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Abstract 
 

 In a peer to peer streaming system, the server usually provides multiple channels. Peers may form multiple 

groups, each corresponding to a channel for content distribution. A peer can freely switch from one 

channel to another. We propose a shared or distributed overlay framework (called SMesh or subset mesh) 

for dynamic groups where users may frequently hop between different groups. SMesh first builds a 

relatively stable mesh consisting of all hosts for control messaging and supports dynamic joining and 

leaving host in between the groups. And will guide the construction of overlay delivery trees. Through 

simulations on Internet, we show that SMesh achieves low delay and low link stress with efficient and low 

cost maintenance. Secondly we focus on providing statistically guaranteed streaming quality at channel 

level and individual peer level. 
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1. Introduction 
 

Peer-to-peer streaming has emerged as viable business model and systems architecture for 

Internet-scale applications [1]. It is an effective way to build applications that connect millions of 

users across the globe without reliance on specially deployed (centralized) servers. 
 

Peer-to-peer (P2P) streaming has been widely deployed over the Internet. With the penetration of 

broadband Internet access, there has been an increasing interest in media streaming services. 

Recently, P2P streaming has been proposed and developed to overcome the limitations of 

traditional server-based streaming. P2P streaming system cooperative peers self-organize 

themselves into an overlay network via unicast connections and adapt to changing peer 

population. 
 

For example fig, one of the most popular P2P streaming systems, PPLive streaming system 

(www.pplive.com), has provided over 400 channels. The total number of peers in PPLive during 

a day varies from around 50 thousand to 400 thousand, and the number of peers in a single 

channel, e.g., CCTV1, varies from several hundred to several thousand. 
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In these applications, as peers may dynamically hop from one group to another, it becomes an 

important issue to efficiently deliver specific contents to peers. One obvious approach is to 

broadcast all contents to all hosts and let them select the contents. Clearly, this is not efficient in 

terms of bandwidth and end-to-end delay; especially for unpopular channels. Maintaining a 

separate and distinct delivery overlay for each channel appears to be another solution. However, 

this approach introduces high control overhead to maintain multiple dynamic overlays. When 

users frequently hop from one channel to another, overlay reformation becomes costly and may 

lead to high packet loss. 
 

Most of the literatures on peer-to-peer (P2P) live streaming focuses on how to provide best-effort 

streaming quality by efficiently using the system bandwidth; however, there is no guarantee about 

the provided streaming quality. 
 

The issues mentioned in above two paragraphs are sorted out in this paper. In section 2, we 

propose a single shared overlay mesh construction for streaming process and in section 3, we 

propose algorithms which guarantees streaming quality statistically. 

 

2. A Single Shared Overlay Mesh For Peer To Peer Streaming In 

Dynamic Groups 
 

In this application, we consider building a data delivery tree for each group. To reduce tree 

construction and maintenance costs, we build a single shared overlay mesh. The mesh is formed 

by all peers in the system and is, hence, independent of joining and leaving events in any group. 

This relatively stable mesh is used for control messaging and guiding the construction of overlay 

trees. With the help of the mesh, trees can be efficiently constructed with no need of loop 

detection and elimination. Since an overlay tree serves only a subset of peers in the network, we 

term this framework Subset-Mesh, or SMesh. 
 

Our framework may use any existing mesh based overlay network. In this application, we use 

Delaunay Triangulation (DT) [2]. The traditional DT protocol has the following limitations: 

Inaccuracy in estimating host locations, Single point of failure, Message looping. We propose 

several techniques to improve the DT mesh, e.g., for accurately estimating host locations and 

distributed partition detection. The two important issues in construction SMesh: Mesh formation 

and maintenance, Construction of data delivery trees. 
 

SMesh does not rely on a static mesh. In the case of host joining or leaving, the underlying 

DTmesh can automatically adjust itself to form a new mesh. The trees on top of it will then 

accordingly adjust tree nodes and tree edges. Also note that in SMesh a host may join as many 

groups as its local resource allows. If a host joins multiple groups, its operations in different 

groups are independent of each other. 

 

2.1 Mesh formation and maintenance 
 

*SMesh uses GNP to estimate host locations in the Internet space and builds a DT mesh based on 

the estimated host coordinates. Since GNP estimation is based on network distances between 

hosts, the resultant mesh can achieve lower end-to-end delay than the traditional DT mesh. 

 

*SMesh uses a distributed algorithm to detect and recover mesh partition, thereby eliminating the 

need for a central server from the system. 
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*The distributed algorithm is able to detect whether a message destination is in a partitioned mesh 

or not and hence solves the message looping problem. 

