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ABSTRACT 

In this research  paper, the authors propose a new approach to digital  image compression using crack 

coding  This method starts with the original image and develop crack codes in a recursive manner, marking 

the pixels visited earlier and expanding the entropy in four directions.  The proposed method is 

experimented with sample bitmap images and results are tabulated.  The method is implemented in uni-

processor machine using C language source code. 
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1. INTRODUCTION 

Now a days network plays an important role in our life. It is hard to pass a day without sharing 

information with others.   Transmission of images is also the need of the day.  Transmission of 

images in their original form increases the time spent in  network and we need to  increases the 

bandwidth for fast transmission.  On the other hand, compressed images which can be restored at 

the receiving end can very much reduce network overheads.    

 

Compression of images is concerned with storing them in a form that does not take up so much 

space as original. Elementary  compression can be illustrated by comparing  the work of artists 

with that of computer  aided  designers.     

 

This  is not how artists would work. With an electronic paint brush they might wish to shade an 

area with a particular ink, gradually increasing the amount of shading by using the paint brush 

over some part of the area again and again. The file would have to be a full memory map of all 

the pixels in the original piece of work.  It could not simply contain the (x,y) coordinates of areas 

and their relationships. Compression of images[9] is concerned with storing them in a form that 

does not take up so much space as original.   
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Different data structures are best for each type of image for minimum storage requirements. 

Minimum storage is not a useful end in itself and compressing images  to minimum storage levels 

is itself a  time-costly exercise.However, if images are to be held on or transferred between 

machines ,minimum storage reduces hardware costs.Image compression addresses the problem of 

reducing the amount of data[2] required to represent  a digital image. The  underlying basis of the 

reduction process is the removal of redundant  data. 

 

2. EXISTING METHODS 

The four different approaches[3],[5] to compression are Statistical Compression,Spatial 

compression,  Quantizing compression, Fractal compression.  In spatial approach, image coding 

is based on the spatial relationship between pixels of predictably similar types. The method 

proposed in this paper employs spatial approach for compression. 

 

Run-length encoding (RLE) is a very simple form of data compression in which runs of data (that 

is, sequences in which the same data value occurs in many consecutive data elements) are stored 

as a single data value and count, rather than as the original run. This is most useful on data that 

contains many such runs: for example, simple graphic images[8] such as icons, line drawings, and 

animationsHuffman coding removes coding  redundancy.  Huffman’s procedure creates the 

optimal code for a set of symbols and probabilities subject to the constraint that the symbols be 

coded one at a time.  After the code has been created, coding and/or decoding is accomplished in 

the simple look-up table .  When large number of symbols is to be coded, the construction of the 

optimal binary Huffman code is a difficult task. 

 

Arithmetic coding (AC)[4] is a special kind of entropy coding.  Arithmetic coding is a form of 

variable-length entropy encoding used in lossless data compression. Arithmetic coding differs 

from other forms of entropy encoding such as Huffman coding in that rather than separating the 

input into component symbols and replacing each with a code, arithmetic coding encodes the 

entire message into a single number.  

 

3. IMAGE MODEL 

A digitized image is described by an N x M matrix of pixel values are nonnegative scalars, that 

indicate the light intensity of the picture element at (i,j) represented by the pixel. 

 

             

Figure 1 Image Model 

 

3.1 Connectivity 

 

In many circumstances it is important to know whether two pixels are connected to each other, 

and there are two major rules[7] for deciding this. Consider a pixel called P, at row i and column j 

of an image; looking at a small region centered about this pixel, we can label the neighboring 

pixels with integers.  Connectivity is illustrated below: 
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Two pixels are 4-adjacent if they are horizontal or vertical neighbors.  The 4-adjacent pixels 

are said to be connected if they have the same pixel value. 

 

 

 

Figure 2  4-Connected Pixels 

 

3.2 Contour Tracing with  Crack Coding 

Contour coding[4] has the effect of reducing the areas of pixels of the same grey levels to a set 

of contours that bound those areas.  If the areas of same grey level are large with a simple 

edge, then the compression rate can be very good.  In practice, it is best to make all contours 

circular[4], so that they return to the originating pixel - if necessary along the path that they 

have already traversed - and to identify the grey level that they lie on and enclose.  8-

connected contour is known as chain coding and 4-connected contour is known as crack 

coding.  In this paper, authors used crack coding and grey level of each contour is saved along 

with the contour. 
 

