
The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

DOI : 10.5121/ijma.2011.3407 83

LOSSLESS DIGITAL IMAGE COMPRESSION METHOD

FOR BITMAP IMAGES

 Dr T. Meyyappan
1
, SM.Thamarai

2
 and N.M.Jeya Nachiaban

3

1,2
 Department of Computer Science and Engineering,

Alagappa University, Karaikudi – 630 003, India.

meyslotus@yahoo.com, lotusmeys@yahoo.com

3
 Department of Computer Science and Engineering,

Thiagarajar College of Engineering Madurai-9., India.
nmjeyan2009@tce.edu

ABSTRACT

In this research paper, the authors propose a new approach to digital image compression using crack

coding This method starts with the original image and develop crack codes in a recursive manner, marking

the pixels visited earlier and expanding the entropy in four directions. The proposed method is

experimented with sample bitmap images and results are tabulated. The method is implemented in uni-

processor machine using C language source code.

KEYWORDS

Bitmap Images, Contour, Crack Coding, Lossless Compression, Image

1. INTRODUCTION

Now a days network plays an important role in our life. It is hard to pass a day without sharing

information with others. Transmission of images is also the need of the day. Transmission of

images in their original form increases the time spent in network and we need to increases the

bandwidth for fast transmission. On the other hand, compressed images which can be restored at

the receiving end can very much reduce network overheads.

Compression of images is concerned with storing them in a form that does not take up so much

space as original. Elementary compression can be illustrated by comparing the work of artists

with that of computer aided designers.

This is not how artists would work. With an electronic paint brush they might wish to shade an

area with a particular ink, gradually increasing the amount of shading by using the paint brush

over some part of the area again and again. The file would have to be a full memory map of all

the pixels in the original piece of work. It could not simply contain the (x,y) coordinates of areas

and their relationships. Compression of images[9] is concerned with storing them in a form that

does not take up so much space as original.

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

84

Different data structures are best for each type of image for minimum storage requirements.

Minimum storage is not a useful end in itself and compressing images to minimum storage levels

is itself a time-costly exercise.However, if images are to be held on or transferred between

machines ,minimum storage reduces hardware costs.Image compression addresses the problem of

reducing the amount of data[2] required to represent a digital image. The underlying basis of the

reduction process is the removal of redundant data.

2. EXISTING METHODS

The four different approaches[3],[5] to compression are Statistical Compression,Spatial

compression, Quantizing compression, Fractal compression. In spatial approach, image coding

is based on the spatial relationship between pixels of predictably similar types. The method

proposed in this paper employs spatial approach for compression.

Run-length encoding (RLE) is a very simple form of data compression in which runs of data (that

is, sequences in which the same data value occurs in many consecutive data elements) are stored

as a single data value and count, rather than as the original run. This is most useful on data that

contains many such runs: for example, simple graphic images[8] such as icons, line drawings, and

animationsHuffman coding removes coding redundancy. Huffman’s procedure creates the

optimal code for a set of symbols and probabilities subject to the constraint that the symbols be

coded one at a time. After the code has been created, coding and/or decoding is accomplished in

the simple look-up table . When large number of symbols is to be coded, the construction of the

optimal binary Huffman code is a difficult task.

Arithmetic coding (AC)[4] is a special kind of entropy coding. Arithmetic coding is a form of

variable-length entropy encoding used in lossless data compression. Arithmetic coding differs

from other forms of entropy encoding such as Huffman coding in that rather than separating the

input into component symbols and replacing each with a code, arithmetic coding encodes the

entire message into a single number.

3. IMAGE MODEL

A digitized image is described by an N x M matrix of pixel values are nonnegative scalars, that

indicate the light intensity of the picture element at (i,j) represented by the pixel.

Figure 1 Image Model

3.1 Connectivity

In many circumstances it is important to know whether two pixels are connected to each other,

and there are two major rules[7] for deciding this. Consider a pixel called P, at row i and column j

of an image; looking at a small region centered about this pixel, we can label the neighboring

pixels with integers. Connectivity is illustrated below:

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

85

Two pixels are 4-adjacent if they are horizontal or vertical neighbors. The 4-adjacent pixels

are said to be connected if they have the same pixel value.

Figure 2 4-Connected Pixels

3.2 Contour Tracing with Crack Coding

Contour coding[4] has the effect of reducing the areas of pixels of the same grey levels to a set

of contours that bound those areas. If the areas of same grey level are large with a simple

edge, then the compression rate can be very good. In practice, it is best to make all contours

circular[4], so that they return to the originating pixel - if necessary along the path that they

have already traversed - and to identify the grey level that they lie on and enclose. 8-

connected contour is known as chain coding and 4-connected contour is known as crack

coding. In this paper, authors used crack coding and grey level of each contour is saved along

with the contour.