 
GLOBAL NETWORK POSITIONING (GNP) 

 
GNP estimates host coordinates in a multidimensional Euclidean space such that the distance  

between two hosts in the Euclidean space correlates well with the measured roundtrip time 

between them [3]. In GNP, a few hosts are used as landmarks. Landmarks first measure the 

round-trip time between each other and forward results to one of them. The landmark receiving 

results uses the results to compute the landmark coordinates in Euclidean space. He coordinates 

are then disseminated back to the respective landmarks. More specifically, to estimate landmark 

coordinates, he following objective function is minimized. 
 

 

Where M is the number of landmarks, Li and Lj are the coordinates of landmarks i and j in the 

Euclidean space, and RTT (i,j) is the round-trip time between i and j. As shown, Jlandmark is the 

sum of the estimation error between the measured round-trip time and the logical distances in the 

Euclidean space among the landmarks. Therefore, we seek a set of landmark coordinates such 

that the sum is minimized. If there are multiple sets of {L1; L2; . . . ; LM} to minimize 

Jlandmark, any one set can be used. 
 

Given the landmark coordinates, a normal host estimates its coordinates by minimizing a similar 

objective function: 
 

 
 

Where Hu is the coordinates of host u, and RTT (u,i) is the measured round-trip time between 

host u and landmark i. Note that landmarks do not have to be permanent. It is easy to modify to 

remove a failed landmark or add a new landmark. Each host can obtain its coordinates by pinging 

O (1) landmarks and using O (1) messages. It is highly efficient and scalable. 

 
DELAUNAY TRIANGULATION (DT) 
 

In the traditional DT protocol, each host knows its geographic coordinates [2]. Hosts form a DT 

mesh based on their geographic coordinates. Compass routing, a kind of local routing, is then 

used to route a message along the mesh [4]. In this approach, a host only needs to know the states 

of its immediate neighbors to construct and maintain the mesh, and the mesh is adaptive to 

dynamic host joining or leaving. 
 

DT protocol connects hosts together so that the mesh satisfies the DT property, i.e., the minimum 

internal angle of the triangles in the mesh is maximized [5], [6]. Here angles are computed 

according to the coordinates of hosts as in traditional geometry. It has been shown that a mesh 

formed in this way connects close hosts together. We illustrate the triangulation process in Figure 

1. Suppose that hosts a; b; c, and d form a convex quadrilateral abcd. Two possible ways to 



The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011 

66 

triangulate it are shown in Figs. 1a and 1b, respectively. Clearly, the minimum internal angle of 

∆abc and ∆acd is smaller than that of ∆abd and ∆bcd. DT protocol then transforms the former 

configuration into the latter one. To achieve this, a host periodically sends HelloNeighbor 

messages to its neighbors to exchange their neighborhood information. It removes a host from its 

neighbor list if the connection to that host violates the DT property. Similarly, a host adds another 

host into its neighbor list only if the addition does not violate the DT property. Given a set of N 

hosts in the network, a DT mesh among them can be constructed with O (N log N) messages. The 

detailed construction mechanism and complexity analysis can be found in [5]. 
 

 
 

Figure 1. (a) Two adjacent triangles in a convex quadrilateral (∆abc and ∆adc) violate the DT 

property and (b) restore the DT property by disconnecting a from c and connecting b and d. 

 
In each connected DT mesh, a host is selected as the leader, which periodically exchanges control 

messages with the server. If the mesh is partitioned, more than one host will claim to be leaders. 

The server then requests them to connect to each other. 

 
DISTRIBUTED ALGORITHM FOR PARTITION DETECTION AND RECOVERY 
 

We now present a distributed algorithm to detect and recover mesh partition. We define some 

notations as follows. Given a graph, define L+abc as the clockwise angle from edge ab to edge bc 

and L-abc as the counterclockwise angle from edge ab to edge bc. They are both between 0 

degree and 360 degrees (i.e., the angle is not negative). We further define the undirected angle 

Labc as the smaller one of Labc and Labc, which is certainly between 0 degree and 180 degrees. 

We show the examples of L+, L-, and L in Figure 2. respectively. 
 

 
 

Figure 2.Examples of (a) clockwise angles L+, (b) counterclockwise angles L-, and (c) undirected 

anglesL. 