     

 Figure 3(a) Original Image Figure3(b) 4-Connected Contour 

 

4.   BITMAP-FILE STRUCTURE 

Each bitmap file contains a bitmap-file header, a bitmap-information header, a color table, and an 

array of bytes that defines the bitmap bits. The file has the following form: 
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BITMAPFILEHEADER    bmfh; 

BITMAPINFOHEADER   bmih; 

RGBQUAD                aColors[]; 

BYTE                    aBitmapBits[]; 

4.1 Bitmap file Header 

The bitmap-file header (bmfh) contains information about the type, size, and layout of a device-

independent bitmap file[6]. The header is defined as a BITMAPFILEHEADER structure.  Its 

contents and their meaning or shown in the table given below: 

 

Table 1 Bitmap Header Structure 

START SIZE NAME 
STANDARD 

VALUE 
PURPOSE 

1 2 bfType 19778 
must always be set to ‘BM’ for bitmap 

file 

3 4 bfSize ?? specifies the size of files in bytes 

7 2 bfReaseved1 0 must always be set to zero 

9 2 bfReserved2 0 must always be set to zero 

11 4 bfOffBits 1078 
specifies the offset from the beginning of 

the file to the bitmap data  

 

4.2 Bitmap Info Header  

The bitmap-information header (bmih), defined as a BITMAPINFOHEADER structure, specifies 

the dimensions, compression type, and color format for the bitmap[6].  Its contents and their 

meaning are shown in the table given below. 

 

Table 2 Bitmap File Header Structure 

START SIZE NAME 
STANDARD 

VALUE 
PURPOSE 

15 4 biSize 40 specifies the bitmap size 

19 4 biwidth 100 specifies the image width 
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23 4 biHeight 100 specifies the image height 

27 2 biPlanes 1 specifies the number of planes 

29 2 biBitcount 8 
specifies the number of bits per 

pixel 

31 4 biCompression 0 secifies the type of compression 

35 4 bisizeImage 0 specifies the size of image data 

39 4 biXPelsPerMeter 0 specifies the pixels in X direction 

43 4 biXPelsPerMeter 0 specifies the pixels in Y direction 

47 4 biClrUsed 0 
specifies the number of bitmap 

colors 

51 4 biClrImportant 0 
specifies the number of colors 

,important for bitmap 

 

4.3 Color Table 

The color table, defined as an array of RGBQUAD structures, contains as many elements as there 

are colors in the bitmap. The color table is not present for bitmaps with 24 color bits because each 

pixel is represented by 24-bit red-green-blue (RGB) values in the actual bitmap data area.  

 

The colors in the table should appear in order of importance. This helps a display driver render a 

bitmap on a device that cannot display as many colors as here are in the bitmap. If the DIB is in 

Windows version 3.0 or later format, the driver can use the biClrImportant member of the 

BITMAPINFOHEADER structure to determine which colors are important.The BITMAPINFO 

structure can be used to represent a combined bitmap-information header and color table.  

 

4.4 Bitmap Pixels  

The bitmap bits, immediately following the color table, consist of an array of BYTE values 

representing consecutive rows, or "scan lines," of the bitmap. Each scan line consists of 

consecutive bytes representing the pixels in the scan line, in left-to-right order. The number of 

bytes representing a scan line depends on the color format and the width, in pixels, of the bitmap. 

If necessary, a scan line must be zero-padded to end on a 32-bit boundary. However, segment 

boundaries can appear anywhere in the bitmap[6]. The scan lines in the bitmap are stored from 
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bottom up. This means that the first byte in the array represents the pixels in the lower-left corner 

of the bitmap and the last byte represents the pixels in the upper-right corner. 

 

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits 

that define each pixel and the maximum number of colors in the bitmap. These members can take 

the any of the following values as depicted in the table given below: 

 

Value Meaning 

1 

Bitmap is monochrome and the color table contains two entries. Each bit 

in the bitmap array represents a pixel. If the bit is clear, the pixel is 

displayed with the color of the first entry in the color table. If the bit is 

set, the pixel has the color of the second entry in the table. 

4 

Bitmap has a maximum of 16 colors. Each pixel in the bitmap is 

represented by a 4-bit index into the color table. For example, if the first 

byte in the bitmap is 0x1F, the byte represents two pixels. The first pixel 

contains the color in the second table entry, and the second pixel 

contains the color in the sixteenth table entry. 

8 

Bitmap has a maximum of 256 colors. Each pixel in the bitmap is 

represented by a 1-byte index into the color table. For example, if the 

first byte in the bitmap is 0x1F, the first pixel has the color of the thirty-

second table entry. 

24 

Bitmap has a maximum of 2^24 colors. The bmiColors (or bmciColors) 

member is NULL, and each 3-byte sequence in the bitmap array 

represents the relative intensities of red, green, and blue, respectively, 

for a pixel. 

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color 

indexes in the color table actually used by the bitmap. If the biClrUsed member is set to zero, the 

bitmap uses the maximum number of colors corresponding to the value of the biBitCount 

member.   

 

The biCompression member tells whether the image is compressed or not.  Windows versions 3.0 

and later support run-length encoded (RLE) formats for compressing bitmaps that use 4 bits per 

pixel and 8 bits per pixel.  Uncompressed images are taken for this project and they contain a 

value 0 in this field.   

