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ABSTRACT 

Query by Singing/Humming (QBSH) is a Music Information Retrieval (MIR) system with small audio 

excerpt as query. The rising availability of digital music stipulates effective music retrieval methods. 

Further, MIR systems support content based searching for music and requires no musical acquaintance. 

Current work on QBSH focuses mainly on melody features such as pitch, rhythm, note etc., size of 

databases, response time, score matching and search algorithms. Even though a variety of QBSH 

techniques are proposed, there is a dearth of work to analyze QBSH through query excerption. Here, we 

present an analysis that works on QBSH through query excerpt. To substantiate a series of experiments are 

conducted with the help of Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Coefficients 

(LPC) and Linear Predictive Cepstral Coefficients (LPCC) to portray the robustness of the knowledge 

representation. Proposed experiments attempt to reveal that retrieval performance as well as precision 

diminishes in the snail phase with the growing database size. 
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1. INTRODUCTION 

The MIR research focuses on use cases, nature of query, the perception of match, and the form of 

the output. Queries and output can be in textual form such as meta-data, music portions, 

soundtracks, scores, or music features. The matching process may retrieve music with specific 

content, or retrieve near neighbors from music database [1]. Most of the research works on QBSH 

[2, 3, 4, 5] are based on music processing and focused on many components like melody 

extraction, representation, similarity measurement, size of databases, query and search 

algorithms.  

 

Here, we are proposing an analysis on QBSH through query excerption. To start with devotional 

music database is created; descriptive features like MFCC, LPC and LPCC are extracted and 

aggregated in symbolic strings representation. Later these strings are used for pattern matching 

using similarity measures. For audio retrieval, there are three similarity measures employed such 

as Euclidean Distance (ED), K- Nearest Neighbor (k-NN) and Dynamic Time Warping (DTW).  
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However, music usually consists of instruments and voices playing harmonically or in opposition 

to each other at the same time. In real audio recordings, audio information of all instruments and 

voices are mixed and stored in all channels. However, user of a QBSH system desires to query the 

music sung by the lead voice or played by a solo instrument. Therefore, the recordings need to be 

reduced to a more accurate representation of components related to music.  

 

Proposed method has attempted to represent the QBSH analysis system using different feature 

extraction algorithms and similarity measures. Before the introduction of the methodology, in 

section 2 related work is discussed. Section 3 and 4 describe the experiments conducted to 

evaluate our approach. The results and discussions of the experiments are presented in section 5. 

Subsequently paper is concluded in section 6. 

 

2. RELATED WORK 

In modern days traditional ways of listening to music, and methods for discovering music, are 

being replaced by personalized ways to hear and learn about music. In other words, it is changing 

the nature of music dissemination [1]. The rise of audio and video databases necessitate new 

information retrieval methods tailored to the specific characteristics and needs of these data types. 

An effective and natural way of querying a musical audio database is by singing/humming the 

tune of a song. Even though a variety of QBSH [2, 3, 4, 5] techniques have been explored, there 

has been relatively less work on analysis of QBSH system through query excerption. 

 

Many QBSH techniques represent song or piece of song as point sequences [6], Hidden Markov 

Models (HMMs) [7], Modified Discrete Cosine Transform (MDCT) coefficients and peak energy 

[8]. Few [9] use loudness model of human hearing perception along with local minimum function 

to recognize onsets in music database and query. In other works[10] music is treated as a time 

series and employed a time series matching approach because of its effectiveness for QBSH in 

terms of robustness against note errors.  

 

In [11], authors retrieve the melody of the lead vocals from music databases, using information 

about the spatial arrangement of voices and instruments in the stereo mix. The retrieved time 

series signals are approximated into symbolic strings which reveal higher-level context patterns. 

The method elaborated in [12] builds an index of music segments by finding pitch vectors from a 

database of music segments. In another work [2], a method for showing the melodic information 

in a song as relative pitch changes is projected. Further, the work [13] is based on extracting the 

pitch out of monophonic singing or humming, and later segmenting and quantizing the 

information into a melody composed of discrete notes.  

 

Some [4, 6, 12] of them concentrate on developing QBSH systems using mammoth music 

collections. The objective is to construct a dependable and well-organized large-scale system that 

collects thousands of melodies and responds in seconds. The query melody searching and 

alignment is done using skeletons of the melody [6]. To compliment the work [14] proposed a 

technique using melody matching model based on the genetic algorithm and improving the 

ranking result by Local Sensitive Hashing (LSH) algorithm. Authors [8] employed double 

dynamic programming algorithm for feature similarity matching. 