 

We further consider two connected hosts b and c, and another host a in the graph (whether a is a 

neighbor of b or c is irrelevant here). We say that c is the clockwise neighbor of b with respect to 

a if and only if L+abc is less than 180 degrees and is the minimum among all the neighbors of b 

(i.e., L+abc ≤ L+abx; for all х є neighbors of b). In this case, we write N+b,a=c (one can imagine 

that the edge ba with b fixed, when sweeping clockwise by less than 180 degrees would first 



The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011 

67 

touch c among all b’s neighbors). For example, in Fig. 2a, c is the clockwise neighbor of b with 

respect to a (i.e., N+b,a=c). Similarly, we say that c is the counterclockwise neighbor of b with 

respect to a, denoted as N-b,a=c, if and only if L-abc is less than 180 degrees and is the minimum 

among all the neighbors of b. In Fig. 2b, d is the counterclockwise neighbor of b with respect to a 

(i.e., N-b,a=d). Note that host b may not have any clockwise neighbor (or counterclockwise 

neighbor) with respect to a. For example, in Figure 2, host b does not have any clockwise 

neighbor with respect to c, since angles L+cbd and L-cba are larger than 180 degrees. 
 

Theorem 1: Given the above definitions and host coordinates, a host u detects that a destination t 

is partitioned from the mesh if and only if one of the following conditions is satisfied: 
 

 
 

Proof: There are two possible cases for t’s location: 
 

 
 

Figure 3 (a), (b), and (c) Host u is on the boundary of the overlay mesh, and host t lies outside the 

mesh. (d) u is interior host of  the mesh. Host t lies inside ∆ubc but doesn’t belong to the mesh. 

 
* t is outside the mesh (see Figs. 3(a,b,c)). By definition, a DT mesh is a convex polyhedron 

where only the external angles are larger than 180 degrees. As t falls outside  the mesh, a message 

with destination t must be finally forwarded to a boundary host u in the mesh. The possible 

positions of t are given in Figs. 3(a,b,c) where hosts b and c are two neighbors of u on the 

boundary of the mesh. Fig. 3a corresponds to condition 1. Fig. 3b corresponds to condition 2. Fig. 

3c corresponds to condition 3, where L+N-u,tuN+u,t is as indicated. 

* t is in the interior of the mesh (see Fig. 3d). If t is in the interior of the mesh, the position of t 

must fall inside a certain triangle ∆ubc (as shown in Fig. 3d). When a host u receives a message 

with destination t, if it finds that L+N+u,ttN-u,t > 180 degrees and there is no connection with t, it 

can conclude that t is not in the mesh. 
 

Therefore, a host u checks whether the destination has been partitioned from its mesh before 

forwarding a message. If so, u directly forwards the message to t to avoid message looping, and 
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asks t to join the mesh through itself (using the joining mechanism below) so as to recover the 

partition. 

 
JOINING MECHANISM (RECOVERY) 
 

A joining host, after obtaining its coordinates, sends a MeshJoin message with its coordinates to 

any host in the system. MeshJoin is then sent back to the joining host along the DT mesh based 

on compass routing. Since the joining host is not a member of the mesh yet, it can be considered 

as a partitioned mesh consisting of a single host. The MeshJoin message finally triggers the 

partition recovery mechanism at a particular host in the mesh, which helps the new host join the 

mesh. We illustrate the host joining mechanism in Figure 4. Suppose that u is a joining host. 
 

The following steps show how u joins the mesh (corresponding to Figure 4): 
 

1. u first retrieves the list of landmarks by querying a host b with a GetLandmark     message. 

2. Then u measures the round-trip time to the landmarks and estimates its coordinates. 

3. After that, u sends a MeshJoin message to b. 

4. The message is then forwarded from b to c based on compass routing. 

5. Since u falls into ∆acd; c knows that u is in another partitioned mesh. c then adds u into its 

neighbor listNc to recover the partition. Note that the minimum internal angle of ∆auc and ∆abc 

is less than that of ∆buc and ∆abu. Therefore, the connection between c and a violates the DT 

property, and c will remove a from Nc and notify a to remove the connection. c then broadcasts 

its neighborhood information to its neighbors through HelloNeighbor messages. (In DT, each host 

needs to periodically send HelloNeighbor messages to its neighbors to exchange the 

neighborhood information.) 

6. Upon receiving HelloNeighbor messages from c; b, and d discover u. They add u into their 

neighbor lists since such connections do not violate the DT property. In the meantime, u also 

discovers b and d and adds them into its neighbor list. Suppose that b is the next to broadcast 

HelloNeighbor messages. Upon receiving the message, a discovers u and adds u into its neighbor 

list. 