 

5. PROPOSED METHOD 

 

The proposed method works with the original image as it is.  It does not process the image in any 

way and transform the pixels of the image as in edge detection. It finds all the possible 4-

connected contours and stores the 4-directions of the contour along with grey value being 

examined.  The process is repeated with the help of a recursive procedure and marking all the 

pixels visited along the contour path.   The marked pixels are eliminated for further examination 

of connected pixels[10].  The four direction crack code values (0,1,2,3 consuming 2 bits per 

number) are packed into a byte and stored along with the grey value in output file.  No loss of 

pixels[1] are observed in the proposed compression method.  The following is the format of 
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stored compressed image: 

 

 Row, Column, Grey-Value, 4-direction crack codes 

 

5.1 Algorithm for Compressing Original Image 

 

The following algorithm shows the sequence of steps to be followed to compress the original 

image. 

 

Step 1:Read an uncompressed image file[6] 

 

Step 2:Read number of rows n and columns m of the image from header 

 

Step 3::Separate pixels P[n,m]  

 

Step 4:For i=1 to n do 5 

 

Step 5:For j=1 to m do 

 Store P[i,j] and its grey value g as beginning of the contour 

 Mark the pixel P[i,j]  

 Crack_Code(P,i,j,g) 

 

Step 6:Write the header information and contour codes in another file. 

Procedure Crack_Code(P,i,j,g) 

Begin     

    if (P[i, j-1] equal g) then store 0; Crack_Code(P,i, j-1,g);  

      else if(P[i-1,j] equals g) then store 1; Crack_Code(P,i-1,,j,g); 

      else if(P[i,,j+1] equals g) then store 2; Crack_Code(P,i, j+1,g); 

      else if(P[i+1,,j] equals g) then store 3; Crack_Code(P,i+1, j,g); 

      else  return; 

End; 

 
5.2 Algorithm for Restoration of Original Image from Compresed Image 

The following algorithm shows the sequence of steps to restore the original image from 

compressed image. 

 

Step 1:Open the compressed image file. 

 

Step 2:Read number of rows m and columns n of the image from  header. 

 

Step 3:Initialize P[n,m] 

 

Step 4:Repeat steps 5 to 8 until all the crack coded contours are  processed 

 

Step 5:Read starting coordinate position(i, j) and grey value g of next contour. 

 

Step 6:P[i, j]=g; 
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Step 7:Read next crack code c; 

 

Step 8:Replace_Pixel(P,i, j,g,c);  

 

Step 9:Write the header information and pixels P[n,m] in another file. 

Procedure Replace_Pixel(P,i, j,g,c) 

Begin     

    if(c equals 0) then store P[i, j-1]=g;  

      else if(c equals 1) then store P[i-1, j]=g; 

      else if(c equals 2) then store P[i, j+1]=g; 

      else if(c equals 3) then store P[i+1, j]=g; 

      else  return; 

End; 

 

6.RESULTS AND DISCUSSION 

The authors have developed a package using C language code for the proposed compression and 

decompression methods.  A set of sample bitmap images (both monochrome and color) are tested 

with the proposed method.  The compression percentage varies from 79% to 85% for the samples.  

The percentage of compression is better for images with more number of similar grey values[10]. 

No loss of pixels are found while restoring the original image.  Instead of storing 8 bits, the 

contour values are stored in 2 bits. Original size and compressed size of the images and 

computation time are plotted. 

 

 

 
 

 

 

 
 
 

                                   Figure 4(a) Original Bitmap Image 

A sample content of the file which stores Starting Position of a pixel, Grey value and Crack 

Codes of its contour is shown below.  The last value -1 marks the end of the contour. 

0 0 200 3 2 2 2 2 2 3 0 0 -1 

0 2 225 1 3 3 2 2 2 2 2 2 2 2 3 0 0 0 0 0 0 0 0 3 2 2 2 2 2 2 2 2 3 0 -1 

0 7 175 3 2 2 2 2 2 3 2 2 2 2 -1 

0 9 180 2 2 2 2 -1 

1 7 190 2 2 2 2 -1 

Figure 4(b)  IMAGE after Decompression 
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Table 3  Experimental Results 
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1 9108 1617 82.25 0.821 0 

2 8036 1580 80.34 0.898 0 

3 8415 1611 80.86 1.325 0 

4 7698 1579 79.49 1.077 0 

5 9078 1793 80.25 1.123 0 

6 9783 1382 85.87 0.715 0 

 

 

7. CONCLUSION 

The proposed method proves to be a lossless compression method. Program execution time, 

compression percentage and rate of information loss is measured for various images.  

Computation time for compression of an image is not directly proportional to the size of the 

image.  It depends on the number of contours found in the image. As there is no loss of pixels, 

this method is more suitable for compressing medical images. The next phase of the research 

work with 8-connected pixels (chain coding) is under progress.   
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