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ABSTRACT 

In duty-cycled wireless sensor networks, deployed sensor nodes are usually put to sleep for energy 

efficiency according to sleep scheduling approaches. Any sleep scheduling scheme with its supporting 

protocols ensures that data can always be routed from source to sink. In this paper, we investigate a 

problem of multi-hop broadcast and routing in random sleep scheduling scheme, and propose a novel 

protocol, called DQSB, by quasi-synchronization mechanism to achieve reliable broadcast and less 

latency routing. DQSB neither assumes time synchronization which requires all neighboring nodes wake 

up at the same time, nor assumes duty-cycled awareness which makes it difficult to use in asynchronous 

WSNs. Furthermore, the benefit of quasi-synchronized mechanism for broadcast from sink to other nodes 

is the less latency routing paths for reverse data collection to sink because of no or less sleep waiting 

time. Simulation results show that DQSB outperforms the existing protocols in broadcast times 

performance and keeps relative tolerant broadcast latency performance, even in the case of unreliable 

links. The proposed DQSB protocol, in this paper, can be recognized as a tradeoff between broadcast 

times and broadcast latency. We also explore the impact of parameters in the assumption and the 

approach to get proper values for supporting DQSB. 
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1. INTRODUCTION 

A Wireless Sensor Network (WSN) consists of a large number of small and low cost sensor 

nodes powered by small batteries and equipped with various sensing devices to observe events 

in the real world [1-4]. Usually, for many applications, once a WSN is deployed, probably in an 

inhospitable terrain, it is expected to gather required data for a certain period of time, which can 

reach a length of years. To bridge the gap between limited energy supplies and network lifetime, 

a WSN has to operate in a low duty-cycled manner, where nodes schedule themselves to be 

active for a brief period of time and then stay asleep for a long period of time [5, 6]. There are 

two types of duty-cycled WSNs, i.e. asynchronous sleep scheduling, where each sensor keeps a 

sleep schedule independent of another, and synchronous sleep scheduling, where sensors make 

synchronized periodic duty cycling with their neighboring nodes to support broadcast or unicast 

and reduce the idle listening energy cost. Any sleep scheduling scheme has to ensure that data 

can always be routed from source to sink [7]. 
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Usually, sleep schedules are completely uncoordinated. Due to the variation of awake time and 

duration of the active interval, the whole network is more than often disconnected, and delay 

encountered in packet delivery due to loss in connectivity can become a critical problem. As a 

result, a path from source to sink may not always be available, and a sufficient number of nodes 

have to remain awake to ensure the existence of such a path. Consequently, data is stored at a 

node till its proper neighboring node wakes up and delivers the data to the sink. This approach 

would delay the delivery of messages to a sink considerably. 

The existing works based on synchronization assume that there are usually multiple neighbors 

available at the same time to receive the multicast/flooding message sent by a sender. This is not 

true in low duty-cycled asynchronous WSNs. Furthermore, synchronization is another issue that 

is difficult to achieve, especially over multiple hops. Periodic synchronization messages may 

become costly. Usually, synchronization protocols are complex and difficult to implement in 

large scale WSNs. Without synchronized sleep scheduling, B-MAC [8], WiseMAC [9] and X-

MAC [10] are based on asynchronous sleep intervals and proven to be energy-efficient in 

scenarios with low or varying traffic loads. Unfortunately, they cannot be directly applied to 

broadcast applications because of their design intentions for unicast. 

Multi-hop broadcast is an important network service in WSNs, especially for applications such 

as code update, remote network configuration, route discovery, and so on. Distinguished from 

the broadcast problem in always-on networks, two additional features make multi-hop broadcast 

in low duty-cycled WSNs become a new challenging issue. Firstly, a node which broadcasts a 

message once cannot guarantee that the message is received by all of its neighboring nodes 

simultaneously, while this property is satisfied in an always-on network. To successfully 

broadcast a message, a sender has to transmit the same message more than once if other nodes 

do not wake up at the same time. Essentially, broadcasting in such a network is implemented by 

a number of unicasts. Secondly, in asynchronous duty-cycled WSNs, each node cannot be 

aware of its neighboring nodes' sleep schedules without neighboring discovery and information 

exchange protocols which require nodes to remain awake for enough time in order to aware 

their neighbors' sleep schedules. 