7. The resultant overlay mesh after the joining of u still satisfies the DT property. 
 

 
 

Figure 4. An example of host joining in SMesh. 
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2.2. Construction of data delivery trees 
 

We construct source specific data delivery trees on top of the mesh. The first type of tree is called 

an embedded tree, where all tree edges are part of the overlay mesh. When forming the tree, 

nonmember hosts may be included. The second one builds an overlay tree that covers only group 

members without having to use mesh edges. We call it a bypass tree. All tree nodes in a bypass 

tree are members of the group. This is similar to traditional overlay tree construction, where a 

node relays packets only for other members in its groups. However, the construction of a bypass 

tree has to rely on the underlying mesh. The third one is termed as intermediate tree, which lies 

between embedded and bypass trees. In the following, we call a nonleaf host in an overlay tree a 

forwarder, which needs to forward data messages to its children in the tree. We elaborate the 

details as follows: 
 

Embedded Tree: To join an embedded tree, a joining host first sends a TreeJoin message to the 

group source along the DT mesh using compass routing. All hosts along the message routing path 

become forwarders for the tree no matter whether they are group members. 
 

In Algorithm 2, we show how the TreeJoin message is handled by a host in the mesh: A host first 

adds the joining host into its children table for the specified group. Then, it checks whether itself 

is already a forwarder of the group. If so, the host has already started to forward messages for the 

tree and known the overlay path along the mesh to the group source. So, it suppresses the 

forwarding of the TreeJoin message and does nothing. Otherwise, it turns itself into a forwarder 

and relays the TreeJoin message to the group source. The TreeJoin message will eventually 

discover a path along the mesh to the group source. 
 

Algorithm 2. 
 

 
 
Bypass Tree: All forwarders in a bypass tree are the group members. Similarly, in order to join a 

bypass tree, a joining host needs to send a TreeJoin message to the group source using compass 

routing. 
 

In Algorithm 3, A nonmember host receiving the TreeJoin message simply relays the message to 

the next hop without turning itself into a forwarder. Such a host will not forward data packets for 

the group in the future. On the other hand, if the host receiving the message is a member of the 

group, it accepts the joining host as its child by adding the joining host into its children table. 

Clearly, such a host has already joined the tree and known the path to the group source. So, it 

stops forwarding the TreeJoin message. 
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Algorithm 3. 
 

 
 
Intermediate Tree: We observe that an embedded tree requires the participation of nonmember 

hosts, and a host may need to serve multiple hosts of different groups. As compared to a bypass 

tree, it consumes more network resources and suffers from higher delay, especially for sparse 

groups. On the other hand, a host in a bypass tree may have a high node stress and heavy load for 

data forwarding (e.g., a star-like topology rooted at the source for a sparse group). Therefore, we 

propose an intermediate tree which trades off between an embedded tree and a bypass tree. In an 

intermediate tree, a nonmember host is included in the tree if it receives more than a certain 

number of joining messages. Such a host resides in many routing paths, and we expect high 

delivery efficiency by including it in the tree. 
 

In Algorithm 4, we show how the TreeJoin message is handled by a host: A host handles the 

message as in a bypass tree if the number of received messages is less than a certain threshold. 

Otherwise, the host forwards the message as in an embedded tree. 
 

Algorithm 4. 
 

 
 
We give three illustrative examples of the trees. Overlay trees are inherently looped free. This is 

because compass routing in DT is a greedy algorithm, where the distance from a host to the 

message destination strictly decreases along the path [4]. As a result, in a data delivery tree, the 

distance from the source to a host is always smaller than the distance from the source to any of its 

descendants. This property leads to the loop-free characteristic of SMesh trees. 
 

One possible issue of bypass tree is that a host may have a high node stress by having many 

children. This is also an issue for intermediate tree. As a comparison, an embedded tree does not 

have this issue. Because all edges of an embedded tree are part of the mesh, while in a DT mesh, 

a host has on average six neighbors. In order to address this issue in bypass and intermediate 

trees, it is possible to set a degree bound for each host. If the number of children of a host reaches 

its degree bound, the host will not accept new joining hosts as its children. Instead, it forwards 

new joining hosts to other hosts in the tree (e.g., its parent). Clearly, this is a trade-off between 

fan-out and performance. It may incur a higher delay. 