 

The melody similarity measure [6] is then derived based on the arrangement of the point 

sequences. Authors claim their method is robust against pitch errors and tempo variations in the 

queries, which is especially advantageous for QBSH. In [7] query is judged similar to the 

database melody if it’s HMM has a high likelihood of generating the query. Authors [10] have 

explored the responsiveness of note-interval dynamic programming searches to different 

parameters and portrayed two-stage search merging fast n-gram with a more precise but slower 

dynamic programming algorithm. Consecutively to become accustomed to people’s 
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singing\humming practice, a new melody representation and new hierarchical matching methods 

are proposed [12].  

 

In retrieval, the system without human intervention transliterates a sung query into notes and then 

digs out pitch vectors similar to the index construction. For each query pitch vector, the technique 

searches for similar melodic segments in the database to obtain a list of contender melodies. This 

is performed efficiently by using LSH [14]. Melody is compared to a database of indexed 

melodies using an error tolerant similarity search [13]. Further authors [13] proposed two 

algorithms for melody extraction, roughly characterized by the trade-off between accuracy of 

transcription also called as recall and computing time needed. In [11] system represents musical 

tunes as time series and uses time warping distance metric for similarity comparisons. To 

substantiate a multidimensional index structure is used to prune the search space of songs and 

efficiently return the top hits back.  

 

Some methods have small retrieval precision as they rely on melodic contour information from 

the song\hum tune, which in turn relies on the error-prone note segmentation procedure. Several 

systems yield improved precision when matching the melody directly from music, but they are 

slow because of their widespread use of DTW. Previous QBSH systems have not concentrated on 

analysis through query excerption for various reasons. Our approach attempts to portray the 

importance of both the retrieval precision and query excerption in QBSH systems.  

 

3. METHODOLOGY 

The design of QBSH system consists of two distinguished phases. The first phase is training, 

while the second one is referred to as operation or testing phase as described in figure 1. Each of 

these phases perform different operations on the input signal such as Pre-processing, Vocal and 

Non-Vocal Separation, Feature Extraction and Query Matching. The QBSH system steps are 

discussed below. 

 

Mus ic  databas e 
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Figure 1 : Block Diagram of Proposed QBSH System  

3.1. Pre-processing  

MP3 songs contain convoluted melody information and even noise. Thus pre-processing is 

applied on the MP3 songs database to extract information needed by the system. Most of the MP3 

songs possess 44.1 KHz sample rate and dual-channel data, but for melody representation, such 

high quality signal is not necessary. Also it will make further processing time consuming and 

inefficient. In fact, even in very low sample rate, melody of the songs can be identified. 
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Therefore, MP3 songs are decoded into wave streams, down sampled to 8 KHz and converted to 

mono channel. 

 

3.2. Vocal and Non Vocal Separation  

In music, human vocal part always plays an important role in representing melody rather than its 

background music, it is desired to segregate both. Furthermore, music researchers have shown 

that the vocal and non-vocal separation exploits the spatial arrangement of instruments and voices 

in the stereo mix and could be described as inverse karaoke effect. Most karaoke machines adopt 

centre pan removal technique to remove the lead voice from a song [11]. One stereo channel is 

inverted and mixed with the other one into a mono signal. The lead voice and solo instruments are 

generally centered in the stereo mix whereas the majority instruments and backing vocals are out 

of centre. Above mentioned transformation is used to remove the lead voice from music.  We 

intend to invert this effect, so that the pre-processed song yields a high portion of the lead voice, 

while most other instruments are isolated and removed. For vocal and non-vocal separation audio 

editor's voice extractor option with centre filtering technique is employed. 

 

3.3. Feature Selection and Extraction 

Extracting significant feature vectors from an audio signal is a major task to produce a better 

retrieval performance. In this work, Mel Frequency Cepstral Coefficients (MFCC), Linear 

Predictive Coefficients (LPC) and Linear Predictive Cepstral Coefficients (LPCC) features are 

preferred because they are promising in terms of discrimination and robustness. For these features 

frame size and hop size that is the span between the starting times of two succeeding frames are 

empirically determined for the retrieval. Most feature extraction techniques produce a 

multidimensional feature vector for every frame of audio. 