 Figure 3(a) Original Image Figure3(b) 4-Connected Contour

4. BITMAP-FILE STRUCTURE

Each bitmap file contains a bitmap-file header, a bitmap-information header, a color table, and an

array of bytes that defines the bitmap bits. The file has the following form:

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

86

BITMAPFILEHEADER bmfh;

BITMAPINFOHEADER bmih;

RGBQUAD aColors[];

BYTE aBitmapBits[];

4.1 Bitmap file Header

The bitmap-file header (bmfh) contains information about the type, size, and layout of a device-

independent bitmap file[6]. The header is defined as a BITMAPFILEHEADER structure. Its

contents and their meaning or shown in the table given below:

Table 1 Bitmap Header Structure

START SIZE NAME
STANDARD

VALUE
PURPOSE

1 2 bfType 19778
must always be set to ‘BM’ for bitmap

file

3 4 bfSize ?? specifies the size of files in bytes

7 2 bfReaseved1 0 must always be set to zero

9 2 bfReserved2 0 must always be set to zero

11 4 bfOffBits 1078
specifies the offset from the beginning of

the file to the bitmap data

4.2 Bitmap Info Header

The bitmap-information header (bmih), defined as a BITMAPINFOHEADER structure, specifies

the dimensions, compression type, and color format for the bitmap[6]. Its contents and their

meaning are shown in the table given below.

Table 2 Bitmap File Header Structure

START SIZE NAME
STANDARD

VALUE
PURPOSE

15 4 biSize 40 specifies the bitmap size

19 4 biwidth 100 specifies the image width

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

87

23 4 biHeight 100 specifies the image height

27 2 biPlanes 1 specifies the number of planes

29 2 biBitcount 8
specifies the number of bits per

pixel

31 4 biCompression 0 secifies the type of compression

35 4 bisizeImage 0 specifies the size of image data

39 4 biXPelsPerMeter 0 specifies the pixels in X direction

43 4 biXPelsPerMeter 0 specifies the pixels in Y direction

47 4 biClrUsed 0
specifies the number of bitmap

colors

51 4 biClrImportant 0
specifies the number of colors

,important for bitmap

4.3 Color Table

The color table, defined as an array of RGBQUAD structures, contains as many elements as there

are colors in the bitmap. The color table is not present for bitmaps with 24 color bits because each

pixel is represented by 24-bit red-green-blue (RGB) values in the actual bitmap data area.

The colors in the table should appear in order of importance. This helps a display driver render a

bitmap on a device that cannot display as many colors as here are in the bitmap. If the DIB is in

Windows version 3.0 or later format, the driver can use the biClrImportant member of the

BITMAPINFOHEADER structure to determine which colors are important.The BITMAPINFO

structure can be used to represent a combined bitmap-information header and color table.

4.4 Bitmap Pixels

The bitmap bits, immediately following the color table, consist of an array of BYTE values

representing consecutive rows, or "scan lines," of the bitmap. Each scan line consists of

consecutive bytes representing the pixels in the scan line, in left-to-right order. The number of

bytes representing a scan line depends on the color format and the width, in pixels, of the bitmap.

If necessary, a scan line must be zero-padded to end on a 32-bit boundary. However, segment

boundaries can appear anywhere in the bitmap[6]. The scan lines in the bitmap are stored from

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

88

bottom up. This means that the first byte in the array represents the pixels in the lower-left corner

of the bitmap and the last byte represents the pixels in the upper-right corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits

that define each pixel and the maximum number of colors in the bitmap. These members can take

the any of the following values as depicted in the table given below:

Value Meaning

1

Bitmap is monochrome and the color table contains two entries. Each bit

in the bitmap array represents a pixel. If the bit is clear, the pixel is

displayed with the color of the first entry in the color table. If the bit is

set, the pixel has the color of the second entry in the table.

4

Bitmap has a maximum of 16 colors. Each pixel in the bitmap is

represented by a 4-bit index into the color table. For example, if the first

byte in the bitmap is 0x1F, the byte represents two pixels. The first pixel

contains the color in the second table entry, and the second pixel

contains the color in the sixteenth table entry.