Therefore, a question arises: Is it possible to maintain a high broadcast delivery rate and to 

exploit nodes' sleep schedules without the support of synchronization protocol at the same time, 

in asynchronous duty-cycled WSNs, where each sensor turns on and off independently and 

network connectivity is intermittent? Different from the existing related work, we propose a 

quasi-synchronization mechanism in order to coordinate nodes' duty-cycled behaviors in a 

distributed manner. It is quasi because nodes are not required to wake up at the exact same time. 

Sleep schedule adjustments stop if all the nodes except the sender are able to receive broadcast 

messages. 

The main contributions of this paper are summarized as follows: (1) We propose a novel 

protocol DQSB by a mechanism of quasi-synchronization for multi-hop broadcast, which 

neither assumes time synchronization that requires all neighboring nodes wake up at the same 

time, nor assumes duty-cycled awareness that is difficult to use in asynchronous WSNs; (2) 

After broadcast process from a sink is finished under the quasi-synchronization mechanism, 

other nodes can build their paths to the sink for transmitting their sensed data after receiving the 

broadcast messages. Moreover, these paths exhibit less latency because of no or very little 

waiting time; (3) We develop a simulator based on the ONE simulator [11] and evaluate DQSB, 

including broadcast times and latency in different duty cycles, the impact of network size, 

reliability with unreliable links and less latency routing paths for reverse data collection from 

each node to broadcast source node, such as a sink. Simulation results show that the 

performance of DQSB satisfies the design goals. 
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The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 

describes the models and assumptions of the solution to broadcasting and routing in duty-cycled 

WSNs. The design and implementation of DQSB are presented in Section 4. Simulation results 

are discussed and analyzed in Section 5, where the impact of parameters in the assumption and 

the approach to get proper values are explored for supporting DQSB. We conclude the paper in 

Section 6. 

2. RELATED WORK 

As we addressed in Section 1, multi-hop broadcast plays an important role in WSNs. Compared 

with the problem of broadcasting in always-on networks, neighbor connectivity becomes a more 

difficult problem in duty-cycled WSNs, where each node stays awake only for a fraction of time 

and neighboring nodes are not simultaneously awake for receiving data. A bunch of literature 

has addressed this problem. 

According to the mechanism supported broadcasting, existing solutions are put into two 

categories, including synchronous and asynchronous sleep schedules. The former, such as S-

MAC [12] and T-MAC [13], simplifies broadcast communication by letting neighboring nodes 

stay awake simultaneously. The latter solution has become increasingly attractive for data 

communication because of its energy efficiency. Due to space limitation, we focus only on 

reviews for broadcast solutions for asynchronous duty-cycled WSNs. 

The protocols B-MAC [8], WiseMAC [9], and X-MAC [10] are based on asynchronous wake-

up intervals and have proven to be more energy-efficient in scenarios with low or varying traffic 

load. B-MAC supports single-hop broadcasting in the same way for unicast, since the preamble 

transmission over an entire sleep period gives all of the transmitting nodes' neighbors a chance 

to detect the preamble and remain awake for data packets. B-MAC and WiseMAC broadcasting 

are each energetically costly and inefficient. When transmitting a frame, a full preamble is 

appended for alerting neighboring nodes to stay awake for the upcoming transmission of the 

broadcast frame. This broadcast approach with a full preamble wastes a lot of energy for 

sending and receiving, while the actual data transmission is often comparatively short. Without 

control measures for forwarder selection in multi-hop flooding, every broadcast message to be 

rebroadcast by every node will experience the wireless-channel characteristic broadcast storm 

problem. Consequently, the broadcast success ratio and latency performance decreases. X-MAC, 

a low power MAC protocol, substantially improves B-MAC's excess latency at each hop and 

reduces energy usage at both the transmitter and receiver by employing a shortened preamble 

approach. But broadcast support is not clearly discussed in that paper. X-MAC is not promising 

for broadcasting since the transmitter has to continually trigger the neighbors to wake up, no 

matter whether it has received or not. 