 

3.3.1. Mel-Frequency Cepstral Coefficients (MFCC) 

MFCC is based on the information conceded by low-frequency components of the audio signal, in 

which less emphasis is placed on the high frequency components. The aim of MFCC is to 

produce best approximation of the human auditory system’s response. Further, MFCC is based 

upon short-time spectral analysis in which MFCC vectors are computed. The overall process of 

the MFCC is shown in figure 2. 

 

 

Figure 2 : MFCC Block Diagram. 

As shown in figure 2, MFCC consists of seven computational steps. Each step has its significance 

and mathematical approach as discussed below:  

 

Step 1: Pre-emphasis refers to a procedure intended to amplify the energy of signal at higher 

frequencies with regard to the energy at lower frequencies in order to improve the overall signal 

to noise ratio in subsequent parts of the system.  

 



The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.6, December 2012 

77 

Step 2: In framing, the pre-emphasized signal is split into several frames, such that each frame is 

analysed in short time instead of analyzing the entire signal at once. Usually the frame length is in 

the range 10 to 30 msec at which most part of the audio signal is stationary. Also an overlapping 

is applied to frames due to windowing in which will get rid of some of the information at the 

beginning and end of each frame. Overlapping reincorporates the information back to extracted 

features.  

 

Step 3: The purpose of applying Hamming window is to minimize the spectral distortion and the 

signal discontinuities. Windowing is a point wise multiplication between the framed signal and 

the window function. Further the crisp representation of the Hamming window procedure is as 

follows: 

 

If the window is defined as  

 

where N, Y[n], X[n], W[n] are number of samples in each frame, output signal, input signal and 

Hamming window respectively. 

 

Then the result of windowing signal is as follows: 

 

 
 
Step 4: The purpose of FFT is to convert the signal from time domain to frequency domain 

preparing to the next stage that is Mel frequency wrapping. The basis of performing Fourier 

transform is to convert the convolution of the glottal pulse and the vocal tract impulse response in 

the time domain into multiplication in the frequency domain. The equation is given by: 

 

 
 

If X (w), H (w) and Y (w) are the Fourier Transform of X (t), H (t) and Y (t) respectively. 

 

Step 5: Audio signal’s low frequency components are more important than high frequency 

components. In order to highlight the low frequency components, Mel scaling is performed. Mel 

filter banks are non-uniformly spaced on the frequency axis, so we have more filters in the low 

frequency regions and less number of filters in high frequency regions. After having the spectrum 

from FFT for the windowed signal, Mel filter banks are applied, which resembles the human ear 

response. Filter banks can be implemented in both time domain and frequency domain. For the 

purpose of MFCC processing, filter banks are implemented in frequency domain. The filter bank 

has a triangular band pass frequency response and spacing. Further the bandwidth is determined 

by a constant Mel-frequency interval as shown in figure 3. 
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Figure 3 : Mel Scale Filter Bank. 

 

After that the approximation of Mel from frequency can be expressed as: 

 

 
where f denotes the real frequency and F (Mel) becomes the perceived frequency.  

 

Step 6: This step performs conversion of the log Mel spectrum into time domain using DCT. The 

outcome of the conversion is called Mel Frequency Cepstrum Coefficient. The set of coefficients 

is referred as acoustic vector. Hence, each audio input is transformed into a series of acoustic 

vector.  

 

Step 7: The audio signal and the frames vary such as the slope of a formant at its transitions. 

Consequently, this necessitates the addition of features correlated to the change in cepstral 

features over time. Thus 13 delta or velocity features that is 12 cepstral features plus energy and 

39 double delta or acceleration feature are added. The energy in a frame for a signal x in a 

window from time sample t1 to time sample t2, is represented as following: 

 

 
 

All 13 delta characteristics signify the transformation between frames referred as cepstral or 

energy features as stated in equation (6), while each of the 39 double delta characteristics signify 

the variation between frames in the resultant delta features. 

 

 
 

3.3.2. Linear Predictive Co-efficients (LPC) 

LPC analysis is to represent each sample of the signal in the time domain by a linear combination 

of p preceding values s (n-p-1) through s (n-1). Here p is the order of the LPC analysis. In the 

proposed approach, LPC analysis uses the autocorrelation method [15] of order p with value 14. 

The LPCC extraction procedure is portrayed in figure 4. Pre-emphasis, Framing and Windowing 

steps are identical to the algorithm discussed in section 3.3.1. Procedure contemplates directly 

with Linear Prediction Autocorrelation Analysis. 
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Figure 4 : Linear Prediction Analysis Block Diagram. 