 
PATH AGGREGATION FOR QOS PROVISIONING 
 

We note that the traditional DT protocol may result in high network resource consumption. For 

example, if host a belongs to domain A, and hosts b and b` belong to domain B, usually the 
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delays of interdomain paths ab and ab` are much higher than that of intradomain path bb`. In 

other words, angle Lbab` is small. As a result, using compass routing, if either b or b` is a child of 

a, the other one is also likely to be a child of a. Therefore, two independent connections across 

domains A and B are set up, which leads to high usage of long paths and hence high network 

resource consumption. Furthermore, in the traditional DT protocol, a host may have many 

children. However, a host often has a node stress threshold K for each group depending on its 

resource. To address these problems, we require that the minimum adjacent angle between two 

children of a host should exceed a certain threshold T. If the condition on K or T is violated, 

SMesh modifies its overlay tree through aggregation and delegation. 

 
Algorithm 5 

: 

 
 
Consider a source s and a host u in the network. Once u accepts a child, u checks whether its node 

stress exceeds K or whether the minimum adjacent angle between its children is less than T. If so, 

it runs the path aggregation algorithm, as shown in Algorithm 5. It selects a pair of children with 

the minimum adjacent  angle and delegates the child farther from the source to the other. Note 

that after aggregation, the overlay tree is still loop free because hosts are still topologically sorted 

according to their distances from the source. We show an example in Figure 5, where Lbuc is the 

smallest angle among all u’s children. If it is smaller than the threshold T and because 11 s – b 11 

< 11 s - c 11, u delegates c to b. 
 

 
 

Figure 5. Host u delegates its child c to child b, 

since Lbuc < T and | | s - b| |  <  | | s - c| | . 

 
SMesh avoids tree partition during aggregation by temporarily setting up backup paths. If u 

delegates its child c to another child c’,u would keep forwarding data to c  unless it receives an 

acknowledgment from c’. (This way, a backup path uc is set up.) Backup paths are also present 

when a host leaves its group. For example, in a bypass tree, a leaving host u sends a TreeLeave 

request to its parent p with the information of its children C= {c1, c2, c3….cm}. P keeps 

forwarding data to u until p has handled (either accepted or delegated) all the hosts in C (i.e., 

backup paths uc1, uc2,.. ucm are set up). 



The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011 

72 

� Illustrative Example 
 

We show in Figures 6, 7 and 8 how embedded, bypass, and intermediate trees are constructed. 

White circles in figures denote hosts belonging to the same group. The joining sequence is 

{d,b,f,c} and s is the source. 

 
 

Figure 6. An example of building an embedded tree. Tree branches are indicated by bold lines. 

 

 
 

Figure 7. An example of building a bypass tree. Tree branches are indicated by bold lines. 

 

 
 

Figure 8. An example of building an intermediate tree. Tree branches are indicated by bold lines. 

 

3. Providing Statistically Guaranteed Streaming Quality For P2P 

Streaming Systems 
 

There are two different ways to provide statistically guaranteed streaming quality. First at the 

channel level, this depends on overall bandwidth. Second at the individual peer level, it heavily 

depends not only on the overall system bandwidth but also on the underlying overlay construction 

method (we showed the best and cost effective overlay construction in section.1 ) and block 

scheduling algorithm.  

 

3.1 Providing channel-level guarantee 
 

We assume that the upload capacity of users is the only bottleneck for a P2P live streaming 

system i.e., the download capacity of a user is higher than the streaming rate, and bandwidth 



The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011 

73 

bottlenecks are located at the edges instead of the core of the Internet, which are reasonable 

assumptions [15] for the current Internet. With this assumption, the statistical bandwidth 

guarantee problem becomes how to guarantee that the probability for a channel to have sufficient 

overall upload bandwidth is higher than a threshold. 

In order to achieve statistically bandwidth guarantee, we study a class of admission control 

algorithms which admits or rejects a user based on the information and the channel state. 
 

We are particularly interested in the user-behavior insensitivity of an admission control 

algorithm, which is whether the algorithm performance is insensitive to the fine statistics of user 

behaviors including both the distribution of user inter-arrival times and the distribution of user 

lifetimes. This is because we believe that user-behavior insensitivity is the key to designing an 

admission control algorithm that is robust and has predictable bandwidth guarantee in a dynamic 

and heterogeneous P2P system. 
 

we model a channel of a P2P system by the queuing model shown in Figure 9, which captures 

two fundamental properties of P2P streaming, i.e., heterogeneous upload capabilities and peer 

churn. 

The notation is summarized in Table 1. 
 

