google’s adult-content filtering 

infrastructure for image safe-search [5]. For detecting pornographic video contents, it is used to 

combine image features of key frame with motion features by periodicity detection based on auto-

correlation [8]. But such vision-based classification methods make it computationally expensive 

to carry out visual data processing and a large amount of storage is required for model parameters. 

Furthermore, images can easily be too poor of quality to be used for classification due to common 

degradations such as poor lightings and visual obstructions [6]. Also the classification with skin 

color is ineffective because general images can easily be classified as pornographic image if they 

contain a large amount of skin color, such as close up of face. Therefore, the image or video-

based X-rated video classification systems may produce high false positive rates [6][9]. 

Unlike a lot of studies related to X-rated videos classification based on the aforementioned 

vision-based approaches, there have been relatively few studies based on audio-based approaches. 

The advantages of audio-based approaches for content classification include the need for fewer 

computational resources and less feature space compared to vision-based approaches [10]. Thus, 

audio-based approaches can compensate for the drawbacks of a vision-based classification system 

with much fewer computations and less memory. 

In this paper, we propose the repeated curve-like spectrum feature (RCSF) as an audio feature for 

classifying obscene sounds and X-rated videos. For a reasonable evaluation of the proposed 

feature, we constructed two types of datasets: One is for generating a learning model and testing 

the performance of classifying obscene sounds and was constructed using 6,269 audio clips of 10s 

in length. The other is for classifying videos using the learning model generated from audio clips 

based on the RCSF feature and was constructed using 600 X-rated and 600 general video files. 

The proposed feature is compared to other well-known low-level spectral features and mel-

frequency cepstrum coefficients (MFCCs) and their family features. A support vector machine 

(SVM) classifier with a radial basis kernel function (RBF) is used to learn the features extracted 

from audio clips for training and to classify them for testing. 

The remainder of this paper is organized as follows. In section 2, we review some related works. 

In section 3, we analyse the distinguishable characteristics of obscene sound samples from non-

obscene ones. The RCSF feature and feature vector construction are reviewed in section 4. The 

SVM classifier and its application in our experiments are explained in section 5. Construction of 

two types of datasets is described in detail in section 6. The experimental results are presented in 

Section 7. Finally, some concluding remarks are provided in section 8. 

2. RELATED WORKS 

Unlike the many studies related to X-rated videos classification based on vision-based 

approaches, there are relatively few studies based on audio-based approaches. An example of 

studies related to audio feature based classification and detection of X-rated videos uses the fact 

that sexual audio signals are periodically generated by specific activities of the actors [11]. This 

periodic pattern of sound can be estimated based on the audio periodicity used as an audio feature 

in detecting sexual scenes. In [11], audio periodicity is computed through auto-correlation of the 

signal energy, as periodicity of a signal is usually analyzed through auto-correlation. However, 

since the feature of periodicity depends only on the periodicity of sound, it is obvious that the 

performance is poor when periodic sounds do not occur in sexual scenes or when a non-sexual 

scene is composed of periodic sounds such as during ping-pong or tennis matches. Also, it is not a 

proper audio feature to classify obscene sound in real fields, as most obscene sounds within 
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various videos are composed of background music, some recording noises, other environment 

sounds, and so on, as well as main sounds. In fact, the audio periodicity cannot discriminate 

obscene sounds from non-obscene sounds in our dataset, which will be explained in section 6. 

The correlation coefficient of an audio signal spectrum is used as an audio-based feature to detect 

obscene sounds [12]. In [12], the correlation coefficient is computed using the spectrum of the 

target sound to be tested and the spectrum of tens of standard obscene sounds one by one. 

Standard obscene sounds that are unrelated with each other are selected. If one of the computed 

correlation coefficients is larger than the threshold value (50% in [12]), the target sound is 

classified as an obscene sound. Through the correlation coefficient feature, it is difficult to detect 

obscene sounds within various contents for the same reasons that are explained for periodicity 

feature, and the feature may have strong dependency with standard signals. If the number of 

standard signals is increased for expanding the coverage of obscene sounds, the computing 

overhead is increased with an increased number of signals, and it is still difficult to improve the 

detection performance. In our test on 100 standard obscene sounds, 100 testing obscene sounds, 

and 100 testing non-obscene sounds selected from our audio clip database, which will be 

explained in section 6, the average classification performances for obscene sounds with 0.5, 0.6, 

and 0.7 threshold values are 62.86%, 33.93%, and 9.2% respectively. Also, the average 

classification performances for non-obscene sounds under 0.5, 0.6, and 0.7 threshold values are 

37.24%, 16.98%, and 5.39%, respectively. The results show that the correlation coefficient of an 

audio signal spectrum is difficult to use as an audio feature to detect a variety of obscene sounds. 