The frame x (n) is assumed to be zero for n<0 and n>=N by multiplying it with Hamming 

window, the error reduction of pth-order linear predictor produces the well-known normal 

equations. Equations (7) and (8) are shown as below: 

 

where  

 

The coefficients R (i-k) form an autocorrelation matrix which is a symmetric Toeplitz matrix. 

Toeplitz matrix is a matrix wherein all the elements along each descending diagonal from left to 

right are equal. Using matrix form considerably simplifies the combination (7) and (8) into 

 

where  

 

r is a p×1 autocorrelation vector, 

 

a is a p×1 predictor coefficients vector and 

 

r is the p×p Toeplitz autocorrelation matrix, which is non-singular. In order to find a predictor 

coefficient vector, we need to solve linear system by a matrix inversion. 
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3.3.3. Linear Prediction Cepstral Coefficients (LPCC) 

LPCCs are the coefficients of the Fourier transform representation of the logarithm magnitude 

spectrum [15]. Once LPC vector is obtained, it is possible to compute Cepstral Coefficients. LPC 

vector is defined by    

. 

LPCC vector is defined by  

 

LPC vectors are converted to LPCCs using a recursion technique [16]. The recursion is defined 

with equations (14), (15) and (16): 

 

 

 

 

 

The Cepstral Coefficients, which are the coefficients of the Fourier transform representation of 

the log magnitude of the spectrum, have been shown to be more robust for audio retrieval than the 

LPC coefficients [16]. Usually, it is used as a cepstral representation with Q>p coefficients, where 

Q> (3/2) p. 

With enough support of contemporary works [15, 16, 17] reported in allied area of survey, we 

quantified the 12 dimensional MFCC, LPC and LPCC feature vector, to produce a better query 

retrieval performance. Further, three parameters were varied to investigate the effectiveness of 

MFCC, LPC and LPCC in QBSH system. Firstly query excerption is varied from 100% to 60%, 

and then database size varied from 50 songs to 1000 songs, finally different distance measures 

were employed. The results of the analysis are elucidated in section 5. 

4. DISTANCE MEASURES  

Euclidean Distance (ED), K-Nearest Neighbour (k-NN) and Dynamic Time Warping (DTW) are 

used as distance measures. Most important properties of each distance measure are discussed. The 

ED measure is the standard distance measure between two vectors in feature space with 
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dimension DIM. To calculate the ED measure, sum of the squares of the differences between the 

individual components of ~x and ~p is computed. 

 

K-NN is a supervised learning algorithm for matching the query instance based on majority of k-

nearest neighbour category. Minimum distance between query instance and each of the training 

set is calculated to determine the k-NN category. The k-NN prediction of the query instance is 

determined based on majority voting of the nearest neighbour category. In this approach, for each 

test audio signal, minimum distance from the test and training audio signal is derived to locate the 

k-NN category. The ED measure relates the closeness of test and training audio signal. For each 

test audio signal, the training data set is located with k closest members. From this k-NN, ranks of 

test audio samples are found. 

The DTW is the third measure for finding similarity between two time series which may vary in 

time. It encourages finding the optimal alignment between two times series in which one time 

series warped non-linearly by stretching or shrinking it along its time axis. This warping is 

employed to search corresponding regions or to find out the similarity among the two time series. 

Figure 5 demonstrates the warping of one times series to another. 

 

Figure 5 : A Warping between two time series. 

In figure 5, each vertical line connects a point in one time series to its corresponding similar point 

in the other time series. The lines have similar values on the y-axis, but have been separated so 

that vertical lines between them can be viewed more easily. If both of the time series in figure 5 

were alike, every line would be straight vertical line as no warping would be necessary to line up 

the two time series. The warp path distance quantifies the distinction among the two time series 

after they have been warped together, and the same is measured by the sum of the distances 

between each pair of points connected by the vertical lines in figure 5. Hence, two time series that 

are identical apart from localized stretching of the time axis will have DTW distances as zero. 

The principle of DTW is to compare two dynamic patterns and measure its similarity by 

calculating a minimum distance between them. The classic DTW is computed as below:  

Suppose we have two time series Q and C, of length n and m respectively, where: 

 

 

To align two sequences using DTW, an n-by-m matrix where the (ith, jth) element of the matrix 

contains the distance d (qi,cj) between the two points qi and cj is constructed [17]. Then, the 

absolute distance between the values of two sequences is calculated using the ED computation: 
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Each matrix element (i, j) refers to the alignment among the points qi and cj. Then, accumulated 

distance is measured by: 

 

5. RESULTS AND DISCUSSIONS  

 

Figure 6 : Accuracy % Vs Distance Measures. 