The (k)-Best-Instants broadcast algorithm [14], calculating the best instants and transmitting the 

frame with a minimized preamble, can be more efficient than using a costly full-cycle preamble 

like WiseMAC. Its assumption is the sender is aware of their neighbors' individual schedules. 

Wang et al. [15] transformed the problem into a shortest-path problem with the same 

assumption of duty-cycle awareness, which makes it difficult to use it in asynchronous WSNs 

since duty-cycle awareness needs periodic time-synchronization due to clock drifting. Focusing 

on energy-harvesting networks, Gu et al. [16] introduce the proactive generic delay maintenance 

algorithm to minimize the amount of energy while satisfying an end-to-end delay bound 

specified by application requirements for sink-to-many communications in energy-harvesting 

networks. But nodes in the network must share their duty-cycled working schedules with 

neighboring nodes for the assumption of duty-cycle awareness, so as to know when they can 

send a packet to their neighbors with the support of local synchronization techniques [17]. 
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Opportunistic routing and data forwarding in low duty-cycled networks have acquired a lot of 

attention in recent years [18, 19]. But none of these solutions investigates the broadcasting. 

ADB [20] and opportunistic flooding [21] were designed with a gossiping approach as long as 

the network is connected. ADB avoids the problems with B-MAC and X-MAC by dynamically 

optimizing the broadcasting at the level of transmission, to each individual neighboring node. It 

allows a node to go to sleep immediately when no more neighbors need to be reached and does 

not occupy the medium for a long time, in order to minimize latency before forwarding a 

broadcast. The effort in delivering a broadcast packet to a neighbor is adjusted based on link 

quality, rather than transmitting throughout a duty cycle or waiting through a duty cycle for 

neighbors to wake up. Basically, ADB belongs to the unicast replacement approach and it needs 

significant modification to existing MAC protocols for supporting broadcast. In [21], a design 

of opportunistic flooding has been proposed for low duty-cycled networks with unreliable 

wireless links and predetermined working schedules. It provides probabilistic forwarding 

decisions at a sender based on the delay distribution of next-hop nodes and a forwarder selection 

method to alleviate the hidden terminal problem and a link-quality-based backoff method to 

resolve. However, these protocols for duty-cycled WSNs, belonging to the unicast replacement 

approach for supporting broadcasting, mostly focus on unicast communication and cannot well 

support broadcasting since one-hop broadcasting in such cases means to deliver data multiple 

times to all neighbors, which may lack efficiency in large scale networks, and also lack energy 

efficiency in delivering large chunks of data for broadcasting. 

Hybrid-cast [22, 23], with low latency and reduced message count, overcomes the 

disadvantages of replacement via pure unicast. Under Hybrid-cast, nodes must switch their 

wake-up schedule to stay awake for enough time slots for neighbor discovery and information 

exchange. Then, the online forwarder selection algorithm works and helps to reduce the 

broadcast count or redundant transmission for multi-hop broadcast. 

In conclusion, the above protocols either prevent themselves from being widely used in realistic 

environments due to their assumptions, including duty-cycled awareness and neighbor 

discovery supporting in asynchronous duty-cycled WSNs, or only belong to the unicast 

replacement approach for supporting broadcasting. We focus on exploiting nodes' sleep 

schedules and make adjustment strategies to solve the multi-hop broadcast problem by a 

distributed and quasi-synchronized manner. Meanwhile, a broadcasting node, such as sink, is in 

charge of data collection broadcast periodically. Receiving the broadcast messages, other nodes 

can build their paths to the sink for transmitting their sensed data, where these paths have less 

latency since the advantage of our quasi-synchronization mechanism. Unlike B-MAC, 

WiseMAC, and X-MAC, a unicast message in our paper can be transmitted along a path learned 

from the quasi-synchronized broadcasting and eliminates the waiting time for both transmitter 

and receiver. 