Our earlier study had tried to classify obscene sounds using various MFCC-based feature sets 

[13]. The most accurate rate was about 90% for a 15-order MFCC feature set. However, the 

dataset used in [13] is not large enough, and the feature set is limited to only MFCC. This is 

needed to increase the size of the dataset and conduct a test using more varied feature sets. 

3. ANALYSIS OF OBSCENE SOUND CHARACTERISTICS  

By analyzing many obscene sounds, we can find that most obscene sounds within sexual scenes 

are composed of human-based sounds; activity-based sounds from human bodies such as deep 

kisses, oral activities, and so on; and background sounds, which can be treated as environmental 

noise such as music or bed creaking. We focus on human-based sounds since most obscene 

sounds within sexual scenes consist of mostly human-based sounds. Obscene human-based 

sounds can be divided into certain categories based on sound sources and sound types. Sound 

sources are female (FM), male (MA), and both female and male (BO), and sound types are a hard 

sexual scream (SS) and soft sexual moan (SM). From this division, we can categorize human-

based obscene sounds with the combinations of sound sources and sound types, that is, FMSS, 

FMSM, MASS, MASM, BOSS, and BOSM. For example, FMSS means a hard sexual scream 

sound generated from mostly a female. The dataset of audio clips for obscene class will be 

constructed according to these categories in section 6. 

To define the characteristics of obscene sounds that are more generally distinguished from non-

obscene sounds, we have analyzed the spectrogram patterns of various types of sounds. Figures  

and 2 show the typical spectrogram patterns of obscene and non-obscene sounds. 
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Figure 1. Spectrograms of obscene sounds 

 

(a) Current Events & Cultures (b) Soap Opera (c) Entertainments

(d) News (e) Sports (f) Music
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Figure 2. Spectrograms of non-obscene sounds 
 

The most distinguished characteristic is that obscene sounds have a repeated curve-like pattern in 

all of the six categories mentioned above. Even though curve-like patterns sometimes appear in 

non-obscene sounds, they are not clear and are not repeated. However, in obscene sounds, curve-

like patterns of about 500ms in length are shown to clearly repeat. This means that the frequency 

spectrum of obscene sounds has a repeatedly temporal variation. Also, while a general speech 

signal has a low pitch within the range of 100-300Hz, most obscene sounds have a relatively high 

pitch, typically about 500Hz, and often include heavy breathing that leads to a high energy noise 

property at more than 4 kHz. We focus on modeling the repeated temporal variation of the 

frequency spectrum, and use it as a feature to classify and detect obscene sounds. 

4. REPEATED CURVE-LIKE SPECTRUM FEATURE 

The repeated curve-like spectrum feature (RCSF) represents a repeated large temporal variation 

of frequency spectrum [14]. The large temporal variation of a frequency spectrum was modeled 
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as a two-dimensional mel-frequency cepstrum coefficient (TDMFCC), which was originally used 

for automatic bird species classification to represent both the static (instantaneous cepstrum) and 

dynamic features (temporal variations) of bird sounds [15]. However, the syllable-based approach 

is not appropriate in our studies because of the nature of our data, which is collected in somewhat 

noisy environments, making it extremely difficult to automatically detect the syllable-segment. 

Therefore, we propose the RCSF feature as a modification of the original TDMFCC in order to 

make the method more effective. In addition, we added repeated curve-like properties found in 

general videos and noisy environments by extracting features in a long-range segment with a 

fixed length instead of a syllable-segment with variable length. 

We defined the following terms in order to construct the RCSF feature vector in this paper. A 

frame is defined as a unit in which the sound property is not changed, that is, the frequency 

property is stationary. We used 32ms as a frame length, which has been adopted in most speech 

recognition systems. A segment is defined as a unit representing the temporal variation of the 

frequency spectrum, that is, it has curve-like spectrum property. We used 500ms as a segment 

length because most curve-like shapes of obscene sounds are about 500ms in length. A clip is 

defined as a unit that represents the repeated property of curve-like spectrum. An RCSF feature 

vector is constructed in a clip unit. The length of a clip is 10s because the repeated property of 

curve-like shapes is shown well at this length. 

The procedure of constructing the RCSF feature vector is as follows. First, each audio clip is 

divided into several segments composed of a fixed number of frames. In this paper, a 500ms 

segment length and 32ms frame length with a 50% overlap are used. Second, MFCCs are 

computed in each frame, and the q-th MFCC of the t-th frame of k-th segment, Ck,t(q), is 

calculated as (1), where Ek,t(b) is the energy of the b-th mel-scaled bandpass filter of the t-th 

frame of the k-th segment, q is the quefrency index, and B is the number of mel-scale bandpass 

filters. 
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Next, the curve-like spectrum feature of a segment can be calculated by applying a 1-dimension 

DCT to a sequence of L successive MFCCs along the time axis within the fixed-length segment. 