In this fragment, the results of similarity measures such as ED, KNN and DTW are discussed 

under a variety of circumstances such as different query excerption, database size and feature 

extracting technique. The retrieval accuracy versus different distance measures data is depicted in 

figure 6. Experiments were conducted based on MFCC, LPC and LPCC features with varying 

song/hum percentage and different distance measures. It was experimentally determined that song 

retrieval accuracy increases with increase in song/hum percentage also LPCC out performs 

slightly because of less complexity and computational time. 

One more observation is in a consistent manner; DTW produced slightly better retrieval 

performance compared to other two distance measures. Because it minimizes the total distance 

between the respective points of the signal. The retrieval performance varied from 60% to 100% 

for MFCC, LPC and LPCC features for all three distance measures with query song/hum 

percentage variation from 60% to 100%. 
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Figure 7 : Top X Hit Rate % Vs Song/Hum %. 

The impact of X-values on accuracy for MFCC, LPC and LPCC features are portrayed in Figure 

7. The top X hit rate is defined as percentage of successful queries and it can be shown 

mathematically as: 

 

where X symbolize top most songs.  

The top X hit rate varied from 60% to 100% for MFCC, LPC and LPCC features with X value 10, 

20 and 30 respectively. Generally, the results indicate that the LPCC features achieved a little 

better top X hit rate when compared to MFCC and LPC features for different percentage of query 

song/hum with three distance measures. From the figure 7, X value 10 was found to be the best, at 

which system obtained retrieval accuracy in the range 62% to 100% depending on song/hum 

query excerption specified. 

 

Figure 8 : MoA% Vs Query Song/Hum %. 

 

Figure 9 : MoA% Vs Database Size (# Songs). 
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Many different measures for evaluating the performance of QBSH systems have been proposed. 

The measures require a collection of training and testing samples. For each test scenario and 

parameter combination the Mean of Accuracy (MoA) is defined as: 

 

It demonstrates the average rank at which the target was found for each query with a value of 

50% describing random, 57% to 67% mediocre, and above 67% good accuracy. We obtained 

MoA in the range 82 % to 100% with different query excerption. From figure 8, it is found that 

the MoA increases with increase in query song/hum percentage and LPCC features perform better 

than MFCC and LPC features. Further figure 9 shows that MoA decreases as database size 

increases. QBSH analysis exhibits MoA in the range 93% to 98% with different database size. 

 

Figure 10 : MRR% Vs Query Song/Hum %. 

 

Figure 11 : MRR% Vs Database Size (# Songs). 

Mean Reciprocal Rank (MRR) is a statistic for assessing any system that produces a list of 

possible responses to a query, ordered by probability of appropriateness. The reciprocal rank of a 

query result is the multiplicative inverse of the rank of the first right response. The MRR is stated 

as the average of the reciprocal ranks of responses for queries Q: 

 

The reciprocal value of the MRR refers to the harmonic mean of the ranks. MRR indicates the 

probability of the target reaching one of the first ranks. The MRR estimate is very much 

dependent on database size and on 200 song database MRR should be more than 0.2. We 

obtained MRR in the range 20 % to 100% with different query excerption. From figure 10, it is 

found that the MRR increases with increase in query song/hum percentage and MFCC features 

perform better than LPC and LPCC features. Further figure 11 shows that MRR decreases as 
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database size increases. QBSH analysis exhibits MRR in the range 34% to 53% with different 

database size. 

Slag side of inferences observed in the experiment indicates that, the performance is quite 

comparable with the contemporary [4, 5, 9, 11, 14] works. But, these works employed different 

music types and databases. 

6. CONCLUSIONS 

This paper attempted to present an approach to QBSH through different query excerption for 

music search to liberate ranked list. Also different distance metrics are used in the analysis to 

perform similarity comparisons between melody database and query. The translation of the 

acoustic input into a symbolic query is crucial for the effectiveness of QBSH system. System 

works efficiently on MP3 devotional songs based on vocal part and achieved retrieval 

performance comparable to the state-of-the-art. Proposed analysis exhibits empirical performance 

by returning the desired song within the top 10 hits 65% of the time and as the top hit 21% of the 

time on a database with 1000 songs. Our results demonstrate that the size of the training database 

and song/hum percentage are also main factors that determine the success of the approach. We 

are able to observe the comprehensiveness of the system for different database sizes in terms of 

LPCC performing better than other two features. Subsequently there is enough scope for 

expanding melody database and adapting the system to different singers and songs. 