3. PROBLEM DESCRIPTION 

3.1. System Model 

Suppose that in duty-cycled WSNs, there are p  sensor nodes { }
pnnnN ,,, 21 LL= , pN = , 

working in two states: active and sleep states. All nodes have their own sleep schedules and are 
able to adjust their sleep schedules if necessary. A network is denoted by a time-dependent 
graph ( ) ( )( )tENtG ,= , where N  is a complete set of nodes in the network and ( )tE  is a set of 
undirected edges at time t . Evolving graph [24] is used to capture the dynamic characteristics, 
especially node intermittent connectivity with its neighbors. An evolving graph 

( ) ( )( )tENNtG ,=  is connected during t , where [ ]Tt ,0∈  and T  is one cycle length, if no 
isolated edge and vertex exists in ( )tG . Let ( )

jijiji TtL ,,, ,  denote the intermittent connective link 
between nodes in

 
and jn , in , Nn j ∈  and )(),( ,,, tETtL jijiji ∈ . The link begins at jit ,  and 

keeps a period of time jiT , . For its bidirectional property, ),(),( ,,,,,, ijijijjijiji TtLTtL =  is 
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established and )(),( ,,, tETtL jijiji ∈ . If in  wakes up earlier than jn , i.e. 
a

j

a

i tt < , then 
a

jji tt =, . 
Otherwise, 

a

iji tt =, . All the variables used in the paper are listed in Table 1. 

Table 1.  Variables and their significance. 

Variable Description 

 
a

it    Node in 's time to wake up 

 
s

it    Node 
in 's time to sleep 

 
aT    Node 

in 's active duration time 

 sT    Node in 's sleep duration time 

 0T    The time for transmitting a broadcast message 

 R    Node's Communication radius 

 ρ    Network density 

 RN    Number of nodes in circle area 
2

Rπ , namely ρπ ⋅2= RNR  

 λ    Parameter of Poisson distribution for intermittent connectivity 

 
0λ    

aR TN /=0λ  

 α    Parameter for selecting λ  that 
0= λαλ ⋅  for intermittent connectivity 

 λP    Broadcast success ratio under parameter λ  

 
send

it    Node in 's time to forward broadcast 

 
backoff

iT    Node in 's exponential backoff time 

 
iM    Node 

in 's message buffer  

 iB    Node in 's beacon message 

 footer    Transmitting with DATA to reduce broadcast redundancy 

 IdBi .    The max Id of the broadcast message received by node in  

 )(iT∆    The latency of the broadcast message received by node 
in  

 )(iT
k∆    Node in 's latency )(iT∆  in case k 

 
ka

it
,

   Node in 's wake-up time 
a

it  in case k 

 

There are two short packets, i.e., beacon and footer, used in DQSB, as shown in Figure 1. A 

beacon is used by a node to announce its active state when it wakes up. It includes Id, Node_id 

and Wakeup_time. Field Id is used to help its neighbor make forwarding decisions or trigger its 
neighbors to adjust their sleep scheduling to receive its broadcast message. So, in beacon, the 

value of Id will be set to the maximum sequence number of the received broadcast message in 

its message buffer and it will be updated dynamically. Field Node_id and Wakeup_time are used 

to tell neighboring nodes when the node wakes up. The footer indicating the transmitting for its 

neighboring nodes contains fields such as Forwarder, Receivers, Message_id and End_time. 