Matrix Ck(q,n) of the curve-like spectrum feature of the k-th segment can be calculated as (2), 

where n is the index of the modulation frequency, L is the number of frames within a fixed-length 

segment (32 frames with a 50% overlap within a 500ms segment), and K is the number of 

segments in a clip. 
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Equation (2) indicates that the first row of Ck(q,n) represents the temporal variations of the short-

time energy within a long-range k-th segment. The first column represents the average MFCC of 

all frames in the k-th segment. More generally, along the quefrency axis q (i.e., column axis), the 

lower-order coefficients describe the spectral envelop, and the higher-order coefficients describe 

extra information such as pitch. Along the time axis n (i.e. row axis), the lower-order coefficients 

represent the global variations of the MFCC and the higher-order coefficients represent the local 

variations of the MFCC. In this paper, various RCSF feature vectors configured by combining 

with various numbers of coefficient orders in the quefrency side (i.e., column axis) and time side 

(i.e., row axis) were tested in order to check which order of quefrency and time are more effective 

to classify obscene sounds. The feature vector of the k-th segment, Fseg_k, is constructed with the 

chosen order of the quefrency (B’) side and time (L’) side as (3). 

T

kkkkkkkkkseg LBCBCLCCLCCLCCF )]1',1'(...,),0,1'(...,),1',2(...,),0,2(),1',1(...,),0,1(),1',0(...,),0,0([_ −−−−−−=  (3) 
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Finally, the RCSF feature vector, FRCSF, is constructed with mean and standard deviation values of 

all of the curve-like spectrum feature vectors of segment Fseg_k, in order to apply the repeated 

properties as (4). 

KkFstdFmeanF
T

ksegksegRCSF ≤≤= 0,)](),([ __
 (4) 

5. CLASSIFICATION WITH SVM CLASSIFIER 

A support vector machine (SVM) classifier is used in order to train RCSF feature vectors and 

classify whether an unknown input sample is obscene. Because there are very many different 

samples within obscene sounds even though the category of obscene sounds is limited to sexual 

moans and screams, it is important that the classifier have a generalized performance. The SVM 

classifier can also make the feature vectors trained so that the decision function maximizes the 

generalization ability [16]. SVM is a binary classifier that makes its decisions by constructing an 

optimal hyperplane that separates the two classes with the largest margin. It is based on the idea 

of structural risk minimization induction principle that aims at minimizing a bound on the 

generalization error, rather than minimizing the mean square error [17]-[20]. For the optimal 

hyperplane w⋅x + b = 0, where w ∈ R
N
 and b ∈ R, the decision function of classifying a unknown 

point x is defined as (5), where NS is the support vector number, xi is the support vector, αi is the 

Lagrange multiplier and mi ∈ {-1, 1} describes which class x belongs to. 
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In most cases, searching suitable hyperplane in input space is too restrictive to be of practical use. 

The solution to this situation is mapping the input space into a higher dimensional feature space 

and searching the optimal hyperplane in this feature space. Let z= φ(x) denote the corresponding 

feature space vector with a mapping φ from R
N
 to a feature space Z. It is not necessary to know 

about φ. We just provide a function called kernel which uses the points in input space to compute 

the dot product in feature space Z that is (6). 
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Finally, the decision function becomes (7). 
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Typical kernel functions include linear kernel, polynomial, radial basis kernel, etc. 

In this paper, the ‘libsvm’ tools are used as an SVM classifier [21], and the radial basis kernel 

function (RBF) is used as a kernel function. The RBF kernel nonlinearly maps samples into a 

higher dimensional space, so unlike the linear kernel, it can handle a case in which the relation 

between class labels and attributes is nonlinear.  

The procedures of training and classifying RCSF feature vectors extracted from the objectionable 

and non-objectionable audio clips are as follows. First, feature vectors for training and generating 

the learning model are extracted from the training audio clips and are scaled within the range of 

{-1, 1}.  It is very important to scale the feature vectors before training and classifying them with 

the SVM classifier. The main advantage is to avoid allowing the attributes in greater numeric 

ranges to dominate those in smaller numeric ranges. Another advantage is to avoid numerical 

difficulties during the calculation [22]. After scaling the feature vectors, their optimized 

parameters are chosen through cross validation for training. We use 5-fold cross validations in this 

paper. The optimized parameters make the classifier able to more accurately predict unknown 

data (i.e., testing data). Finally, the learning model is generated using training feature vectors with 

optimized parameters. This model is referred to when the unknown data is predicted. Feature 
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vectors of test audio clips are constructed in the same way as in the training audio clips, and are 

scaled within the same range. In addition, the classification is performed by predicting the class of 

feature vectors extracted from test audio clips based on the previously generated learning model. 