8

Bitmap has a maximum of 256 colors. Each pixel in the bitmap is

represented by a 1-byte index into the color table. For example, if the

first byte in the bitmap is 0x1F, the first pixel has the color of the thirty-

second table entry.

24

Bitmap has a maximum of 2^24 colors. The bmiColors (or bmciColors)

member is NULL, and each 3-byte sequence in the bitmap array

represents the relative intensities of red, green, and blue, respectively,

for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color

indexes in the color table actually used by the bitmap. If the biClrUsed member is set to zero, the

bitmap uses the maximum number of colors corresponding to the value of the biBitCount

member.

The biCompression member tells whether the image is compressed or not. Windows versions 3.0

and later support run-length encoded (RLE) formats for compressing bitmaps that use 4 bits per

pixel and 8 bits per pixel. Uncompressed images are taken for this project and they contain a

value 0 in this field.

5. PROPOSED METHOD

The proposed method works with the original image as it is. It does not process the image in any

way and transform the pixels of the image as in edge detection. It finds all the possible 4-

connected contours and stores the 4-directions of the contour along with grey value being

examined. The process is repeated with the help of a recursive procedure and marking all the

pixels visited along the contour path. The marked pixels are eliminated for further examination

of connected pixels[10]. The four direction crack code values (0,1,2,3 consuming 2 bits per

number) are packed into a byte and stored along with the grey value in output file. No loss of

pixels[1] are observed in the proposed compression method. The following is the format of

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

89

stored compressed image:

 Row, Column, Grey-Value, 4-direction crack codes

5.1 Algorithm for Compressing Original Image

The following algorithm shows the sequence of steps to be followed to compress the original

image.

Step 1:Read an uncompressed image file[6]

Step 2:Read number of rows n and columns m of the image from header

Step 3::Separate pixels P[n,m]

Step 4:For i=1 to n do 5

Step 5:For j=1 to m do

 Store P[i,j] and its grey value g as beginning of the contour

 Mark the pixel P[i,j]

 Crack_Code(P,i,j,g)

Step 6:Write the header information and contour codes in another file.

Procedure Crack_Code(P,i,j,g)

Begin

 if (P[i, j-1] equal g) then store 0; Crack_Code(P,i, j-1,g);

 else if(P[i-1,j] equals g) then store 1; Crack_Code(P,i-1,,j,g);

 else if(P[i,,j+1] equals g) then store 2; Crack_Code(P,i, j+1,g);

 else if(P[i+1,,j] equals g) then store 3; Crack_Code(P,i+1, j,g);

 else return;

End;

5.2 Algorithm for Restoration of Original Image from Compresed Image

The following algorithm shows the sequence of steps to restore the original image from

compressed image.

Step 1:Open the compressed image file.

Step 2:Read number of rows m and columns n of the image from header.

Step 3:Initialize P[n,m]

Step 4:Repeat steps 5 to 8 until all the crack coded contours are processed

Step 5:Read starting coordinate position(i, j) and grey value g of next contour.

Step 6:P[i, j]=g;

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

90

Step 7:Read next crack code c;

Step 8:Replace_Pixel(P,i, j,g,c);

Step 9:Write the header information and pixels P[n,m] in another file.

Procedure Replace_Pixel(P,i, j,g,c)

Begin

 if(c equals 0) then store P[i, j-1]=g;

 else if(c equals 1) then store P[i-1, j]=g;

 else if(c equals 2) then store P[i, j+1]=g;

 else if(c equals 3) then store P[i+1, j]=g;

 else return;

End;

6.RESULTS AND DISCUSSION

The authors have developed a package using C language code for the proposed compression and

decompression methods. A set of sample bitmap images (both monochrome and color) are tested

with the proposed method. The compression percentage varies from 79% to 85% for the samples.

The percentage of compression is better for images with more number of similar grey values[10].

No loss of pixels are found while restoring the original image. Instead of storing 8 bits, the

contour values are stored in 2 bits. Original size and compressed size of the images and

computation time are plotted.

 Figure 4(a) Original Bitmap Image

A sample content of the file which stores Starting Position of a pixel, Grey value and Crack

Codes of its contour is shown below. The last value -1 marks the end of the contour.