Suppose that forwarder in  and jn  will transmit the broadcast message with the same 

Message_id at time 
send

it  and 
send

jt  respectively (
send

j

send

i tt < ). However, if jn 's receivers are 

contained in in 's and jn  can hear the footer from in , then jn  will abort this forwarding task at 
time 

send

jt  in order to reduce broadcast redundancy. Otherwise, jn  must start its forwarding task 

with backoff mechanism to avoid a collision when it learns from End_time 

( 0=_ TttimeEnd
send

i + ) in in 's footer that timeEndtt send

j

send

i _<< , indicating jn 's 

forwarding will take place during in 's transmitting. Besides, footer and DATA carried in a 
packet will be transmitted as a broadcast message in DQSB. 

 

Figure 1.  Packet structures of beacon and footer. 
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An assumption used in [25] as well is that the time interval between two asynchronous duty-

cycled nodes is an exponentially distributed random variable with average 
Ra NT / , where 

aT  is 

the length of the node's active period after waking up and RN  is the number of nodes in the 

circle area of communication radius R. A sequence of waking up behavior of nodes is 
represented by a Poisson process. The probability 

tP  that more than one node wakes up in a 

period t  is formulated as follows: 

t

a
T

R
N

a

R

t

a
T

R
N

a

R

t

a
T

R
N

t et
T

N
et

T

N
eP

⋅−⋅−⋅−

⋅⋅+−⋅⋅−− )(11=1=  

From the above equation, if the period t  is extremely short (approaching zero), 
tP  approaches 

zero. Hence, in an asynchronous duty-cycled WSN, the probability that more than one node 

wakes up simultaneously is almost zero. Consequently, this helps us to ignore the collisions 

happening among nodes when they wake up and immediately send a short packet. With these 
assumptions, in asynchronous duty-cycled WSNs, we assume that there is a λ  (

0= λαλ ⋅ , 

aR TN /=0λ ) such that for all λ′  ( λλ ≥′ ), an evolving graph G(t) is intermittent connectivity 

during time t, where t ∈  [0,T] and T is one cycle length that sa TTT += . For properly selecting 

λ  to ensure the assumption, we will explore the impact of λ  and get the smallest value of α  
in Section 5. 

3.2. Conditions for Successful Broadcast 

In an asynchronous duty-cycled WSN, suppose the broadcast time of node 
in  is set to 

send

it  if it 

is a broadcast forwarder. There is 0= Ttt
s

i

send

i − . jn  receives a message sent by in  if and only 

if the duration jiT ,  for the link ),( ,,, jijiji TtL  satisfies the following conditions. As shown in 

Figure 2, there are two conditions:  

a

it

a

jt

s

it

s

jt

a

it

a

jt

s

it

s

jt

 

backoff

jT
a

j

a

i tt >a

j

a

i tt <
 

Figure 2.  Two conditions of timing relationship between transmitter in and its receiver jn . 

(1) If 
a

j

a

i tt < , link jiL , 's duration time jiT ,  satisfies 0, TT ji ≥ . In this case, the transmitter in  
wakes up earlier than its receiver jn . If the link ),( ,,, jijiji TtL  between nodes in  and jn  

satisfies the condition, then 0Ttt a

j

s

i ≥− , where equation ji

a

j

s

i Ttt ,=−  holds. So, the condition 

is converted to 0, TT ji ≥ . 

(2) If 
a

j

a

i tt > , jn  adjusts its sleep schedule by 
backoff

j

s

i

s

j Ttt +=  if it cannot receive broadcast 
messages in an opportunistic way from other nodes. This case indicates that if in , serving as the 

transmitter, wakes up later than the receiver jn , jn  cannot receive in 's broadcast message 

since jn  has already switched to sleep state. Therefore, jn  must prolong its active time and 

move to sleep state later than the transmitter in . It is expressed as )(= backoff

j

a

j

a

i

s

j

s

j Ttttt +−+ , 
which is further converted to 

backoff

j

s

i

s

j Ttt +=  due to a

a

j

s

j Ttt =−  and 
s

ia

a

i tTt =+ . Then, this 

case is converted to the condition 1. 