If an audio clip of an obscene sound is predicted as an obscene sound, or an audio clip of a non-

obscene sound is predicted as a non-obscene sound, the clip is classified correctly. Otherwise, it is 

an incorrect classification. 

6. CONSTRUCTION OF DATASET 

6.1. Dataset of audio clips 

To evaluate the RCSF feature and its learning model, we constructed a dataset of audio clips that 

have two classes, an obscene class and a non-obscene class, including a total of 6,269 audio clips. 

All of the audio clips are 10s long and are digitized at 16 bits per sample with a 16,000Hz 

sampling rate in a mono channel. The scale of the dataset in this paper is larger than that of the 

early tests of [13], [14] and balances the number of clips between the two classes so that 

classification performance is not biased to the one class that has the larger number of clips.  

Audio clips of an obscene class are constructed according to the 6 categories mentioned in section 

3. There are 3,052 audio clips of the obscene class (2,040 for training and 1,012 for testing) 

collected from three types of videos: adult videos (85), adult broadcasts (87), and hidden or self-

recorded videos (39). The numbers in the parenthesis indicate the number of video clips for each 

type. Since the contents of self-recorded and hidden-recorded are very similar, and it is very 

difficult to distinguish them, we categorized the two types of content into the same group. The 

detailed configuration of audio clips of obscene class is shown in Table 1. All clips of an obscene 

class are collected manually from a variety of X-rated videos so that they include various types of 

sexual moans and screams. The distribution of clips as shown in Table 1 shows that obscene 

sounds consist mainly of female-based sounds at more than 90%. It is also important to configure 

the audio clips of a non-obscene class in order to cover almost all of the non-obscene area. Thus, 

we try to collect audio clips of the non-obscene class from most genres of video clips and audio 

tracks that are distributed in real fields. We divided videos of the non-obscene class into eight 

genres: soap operas and movies (87), current events and culture (27), sports (17), children (23), 

entertainment (43), news (10), pop music (196), and instrumental music (84). There were 3,217 

audio clips of the non-obscene class collected from the above genres (2,089 for training and 1,128 

for testing). Although the number of video clips of each genre is different, we collected a similar 

number of audio clips for each genre. The detailed configurations of audio clips of non-obscene 

class are shown in Table 2. 

 

Table 1. Configuration of audio clips of obscene class 

Categories of clips 
Clips for training Clips for testing 

# Rate(%) # Rate(%) 
BOSM 424 21 206 20 
BOSS 285 14 178 17 
FMSM 650 32 311 31 
FMSS 523 26 219 22 

MASM 106 5 68 7 
MASS 52 2 30 3 

Total 2,040 100 1,012 100 
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Table 2. Configuration of audio clips of non-obscene class 

Genres of clips 
Clips for training Clips for testing 

# Rate(%) # Rate(%) 
Soap operas & Movies 300 14 215 19 

Current events & Cultures 252 12 117 10 
Sports 253 12 120 11 

Children 250 12 132 12 
Entertainments 264 13 126 11 

News 270 13 100 9 
Pop music 250 12 196 17 

Instrumental music 250 12 122 11 

Total 2,089 100 1,128 100 

 

Because all of the clips, especially for the obscene class, were collected from real videos, they 

include some environmental and recording noises, for example, fricative from bodies, background 

music, a loud laugh, creak of beds, talking during sexual activities, and so on. Recording noises 

are mostly included in the clips of the obscene class since many X-rated videos are made by 

amateurs in poor conditions in comparison with general videos. Therefore, the test results from 

the above datasets can be treated similarly as if the tests were performed under a noisy 

environment. However, because the noise strength including the datasets cannot be estimated and 

the noise is included at random, we performed the classification tests using noisy data generated 

by adding Gaussian white noise with a 5dB signal-to-noise ratio (SNR) into the test audio clips 

described in Tables 1 and 2. Gaussian white noise is a good approximation of many real world 

situations and generates mathematically traceable models. We can guess the amount of noise in a 

signal with a specific SNR (dB) value. Within noisy clips with a 5dB SNR, the average amplitude 

of the main signal is only 1.77 times larger than that of the noise signal, and these noisy clips are 

significantly harsh enough to hear. 