0 0 200 3 2 2 2 2 2 3 0 0 -1

0 2 225 1 3 3 2 2 2 2 2 2 2 2 3 0 0 0 0 0 0 0 0 3 2 2 2 2 2 2 2 2 3 0 -1

0 7 175 3 2 2 2 2 2 3 2 2 2 2 -1

0 9 180 2 2 2 2 -1

1 7 190 2 2 2 2 -1

Figure 4(b) IMAGE after Decompression

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

91

Table 3 Experimental Results

S
A

M
P

L
E

 B
IT

M
A

P

IM
A

G
E

S

O
R

IG
IN

A
L
 S

IZ
E

IN
 B

Y
T

E
S

C
O

M
P

R
E

S
S

E
D

IM
A

G
E

 S
IZ

E
 I

N

B
Y

T
E

S

C
O

M
P

R
E

S
S

IO
N

P
E

R
C

E
N

T
A

G
E

C
O

M
P

U
T

A
T

IO
N

T
IM

E
 I
N

S
E

C
O

N
D

S

N
U

M
B

E
R

 O
F

B
Y

T
E

S

D
IF

F
E

R
E

D

1 9108 1617 82.25 0.821 0

2 8036 1580 80.34 0.898 0

3 8415 1611 80.86 1.325 0

4 7698 1579 79.49 1.077 0

5 9078 1793 80.25 1.123 0

6 9783 1382 85.87 0.715 0

7. CONCLUSION

The proposed method proves to be a lossless compression method. Program execution time,

compression percentage and rate of information loss is measured for various images.

Computation time for compression of an image is not directly proportional to the size of the

image. It depends on the number of contours found in the image. As there is no loss of pixels,

this method is more suitable for compressing medical images. The next phase of the research

work with 8-connected pixels (chain coding) is under progress.

REFERENCES

[1] Wu,X., Memon,N,(1997) “Context-based, adaptive, lossless image coding”, IEEE Trans.

Commun.,vol. 45, pp. 437–444.

[2] Ansari,R., Memon,N., Ceran,E,(1998) “Near-lossless image compression techniques,” J.

Electron.Imaging, vol. 7, no. 3, pp. 486–494.

[3] Michael P. Ekstrom,(1984) “Digital Image Processing Techniques (Computational Techniques)” ,

Academic Press.

[4] Adrian Low(1991) “Introductory Computer Vision and Image Processing” , McGraw-Hill Publishing

Co.

[5] Gilbert Held, Thomas R. Marshall,(1996) “ Data and Image Compression: Tools and Techniques”,

Wiley.

[6] John Miano,(1999) “ Compressed Image File Formats”, JPEG, PNG, GIF, XBM, BMP, ACM Press.

[7] Sayood,(2000) “Introduction to Data Compression”, 2/e, Academic Press .

[8] Bernd Jahne,(2004), “Practical Handbook on Image Processing for Scientific and Technical

Applications”, CRC Press.

[9] James R. Parker,(2010) “Algorithms for Image Processing and Computer Vision”, Wiley.

[10] T.Meyyappan, SM.Thamarai, N.M.Jeya Nachiaban,(2011) “A New Method for Lossless Image

Compression Using Recursive Crack Coding”, Advances in Digital Image Processing and Information

Technology, Computers Communications and Information Series(CCIS), ISSN: 1865-0929, E-ISSN:

1865-0937, DOI: 10.1007/978-3-642-24055-3, Vol-205, Springer Heidelberg Dordrecht London

New York, Springer, pp. 128-135.

The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.4, November 2011

92

AUTHORS

Prof. Dr. T. Meyyappan M.Sc., M.Phil., M.B.A., Ph.D., currently, Associate

Professor, Department of Computer Science and Engineering, Alagappa

University, Karaikudi, TamilNadu. He has obtained his Ph.D. in Computer

Science in January 2011 and published a number of research papers in National

and International journals and conferences. He has developed Software packages

for Examination, Admission Processing and official Website of Alagappa

University. His research areas include Operations Research, Digital Image

Processing, Fault Tolerant computing, Network security and Data Mining.

Mrs S. M. Thamarai received her Diploma in Electronics and Communication

Engineering in Department of Technical Education,TamilNadu in 1989 and her

B.C.A., M.Sc. (First Rank holder and Gold Medalist),M.Phil.(First Rank

holder)degrees in Computer Science(1998-2005) from Alagappa University. She

has published a number of research papers in International Journals, National and

International Conference proceedings.Her current research interests are in

Operational Research, Fault Tolerant Computing and Digital Image Proces sing.

She is currently pursuing her Ph.D. in Alagappa University, Karaikudi,

TamilNadu.

Mr. N. M. Jeya Nachiaban B.E. [pre-final] is pursuing Bachelor Degree in

Computer Science and Engineering, Thiagarajar College of Engineering, Madurai.

His research areas include Digital Image Processing and Data Mining.