 
 

Table 1: Notations 

 
Our model considers two classes of users (and can be extended to more classes). Class 1 contains 

a group of super users each capable of uploading at a high rate of , and class 2 contains a 

group of ordinary users each capable of uploading at a low rate of . We have 

. A new user arrives at the system randomly with an average rate of  and 

 for a super user and an ordinary user, respectively. A new user may be admitted or rejected 

(also called blocked) by an admission control algorithm based on the upload bandwidth of the 

user and the current state of the system. If a user is admitted, it stays in the system for a random 

lifetime with average  and  for a super user and an ordinary user, respectively. Each 

class is modeled as a state-dependent processor-sharing (PS) queuing node [16] shown in Figure 

9. The service rate of a queuing node depends on the current node state. For example, the service 

rate of the super user node (i.e., the top node in the figure) is , where  is the current 

number of super users. 
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We say that a system has sufficient upload bandwidth if , where C and R denote the 

total upload bandwidth and the total required bandwidth, respectively. The total upload 

bandwidth C of the system is a function  of the current system state as defined below  

 
where  is the upload capacity of the streaming server.  

The total required bandwidth R of the system is a function  of the current system state as 

defined below 

 
where  indicates the control overhead and bandwidth inefficiency of the system, and 

depends on the underlying overlay architecture and block scheduling algorithm of the system. For 

example, packet-level simulation results [17] show that  is about 1.15 for an overlay with mesh-

based overlay architecture and a random block scheduling algorithm. 

Finally, the statistical bandwidth guarantee problem is to determine whether a new user is 

admitted or rejected in order to guarantee , where  is the required 

bandwidth guarantee probability.  
 

 
 

Figure 9 A state-dependent processor-sharing (PS) queuing model for a channel of a P2P live 

streaming system with two types of users: super users and ordinary users. 

 
ADMISSION CONTROL ALGORITHMS 
 

We propose three admission control algorithms for achieving statistical bandwidth guarantee. 
 

1. Static User Admission Control (SUAC) admits all super users into the channel, and randomly 

admits an ordinary user with probability , where . 
 

2. Semi-Static User Admission Control (SSUAC) admits all super users, and admits an ordinary 

user if the following condition is true, where . 

 
 

3. Dynamic User Admission Control (DUAC) admits all super users, and admits an ordinary user 

if the following condition is true, where   

 
 

Since the upload bandwidth  of a super user is greater than the streaming rate r, all three 

algorithms always admit a super user. But they make different admission decisions for an 

ordinary user. SUAC is “static” in the sense that its admission decision for an ordinary user does 

not depend on the current system state (i.e.  and ), whereas DUAC is “dynamic” in that 

its admission decision depends on the current system state. SSUAC is “semi-static” since its 

admission decision depends only on the current state of ordinary users (i.e. ) but not on the 

current state of super users (i.e. ). 
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Below, we compare these three admission control algorithms according to the performance 

metrics. 
 

• Implementation Difficulty: SUAC is the easiest to implement, since it does not need to measure 

anything. DUAC is the hardest to implement, since it is not trivial to accurately and quickly 

measure the current  and . SSUAC is in the middle, since the average value of  can 

be obtained by using the history in- formation and then it only needs to accurately and quickly 

measure the current . 
 

• Blocking Rate: Intuitively, since DUAC makes a dynamic decision based on the current channel 

state, it should achieve the lowest blocking rate for a given , whereas SUAC makes a static 

decision, it should achieve the highest blocking rate. The performance of SSUAC should fall 

somewhere in between. This is verified in the next section by numerical results. 
 

• Retry Robustness: Both SSUAC and DUAC are robust in case of user retries, since for a given 

system state, no matter how many times a rejected ordinary user retries its admission request, it 

will always be rejected by both SSUAC and DUAC. However, with SUAC, a rejected ordinary 

user can keep retrying its admission request until it is finally admitted. One possible solution for 

SUAC is to keep track of all recently rejected users (E.g. their IP addresses). 
 

• User-Behavior Insensitivity: Intuitively, since DUAC is more dynamic than SUAC (i.e., more 

dependent on the channel state), DUAC is more sensitive to the fine statistics of user behaviors 

than SUAC. Specifically, we have the following insensitivity theorem. 

 

We say that an admission control algorithm is insensitive to the user lifetime distribution, if the 

steady state distribution of a P2P live streaming system using this algorithm depends only on the 

average lifetime (i.e. ) of super users and that (i.e., ) of ordinary users, but does not 

depend on the lifetime distribution of super users and that of ordinary users. We have the 

following theorem. 
 