6.2. Dataset of videos 

In order to evaluate the classification performance of videos with the learning model generated 

from audio clips based on the RCSF feature, we construct the dataset of videos that are not used 

to construct the dataset of audio clips. A classification test of the video level is needed in order to 

check that the learning model based on the RCSF feature can be appropriate to decide whether an 

arbitrary video is X-rated or not. Each video file is gathered from some web-hard sites and peer-

to-peer programs. The dataset of general and X-rated videos are configured as shown in Tables 3 

and 4, respectively. Each genre of X-rated videos includes commercial videos made by 

professionals, as well as personal videos made by amateurs, such as self or hidden recorded 

videos. 

Table 3. Configuration of general videos. 

Genres of videos The number 
Average running 

time(min.) 

Korean soap operas 65 57 
Japanese soap operas 65 49 
Western soap operas 62 37 

Korean movies 55 105 
Western movies 62 89 

Sports 62 42 
Music Videos 49 4 

Documentaries 60 42 
Entertainments 60 64 

News 60 36 
Total 600  
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Table 4. Configuration of X-rated videos. 

Genres of videos The number 
Average running 

time(min.) 
Korean adult videos 260 40 

Japanese adult videos 215 75 
Western adults videos 125 58 

Total 600  

 

7. EXPERIMENTAL RESULTS 

7.1. Experimental results for audio clips 

In order to estimate the performance of the proposed RCSF feature, we compare the performance 

of RCSF feature with a variety of well-known spectral features [19], [22]-[25], which are MFCC; 

MFCC with delta coefficient (MFCCD); MFCC with delta and double delta coefficient 

(MFCCDD); spectral low-level features (LLF_S) composed of spectral bandwidth, spectral 

centroid, spectral flatness, spectral flux, and spectral roll-off set at 85%; and spectral and energy 

low-level features (LLF_ES) composed of the total energy and eight sub-band energies of 

frequency in addition to the LLF_S features. In order to investigate how the order affects the 

classification performance, the MFCC, MFCCD, and MFCCDD features were tested for 9 order 

types, from 7 to 23 at intervals of 2, and the RCSF features were tested for 72 combinations of 9 

quefrency order types, from 7 to 23, and 8 temporal order types, from 5 to 19, both at intervals of 

2. Each feature vector was constructed from a 10s clip unit of the dataset, which were configured 

in 6.1, using the mean and standard deviation values of all of the feature vectors that were 

extracted from each segment of a 500ms length within a clip. 

The performance was estimated in terms of F1-score, precision, and recall, which were computed 

using (8), (9), and (10), respectively, where Ntp is the number of true positives, Ntn is the number 

of true negatives, Nfp is the number of false positives, and Nfn is the number of false negatives. 

Obscene audio clip is used as positive data in this paper. Therefore, a true positive means that a 

clip classified as obscene class is an obscene audio clip, and a false positive means that a clip 

classified as obscene class is a non-obscene audio clip. 

100
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The overall performance of each feature is represented by the F1-score, as this is a balanced 

performance of precision and recall. A score of 1 is the best F1 score, while a 0 indicates the 

worst F1 score. Precision represents the ratio of obscene audio clips classified correctly among all 

clips classified as obscene class, while recall represents the ratio of obscene audio clips classified 

correctly among all clips tested as obscene class.  

Figure 3 shows the best classification performance of the RCSF and other well-known features on 

an F1-score basis at the original dataset. The RCSF has its best performance at a quefrency order 

of 23 and temporal order of 15. MFCC, MFCCD, and MFCCDD have their best performance at a 

quefrency order of 23, 23, and 21, respectively. Figure 4 shows the classification performance of 

the same features as shown in Fig. 3 with noisy data of 5dB SNR. 
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Figure 3. Classification performance of various features at the original dataset 
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Figure 4. Classification performance of various features at the noisy dataset of 5dB SNR 

 

The proposed RCSF feature outperforms LLF, MFCC, MFCCD, and MFCCDD features by 

9.73%, 4.53%, 3.35%, 3.25%, and 4.16% in the original dataset, and 40.55%, 52.86%, 15.11%, 

8.88%, and 7.78% in the noisy dataset, respectively. Particularly in a noisy dataset, the difference 

in classification performance between the RCSF and other features is larger. Figure 4 shows that 

the RCSF feature is also robust in the noisy dataset as it worsens by only 4.09% compared with 

the F1-score in the original dataset, and still maintains 92.55% of the F1-score even though the 

precision and recall worsen by 0.59% and 7.15%, respectively. This result shows that the RCSF is 

a stable and proper feature for classifying obscene sounds. The temporal variation of spectrum 

represented by RCSF is also very important information for classifying obscene sounds. 