REFERENCES 

[1] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5, 

pp120-122. 

[2] Gizem, Aksahya & Ayese, Ozcan (2009) Communications & Networks, Network Books, ABC    

Publishers. 

[1] A.Duda, A.Nurnberger & S.Stober, (2007) ”Towards query by singing/humming on audio databases”, 

ISMIR. 

[2] A.Ghias, J.Logan, D.Chamberlin & B.C.Smith, (1995) “Query by humming-musical information 

retrieval in an audio database”, ACM Multimedia. 

[3] A.K.Tripathy, N.Chhatre, N.Surendranath & M.Kalsi, (2009) “Query by humming system”, 

Int.Journal of Recent Trends in Engg. 

[4] B.Thoshkahna & K.R.Ramakrishnan, (2009) “An onset detection algorithm for query by humming 

(qbh) applications using psychoacoustic knowledge”, 17th EUSIPCO 2009 Glasgow, Scotland. 

[5] C.Sailer, (2006) “Two note based approaches to query by singing/humming, contribution to the query 

by singing/humming task”, 7th ICMIR. 

[6] Antoniol G, Rollo V F & Venturi G, (2005) “Linear predictive coding and cepstrum coefficients for 

mining time variant information from software repositories”, Int.Workshop on Mining Software 

Repositories. 

[7] J.Qin, H.Lin, & X.Liu, (2011) “Query by humming systems using melody matching model based on 

the genetic algorithm”, JSW. 

[8] J.Shifrin, B.Pardo, C.Meek & W.Birmingham, (2002) “Hmm-based musical query retrieval”, 2nd 

ACM/IEEE-CS joint conference on Digital libraries, Portland, Oregon, USA. 

[9] J.S.R.Jang & M.Y.Gao, (2000) “A query by singing system based on dynamic programming” 

Int.Workshop Intell. Syst. Resolutions, Hsinchu, Taiwan. 

[10] L.Fu & X.Xue, (2004) “A new efficient approach to query by humming”, ICMC, Miami, USA. 

[11] L.Fu & X.Xue, (2005) “A new spectral-based approach to query-by-humming for mp3 songs 

database”, World Academy of Sc., Engg. and Tech. 

[12] L.Muda, M.Begam & I.Elamvazuthi, (2010) “Voice recognition algorithms using Mel Frequency 

Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) techniques”, Journal of 

Computing. 

[13] M.A.Casey, R.Veltkamp, M.Goto, M.Leman, C.Rhodes & M.Slaney, (2008) “Content-based music 

information retrieval: Current directions and future challenges”, IEEE. 



The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.6, December 2012 

86 

[14] M.Ryynanen & A.Klapuri, (2008) “Query by humming of midi and audio using locality sensitive 

hashing”, IEEE Int.Conf.on Acoustics Speech and Signal Processing, Las Vegas, Nevada, USA. 

[15] Dhanalakshmi P, Palanivel S & Ramalingam V, (2009) “Classification of audio signals using SVM 

and rbfnn, expert systems with applications”, Expert Systems with Applications. 

[16] R.B.Dannenberg & N.Hu, (2004) “Understanding search performance in query by humming system”, 

5th Int.Conf.on MIR, Barcelona, Spain. 

[17] Y.W.Zhu, M.S.Kankanhalli & C.S.Xu, (2001) “Pitch tracking and melody slope matching for song 

retrieval”, 2nd IEEE PCM on Multimedia, Beijing. 

 

Authors  

Trisiladevi C. Nagavi is currently pursuing Ph D in Computer Science and 

Engineering under the Visvesvaraya Technical University Belgaum, Karnataka, 

India. She did her M.Tech in Software Engineering from Sri. Jayachamarajendra 

College of  Engineering Mysore in 2004. She is working as Assistant Professor in 

Computer Science & Engineering department, Sri Jayachamarajendra College of 

Engineering, Mysore, Karnataka, India. Her areas of interest are Audio, Speech   

and Image processing. 

 

 

Nagappa. U. Bhajantri has completed Ph D under the University of Mysore, 

Karnataka, India. He did his M.Tech in Computer Technology (Electrical 

Engineering Department) from Indian Institute of Delhi, India in 1999. His areas 

of interest are Image, Video and Melody processing. He is currently working as 

Professor and HOD of Computer Science and Engineering department in 

Government Engineering College, Chamarajanagar, Karnataka, India. 