In summary, all the sleep schedules of nodes need to satisfy the condition 1 in order to let 

receivers properly receive broadcast messages. 
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3.2. Quasi-Synchronization Mechanism 

A broadcast protocol aims to generate a broadcast tree from the broadcast source node to all the 

other nodes, and the sleep scheduling relationship between any node and its parent node 

satisfies the condition that a sender wakes up earlier than its receiver. Quasi-synchronization 

mechanism proposed in this paper is responsible for this undertaking goal. If a receiver wakes 

up earlier than its parent node, it is called timing inversion. The mechanism firstly helps nodes 

determine whether there is a timing inversion in its path of the broadcast tree. If it is, the 

mechanism requests the related nodes to adjust their sleep schedules. Consequently, the 

condition remains true among all the nodes in the broadcast tree. All the nodes reach a quasi-

synchronized state. Quasi, here, means that all the nodes may not wake up at the same time, but 

they are able to receive all the broadcast messages sent by the root of the broadcast tree. 

The quasi-synchronization mechanism needs to handle 4 cases due to the relationship between a 

sender and its direct receiver. Suppose that in  transmits a broadcast message at time 
send

it , 

0= Ttt
s

i

send

i −  as shown in Figure 3. 

 

Figure 3.  Suppose in  is a broadcast forwarding node and jn  is its receiver. Different cases are 
considered in quasi-synchronization mechanism and their adjustment strategies: (Case 1 and 

Case 2) Early Sleep. (Case 3) Late Wake-up. (Case 4) Isolated Node. 

(1) jn  wakes up before in . jn  fails to receive in 's broadcast message. If jn  does not receive 

the broadcast message from other neighbor nodes during [
backoff

jsend
i

na
j

n Ttt −,, , ] (case 1) or 
[ s

j
na

j
n tt ,, , ] (case 2), jn  retransmits its beacon at time t (

backoff

j

send

i Ttt −= ) to trigger in 's 

forwarding decision. Both case 1 and case 2 are due to receivers' early sleep. 

(2) jn 's wake-up happens during in 's transmitting time. jn  cannot receive in 's broadcast 

message correctly. This case is called late wake-up problem and its corresponding solution for 

jn  is to adjust its next sleep time and sets its sjt ,  to 
backoff

jsj Tt −, . 

(3) Case 4 is due to the isolated node problem. When jn  finds that it cannot receive anything 

else during its active period of [ 0, Ttt s

j

a

j − ], it prolongs its active time until it receives its 

neighboring nodes' wake-up message, such as beacons. If jn  can learn whether any of their 
neighbors have the broadcast message it wants from the receiving beacons, jn  can decide 

whether or not to retransmit its beacon at time t (
backoff

ja
i

n Ttt +,= ) to trigger in 's forwarding 

and wait for the the upcoming broadcast message. Then, jn  switches to sleep state at sjt ,  

(
backoff

jsisj Ttt +,, = ). 

After the adjustments of nodes' sleep schedules in quasi-synchronization in Figure 3, the timing 

inversion problem is solved. 
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4. DQSB PROTOCOL DESIGN 

4.1. Overview 

DQSB aims at giving a solution to multi-hop broadcast and routing in asynchronous duty-cycled 

WSNs without time synchronization and duty-cycled awareness, and helps nodes to forward 

broadcast messages and transmit sensed data to a broadcast source node, to reduce broadcast 

redundancy and keep relative tolerant broadcast latency performance. It is regarded as a joint 

design approach to achieve reliable broadcast and less latency routing paths for reverse data 

collection to a broadcast source node. The main idea of the protocol is to let nodes locally 

develop their own views of the sleep schedule of the whole network. Although in a system 

viewpoint, the nodes' sleep schedules are not strictly synchronized, the adjustments of nodes' 

sleep schedules are good enough to guarantee that all the nodes receive broadcast messages. 