Each performance of LLF_S, LLF_ES, MFCC, MFCCD and MFCCDD is not so bad for original 

dataset, but becomes unstable in the noisy dataset as shown in Fig 4. In particular, the LLF_S and 

LLF_ES feature have very poor performances. Recall is very low and then F1-score is also low 

even though precision is high, that is, the probability that a clip determined as obscene class is 
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correctly classified is very high, but the probability for an obscene audio clip to be classified as 

obscene class is very low. If LLF_S and LLF_ES are applied to filtering X-rated videos, many X-

rated videos fail to be filtered. There is little difference among the performances of MFCC, 

MFCCD, and MFCCDD in the original dataset. However, in the noisy dataset, MFCCD and 

MFCCDD have more stable and better performances than MFCC because MFCCD and 

MFCCDD include the delta values that represent the temporal variation of spectrum between 

successive frames, and these delta values are not included in MFCC. This result shows that one 

important piece of information that can classify an obscene sound from other sounds is an 

inherent temporal variation of spectrum, that is, a repeated curve-like pattern, and the proposed 

RCSF feature is more suitable to classify an obscene sound than other features. 

Classification errors of the RCSF feature occurred in the following cases. The cases of classifying 

non-obscene audio clips as obscene class often occurred in the genres of soap operas, movies, and 

talk shows. In soap operas and movies, exaggerated intonations and accents sometimes have 

similar spectrum patterns with obscene sounds. For talk shows, some of the test clips included 

signals with high pitches such as the responses and laughter of audiences, and thus these clips 

were often misjudged. In particular, female laughter is a signal that creates a lot of false 

classification. The cases of classifying obscene audio clips as non-obscene class often occurred 

for signals from weak sexual moans. Because the magnitude of signals for most weak sexual 

moans is very small, the temporal variation of spectrum is too small to distinguish well. In 

particular, some signals of male sexual moans are often misjudged because they have a relatively 

low pitch and small temporal variation of spectrum. 

Table 5 lists the performance of the top 5 feature types and the bottom 5 ones among all of 72 

RCSF feature types. And tables 6, 7, and 8 list the performances of all types of MFCC, MFCCD, 

and MFCCDD in descending order of F1-score. Orig. and 5dB in each table mean the 

performances at the original dataset and at the noisy dataset in 5dB SNR respectively. RCSF 

features have more stable performance than MFCC, MFCCD, and MFCCDD features. In fact, the 

average F1-score of all of 72 RCSF feature types is 95.38% with 0.69 of standard deviation at the 

original dataset and 89.88% with 2.97 of standard deviation at the noisy dataset. Especially RCSF 

feature outperforms the MFCC, MFCCD, and MFCCDD features at the noisy dataset. These 

results verify again that RCSF is a proper feature for classifying obscene sounds. As the 

quefrency order of RCSF feature becomes higher, the performance is very slightly improved. But 

the size of temporal order itself does not affect to the performance. In other words, the important 

thing is the temporal property of frequency itself not the size of temporal order. 

 

Table 5. Performance of RCSF feature types with combinations of quefrency order(Q) and 

temporal order(T). 

Q T 
F1-score(%) Precision(%) Recall(%) 

Orig. 5dB Orig. 5dB Orig. 5dB 

23 15 96.64 92.55 98.17 97.58 95.16 88.01 

23 13 96.60 92.38 97.87 97.57 95.36 87.71 

23 11 96.55 92.17 97.77 97.35 95.36 87.51 

23 9 96.54 91.99 97.97 97.56 95.16 87.02 

23 17 96.49 93.13 97.96 96.49 95.06 89.99 

… … … … 

9 5 94.19 84.08 97.16 98.15 91.40 73.54 

7 5 94.10 87.87 96.96 97.35 91.40 80.08 
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7 19 94.10 90.36 96.09 96.51 92.19 84.94 

7 15 93.96 90.36 96.66 96.51 91.40 84.94 

7 17 93.92 89.68 96.36 97.33 91.60 83.15 

Mean 95.38 89.88 97.12 97.32 93.72 83.70 

Std 0.69 2.97 0.51 1.06 1.28 5.38 

 

Table 6. Performance of MFCC feature types with various quefrency order(Q). 

Q 
F1-score(%) Precision(%) Recall(%) 

Orig. 5dB Orig. 5dB Orig. 5dB 

23 93.29 77.44 95.36 90.46 91.30 67.69 

21 92.73 77.59 94.74 90.16 90.81 68.09 

19 92.44 79.54 94.99 87.60 90.02 72.84 

17 91.61 79.77 94.35 85.67 89.03 74.63 

15 91.27 77.19 94.40 83.93 88.34 71.46 

13 90.02 78.16 94.46 78.12 85.97 78.20 

11 88.68 77.51 93.92 77.63 83.99 77.40 

9 87.55 76.62 93.89 74.74 82.02 78.59 

7 84.52 74.68 92.69 71.47 77.67 78.20 

Mean 90.23 77.61 94.31 82.20 86.57 74.12 

Std 2.87 1.52 0.77 6.93 4.59 4.34 

 

Table 7. Performance of MFCCD feature types with various quefrency order(Q). 