Theorem6  Under the assumption that a super user arrives as a Poisson process and an ordinary 

user arrives as a Poisson process, the sufficient and necessary condition for an admission control 

algorithm to be insensitive to the life- time distribution is that its admission decisions do not 

depend on the current number of super users (i.e., ). 
 

Proof: Let  and  denote the arrival rate of admitted super 

users and that of admitted ordinary users, respectively, when there are  supers users and  

ordinary users. 

According to the insensitivity theory of processor-sharing queuing networks developed by Bonald 

and Proutere [19, 18], the queuing model shown in Figure 9 is insensitive to the user lifetime 

distribution if and only if 

 

Since every super user is admitted, we have   for any  and , and 

thus the sufficient and necessary condition for insensitivity becomes 

 
 

That is, the admission decision is independent of , but can be dependent on . 
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It is then easy to see that both SUAC and SSUAC are insensitive to the user lifetime distribution 

under the Poisson user arrival assumption, but DUAC is sensitive to the user lifetime distribution. 

This implies that the bandwidth guarantee probability achieved by SUAC and SSUAC depends 

on the user lifetime distribution through the mean only. 
 

We say that an admission control algorithm is insensitive to the user arrival process, if the steady 

state distribution of a P2P live streaming system using this algorithm depends only on the average 

arrival rate (i.e. ) of super users and that (i.e., ) of ordinary users, but does not depend on 

the inter-arrival time distribution of super users and that of ordinary users. 

 

3.2 Providing peer level guarantee 
 

The P2P design philosophy seeks to utilize peer’s upload bandwidth for reducing server’s 

workload. However, the upload bandwidth utilization might be suppressed by the so called 

content bottleneck where a peer may not have any content that can be uploaded to its neighbors 

even if its link is idle. The content bottleneck causes more severe problems in VoD (video on 

demand) system, due to free user’s control (forward, resume, pause etc). To make things worst 

peers are interested only in a small portion of chunks and their priorities changes more frequently 

as compared to live streaming. One way to resolve this problem is to compromise user viewing 

quality. For example, a lower video playback rate has lower peer bandwidth utilization 

requirement. Allowing a longer playback delay also allows a larger set of chunks to be exchanged 

among peers. The other solution lies in designing more efficient prefetching strategies and chunk 

scheduling methods. 
 

In this paper, we propose a differentiated chunk scheduling mechanism that can achieve high peer 

bandwidth utilization. Using queue-based signaling between peers and the content source server, 

the amount of workload assigned to a peer is proportional to its available upload capacity, which 

leads to high bandwidth utilization. In VoD system, the chunks closer to the current playing 

position have more importance; therefore a queuing model is designed for the segregation of 

“urgent” and “prefetching” traffic in VoD system. More specifically our paper provides following 

three fold contributions. 

1. We investigate the server’s side of peer, and classified the content requests into separate 

queues. We then proposed different scheduling policies for these queues considering the 

importance of each type of chunk. 

2. We proposed a link sharing mechanism, to prioritize the “urgent downloading” target. The 

bandwidth sharing among the queues therefore follows a logical pattern. 

3. We evaluate the properties of our algorithms, through real test bed. 

 
DISTRIBUTED CHUNK SCHEDULING 
 

The ability to achieve higher streaming rate in P2P VoD system is highly desirable. Higher 

streaming rate provides better quality and perception of stream. It also provides a cushion to 

absorb the bandwidth variations caused by peer churn and network congestion. The key to 

achieve high streaming rate is to better utilize the peer’s upload bandwidth. 
 

In this section we propose a differentiated chunk scheduling mechanism that can achieve 

maximum upload bandwidth of peers in P2P networks. We discuss the scheduling mechanism 

when peer is acting as a content source or content provider (server side scheduling). We assume a 

fully connected mesh topology, in which peers sends pull request to obtain the desired content 
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from other peers or server. The availability of upload capacity is conditional to the queue status. 

The following sub-sections will explain in detail the proposed differentiated chunk scheduling 

policy. 