Under DQSB, a data collection node, such as sink, periodically broadcasts messages to inform 

other nodes to transmit their sensing data to it. The other nodes firstly try to receive broadcast 

messages in an opportunistic way. If this fails, they will trigger one of their neighbor nodes' 

forwarding decisions and adjust their duty-cycle in a local and distributed manner for receiving. 

As a result, nodes' sleep schedules are coordinated. Every node learns its next hop to the sink by 

a minimal latency path due to no or less waiting time and no synchronization delay. 

4.2. Distributed Quasi-Synchronized Broadcast 

DQSB is composed of two basic components: (1) Forwarding decision, which helps nodes to 
know whether or not to forward received broadcast messages; and (2) Adaptive sleep 

scheduling adjustment, which is triggered when a node is aware of the upcoming transmissions 

which it misses. The node will adjust its sleep schedule in order to receive necessary messages. 

DQSB has five tasks to complete: forwarding decision, sending task abort, managing early 
sleep, tackling late wake-up and dealing with isolated nodes. The protocol is presented in 

Algorithm 1, where variables at each node have been described in Table 1. For consistency with 

Figure 2 and Figure 3, let's illustrate how jn  finishes the following tasks with one of its 

neighboring nodes, such as in . 

When a node jn  wakes up, at first it drops expired messages and gets the newly received 

broadcast messages in its message buffer (line 1-2). Then, it transmits its beacon as a one-hop 

broadcast immediately, indicating the maximum identification of received broadcast messages. 

If the message buffer is empty, the value of Id  in the beacon is set to -1 (line 3-5). After 
transmitting its beacon jB , it will receive beacons from its neighboring nodes during the 

interval of [ 0, Ttt s

j

a

j − ], such as iB  from neighboring in .(line 6-30). 

Task 1: Forwarding Decision (line 7-10). Forwarding decision is made by jn  according to the 

received beacons from neighboring nodes during jn 's active interval of [
a

jt , 0Tt s

j − ]. jn 's 
sending is triggered if and only if the condition IdmMmnullM jj .,&(&)=!( ∈∃ >  

),. beaconsBIdB ii ∈  is satisfied. If jn  really forwards a message, its sending time 
send

jt  is set 

to 0Tt s

j − . 

Task 2: Sending Task Abort (line 22-24). Sending task abort happens if and only if node jn  
listens to the channel and receives the footer before 

send

jt , and the footer indicating the 

transmitting for its neighbor nodes at time 
send

jt  has been done. 

Task 3: Managing Early Sleep (line 11-19). Early sleep occurs if and only if jn  receives more 

than one beacon during its active period of [( 0, Ttt s

j

a

j − )] and meets one of the following 
conditions: (1) beaconsBIdBIdmMm iij ∈∈∀ ,.<., or (2) nullM j ==  && 

beaconsBIdB ii ∈−≠ 1,. . According to the analysis of Figure 2, the relationship between 

transmitter in  and its receiver jn  satisfies the condition 
a

j

a

i tt > . Case 1 and 2 are recognized 
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as the early sleep problems discussed in Figure 3. Their solutions to trigger neighbors' 

transmitting are given, respectively: (1) If )<<( ,0 ajia TTTT − , jn  updates its IdB j .  when 

receiving broadcast messages during [
backoff

j

send

i

a

j Ttt −, ] (Case 1); (2) If )<<(0 0, TTT aji − , 

jn  updates its IdB j .  when receiving broadcast messages during [
s

j

a

j tt , ] (Case 2). After 
updating its IdB j .  during these times, if the condition IdBIdB ij .<.  is still satisfied, jn  

retransmits its beacon jB  at time 
backoff

j

send

i Ttt −=  to trigger 
in 's forwarding. Then, jn  only 

waits for the upcoming broadcast message. After receiving, jn  adjusts its 
s

jt  

(
backoff

j

s

i

s

j Ttt += ), namely condition 
a

j

a

i tt <  holds in the following duty cycle. 