Q 
F1-score(%) Precision(%) Recall(%) 

Orig. 5dB Orig. 5dB Orig. 5dB 

23 93.39 83.67 95.46 87.72 91.40 79.98 

21 93.27 83.09 95.64 87.76 91.01 78.89 

19 92.40 81.54 94.90 83.72 90.02 79.48 

17 92.08 82.39 94.68 80.90 89.62 83.94 

15 91.54 80.12 94.43 80.56 88.83 79.68 

13 90.17 80.44 93.06 74.79 87.45 87.02 

11 89.37 76.33 93.05 76.75 85.97 75.92 

9 87.79 78.27 93.03 72.57 83.10 84.94 

7 85.55 75.08 91.74 70.83 80.14 79.88 

Mean 90.62 80.10 94.00 79.51 87.50 81.08 

Std 2.65 3.00 1.33 6.22 3.81 3.48 
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Table 8. Performance of MFCCDD feature types with various quefrency order(Q). 

Q 
F1-score(%) Precision(%) Recall(%) 

Orig. 5dB Orig. 5dB Orig. 5dB 

21 92.48 84.77 94.53 83.54 90.51 86.03 

23 92.41 84.50 94.71 86.11 90.22 82.95 

19 91.75 83.66 93.44 82.34 90.12 85.03 

17 91.24 83.21 93.56 81.29 89.03 85.23 

15 90.95 81.27 94.27 83.79 87.85 78.89 

13 89.53 80.11 93.16 74.51 86.17 86.62 

11 88.97 78.53 93.00 73.10 85.28 84.84 

9 87.30 77.60 91.82 71.78 83.20 84.44 

7 86.95 78.07 91.77 68.43 82.61 90.88 

Mean 90.17 81.30 93.36 78.32 87.22 84.99 

Std 2.09 2.84 1.07 6.38 3.05 3.17 

 

7.2. Experimental results for videos 

For classifying videos using the RCSF feature and its model, we use a harmful rate that is defined 

as the ratio of obscene audio clips among the total audio clips within a particular video, which is 

computed using (11). 

100
clipsaudioallof#

clipsaudioobsceneof#
rate(%)Harmful ×=  (11) 

We estimate the harmful rate for 1,200 videos configured as shown in Tables 3 and 4 by means of 

three types of RCSF features that are constructed using a quefrency and temporal order pair: (9, 

7), (15, 7), (21, 7). In order to investigate the difference between the estimation results of each 

RCSF feature type, we used three types of quefrency orders: 9 for lower order, 15 for middle 

order, and 21 for higher order. Figure 5 shows the histogram of the harmful rate for videos 

analyzed by means of each RCSF feature type. GEN and X indicate a general video and a X-rated 

video respectively. RCSF means that the RCSF feature is used as an audio feature, and Q and T 

indicate the quefrency and temporal order, respectively. For example, GEN_RCSF_Q(21)_T(7) 

means that a general video is analysed by means of the RCSF feature constructed with a 

quefrency order of 21 and temporal order of 7. In Fig. 5, the three types of RCSF features have 

similar results for both general and X-rated videos. More than 82% of the general videos have a 

harmful rate of less than 10%, and more than 97% of general videos have a harmful rate of less 

than 20%. Unlike the expectation of a particular minimum harmful rate, all X-rated videos have a 

harmful rate between 0% and 100%. 

However, the harmful rate of X-rated videos is more distributed within the range of 40% to 90%. 

Most of the X-rated videos that have a low harmful rate do not have an obscene sound. For 

example, in the case of personal videos made by amateurs under poor environments, such as self 

or hidden recorded videos, the audio signal is very weak or does not exist. While obscene sound 

exists, the amount of environmental and recording noises is too large to detect an obscene sound. 

Some of the professional videos include mostly background music and sound effects as they are 

focused on the body exposure of actors or actresses rather than on sexual activities. Also, several 
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videos have been edited in order to focus mainly on sexual conversations. From the histogram in 

Fig. 5, we adopted a 20% harmful rate as the threshold for classifying X-rated videos. 
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Figure 5. Histogram of the harmful rate for 600 X-rated videos and 600 general videos 

 

Table 9 shows the classification performance of three types of RCSF features with a 20% harmful 

rate as the threshold for 1,200 videos. The three types of RCSF features have a similar 

performance, and the precision is particularly high, while the recall is relatively low. In other 

words, while the possibility of detecting an X-rated video is relatively low, the probability that a 

video classified as X-rated was done so correctly is quite high. Tables 10 and 11 show the 

classification error rates of X-rated and general videos, respectively, for each genre. The numbers 

in the parenthesis indicate the number of videos. 