 
A. Server Side Scheduling  
 

The queuing model is specifically designed for the case of co-existence of “urgent downloading” 

and “prefetching” requests on each peer. Prefetching has been proposed as a technique for 

reducing the access latency. In this technique, peers prefetch and store various portions of the 

streaming media ahead of their playing position. Each peer in the overlay providing the content to 

other peers is considered as content server in our case. We used two different queues for two 

different types of requests. Before sending a request for chunk, each peer sets an identifier for 

making distinction between the two types of content requests. On each peer (content server), there 

is a classifier which checks the request-type and sends it to appropriate queue. The urgent 

downloading target requires higher priority because the requested chunks are closer to the current 

position of playing window. There is also a scheduler which determines the order of packets to be 

transmitted from the queues. Figure 10, shows the model of queue based chunk scheduling. In 

this figure, the serving peer receives different types of chunk requests. These requests are 

classified into different queues according to their identifier. 
 

 
 

Figure 10. Queuing model in a particular Peer 

 
We used two different types of scheduling policies for each queue. For urgent downloading 

target, the chunks whose deadline is near to expire have given priority. Thus earliest deadline 

first (EDF) is adapted in this case. This allows the timely availability of chunks to the requesting 

peer. If a peer requests multiple chunks at different time interval, the latest request will be served 

while the earlier chunk request would be forwarded to prefetching queue. Let two chunks are 

requested from a same peer at time te and tc , where te is earlier time and tc denotes the current 

time. If the difference between the two time (te and tc) is greater than certain threshold, then this 

situation suggests that peer has performed a seek operation and now it’s playing position have 

been changed. We define the time threshold equals to 10 seconds which is same as the length of 

window for urgent downloading [20] In this case, we give priority to the chunk closer to current 

position, thus the latest request (at time tc) has been fulfilled. This scheduling scheme allows the 

peer to obtain the chunks nearer to playback position. On the other hand we used simple first 

come first serve (FCFS) policy for prefetching queue. This type of content doesn’t have a specific 

deadline. These content are used to reduce the delay latency when a user performs a seek 

operation. Therefore FCFS policy is sufficient for this type of content. 
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B. Bandwidth Distribution 
 

We design a scheduler to determine the order of packets to be transmitted from the queues 

according to the bandwidth ratio “br” for each type of traffic. The bandwidth ratio “br” 

represents the amount of bandwidth dedicated to urgent downloading and prefetching. 
 

Moreover, both classes can borrow bandwidth from each other when one of the two types of 

traffic is nonexistent or under the limit. This br value is also used to calculate the service rate for 

both types of traffic on that particular peer with bri and µi- bri being respectively the service rate 

for urgent downloading and prefetching for peer i. µi is the total available bandwidth of peer i. In 

order to calculate the value of br we monitor the first queue (urgent downloading) in periodic 

interval. We calculate the total size of data chunks requested and their corresponding deadlines. 

Let CSi represents the chunk size requested by peer i with deadline ti then, 
 

 
 

This value of br is used to distribute the upload capacity of the peer among the two types of 

traffic. The urgent downloading target has higher priority therefore bri is the outgoing capacity of 

this link. The remaining bandwidth µi-bri is assigned to the prefetching queue. The peers upload 

bandwidth doesn’t remain constant and fluctuates over time. The periodic calculation of the 

bandwidth ratio allows handling the dynamicity of the network. 
 

Algorithm 7 
 

 
 
C. Client Side Scheduling 
 

We divide the client buffer window into two different stages; according to play back time of 

segments as shown in Figure 11 The client side structure is similar to most P2P VoD 

implementations [20]. The adjacent stage contains the segments which are closer to the current 

playing position of the window. Thus the segments in this window are considered extremely 

important and therefore given higher priority. The prefetching stage contains the block with the 

latest playback time. We utilize cooperative prefetching[21] to prefetch the content from different 

peers. This technique fetches the maximum unavailable segments into session thus reducing the 
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inter-session transfer delay. The other segments to be prefetched are given lower priority as a 

request identifier. 
 

 
 

Figure 11 Sliding Window in VoD System 

 

4. Conclusion 
 

In P2P streaming networks, users may frequently hop from one group to another. The proposed 

novel framework called SMesh serves dynamic groups for Internet streaming. SMesh supports 

multiple groups and can efficiently distribute data to these dynamic groups. It first builds a shared 

overlay mesh for all hosts in the system. This stable mesh is then used to guide the construction 

of data delivery trees for each group. We construct three types of data delivery trees, i.e., 

embedded, bypass, and intermediate trees. We also propose and study an aggregation and 

delegation algorithm to balance the load among hosts, which trades off end-to-end delay with 

lower network resource usage. 
 

To provide statistically guaranteed quality we proposed algorithms at two stages. First one at 

channel level i.e., admission control algorithms and second one at peer level i.e., algorithm for 

differentiated queuing and bandwidth allocation. 
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