Table 9. Classification performance for videos at 20% of harmful rate as threshold 

Feature Type F1-score(%) Precision(%) Recall(%) 

Q(9)_T(7) 90 97 85 
Q(15)_T(7) 92 98 87 
Q(21)_T(7) 91 99 84 

 

Table 10. Classification error rate of X-rated videos 

Genres 
The 

number 
Classification error rate(%) 

Q(9)_T(7) Q(15)_T(7) Q(21)_T(7) 

Korean adult videos 260 21.9(57) 18.4(48) 22.3(58) 

Japanese adult videos 215 6.0(13) 4.6(10) 7.4(16) 

Western adults videos 125 16.8(21) 15.2(19) 16.0(20) 

Total 600 15.1(91) 12.8(77) 15.6(94) 
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Table 11. Classification error rate of general videos 

Genres 
The 

number 
Classification error rate(%) 

Q(9)_T(7) Q(15)_T(7) Q(21)_T(7) 

Korean soap operas 65 1.5(1) 0.0(0) 0.0(0) 

Japanese soap operas 65 0.0(0) 0.0(0) 0.0(0) 

Western soap operas 62 0.0(0) 0.0(0) 0.0(0) 

Korean movies 55 12.7(7) 10.9(6) 1.8(1) 

Western movies 62 9.7(6) 11.3(7) 6.5(4) 

Sports 62 0.0(0) 0.0(0) 0.0(0) 

Music Videos 49 4.1(2) 0.0(0) 2.0(1) 

Documentaries 60 0.0(0) 0.0(0) 0.0(0) 

Entertainments 60 0.0(0) 0.0(0) 0.0(0) 

News 60 0.0(0) 0.0(0) 0.0(0) 

Total 600 2.7(16) 2.2(13) 1.0(6) 

 

The reasons for a higher error rate of X-rated videos are mentioned above. There are more X-

rated videos that have few obscene sounds or very weak audio signals than we expected. Also, 

hidden and/or self-recorded videos that have low-quality audio as well as poor visual information 

were included in Korean and Western adult videos, but not Japanese adult videos. Therefore, the 

classification error rate of Japanese adult videos is lower than the others. For general videos, there 

are few errors to classify them. As expected, there are a few errors for soap operas and movies as 

exaggerated intonations and accents appeared mostly in these genres. Also, laughter, especially 

women’s laughter, appeared in these same genres. 

From the results, X-rated videos can be classified by means of the RCSF feature with a low error 

rate, and can be classified more effectively and precisely if visual features are adopted to classify 

X-rated videos that have few obscene sounds or very weak audio signals. 

8. CONCLUSION 

In this paper, we propose the repeated curve-like spectrum feature as an audio feature for 

classifying obscene sounds and X-rated videos. Obscene sounds indicate an audio signal 

generated from sexual moans and screams in various sexual scenes. For a reasonable evaluation 

of the RCSF feature, we constructed two types of datasets using two classes, obscene and non-

obscene content. The first type of dataset is composed of audio clips. Audio clips of the obscene 

class were composed with six categories defined from analyzing various samples of obscene 

sounds, and those of the non-obscene class were composed to represent general audio signals. The 

second type of dataset is composed of various genres of videos. The classification for audio clips 

was performed using a support vector machine, and the classification of videos was performed 

using a harmful rate defined as the ratio of obscene clips to the total clips within a particular 

video. The repeated curve-like spectrum feature has an F1-score, precision, and recall rate of 

about 96.64%, 98.18%, and 95.16%, respectively, in the original dataset, and 92.55%, 97.58%, 

and 88.01% in a noisy dataset with a 5dB SNR. Also, the proposed feature outperformed other 

well-known audio features, low-level perceptual features, and mel-frequency cepstrum coefficient 

families, by 3.25% to 9.73% in the original dataset, and 7.78% to 52.86% in the noisy dataset. 

This result shows that the repeated curve-like spectrum feature is a proper feature to classify 

obscene sounds and has a stable performance in noisy environments. For classifying videos based 

on the proposed feature, the classification performance has more than a 90% F1-score, 97% 

precision, and an 84% recall rate. Using the measured performance, the RCSF feature can be used 

to classify X-rated videos as well as obscene sounds. In addition, X-rated videos can be classified 

effectively with only audio features. 
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