 

Task 4: Tackling Late Wake-up (line 20-21). As case 3 shows in Figure 3, a late wake-up occurs 

if and only if jn  listens to the channel and overhears neighboring node in 's transmitting during 

[( 0, Ttt s

j

a

j − )] and jn 's wake-up time 
a

jt  satisfies condition 
s

i

a

j

send

i

a

i tttt <<< . However, 

here, in  is the transmitter, and the condition 0, < TT ji  cannot satisfy the condition 0, TT ji ≥  
required by Condition (1) in Figure 2. The corresponding solution for jn  is to set its sjt ,  to 

backoff

jsjsj Ttt ,,, = − . 
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Task 5: Dealing With Isolated Nodes (line 25-30). Isolated nodes occur if and only if jn  

receives no beacon and listens nothing else during its active period of [ 0, Ttt s

j

a

j − )]. Although 

this problem may not happen at the initial time of a WSN due to our assumption, it may really 

occur if nodes recover from failure or join in the network afterwards. As case 4 shows in Figure 
3, when jn  finds that it cannot receive any beacon  message and anything else during its active 

period of [ 0, Ttt s

j

a

j − ], it prolongs active time until it receives neighboring nodes' beacons e.g. 

iB . If the condition that beaconsIdBIdBIdB iji ∈.,.>.  holds, jn  retransmits its beacon jB  

at time t (
backoff

iai Ttt +,= ) to trigger in 's forwarding and waits for the upcoming broadcast 
message. jn  switches to sleep state at sjt ,  (

backoff

jsisj Ttt +,, = ). 

n0
n2

n1
n3

n5

n6

n4

n7

n8

n9

Ln0,n2(tn0,n2, Tn0,n2)

Ln0,n1(tn0,n1, Tn0,n1)

 

Figure 4.  An evolving graph G(t) of ten nodes in an asynchronous duty-cycled WSN. G(t) = 

(N, E(t)), where N = { 910 ,,, nnn L } and the dotted lines denote intermittent connective links 

),( ,,, jijiji TtL  between 
in  and jn  with )(),( ,,, tETtL jijiji ∈ . 

We further discuss DQSB in detail with an example. As shown in Figure 4, suppose there are 

ten nodes in an asynchronous duty-cycled WSN. 0n  is in charge of the data collection and 

periodically broadcasts some DATA packets to the other nodes. Figure 5 gives an overview of 
the operation sequences of DQSB regarding the scenario in Figure 4. In the forwarding decision 

phase, because 0n  is the broadcast source at first, IdB .0  is set to 0 for the first broadcast 

message and is transmitted when it wakes up (Sequence 1). As 0n 's neighbors, both of 1n  and 

2n  wake up before 0n , they can receive 0n 's beacon message 0B  and fail to receive in 's 
broadcast message because of early sleep problem. But when they can receive the broadcast 

message from other neighboring nodes, they will update their Id values of the beacons during 

[
sa

tt 11 , ] and [
backoffsenda

Ttt 202 , − ] respectively. Otherwise, nullM ==1 , nullM ==2  and 

beaconsBIdB ∈−≠ 00 1,.  satisfy the condition (2) in Task3. Here, both IdB .1  and IdB .2  will 

be set to -1. Then they retransmit their beacons before 
send

t0
 (Sequence 2 and 3). When 

0n  

receives 1B  and 2B  from 1n  and 2n  respectively, any of them will trigger 0n 's sending at 
send

t0  

due to IdBIdB .>. 10  or IdBIdB .>. 20  (Sequence 4). When 1n  and 2n  receive the broadcast 

messages, they move to sleep state at time 
s

t1  (
backoffss

Ttt 101 = + ) and 
s

t2  (
backoffss

Ttt 202 = + ) 
respectively (Sequence 5 and 6). Suppose 

3n  finds it cannot receive any beacon from 

neighboring nodes during its active period of [ 033 , Ttt
sa − ], it prolongs its active time till 

receiving neighboring nodes' beacons, e.g., 1n  and 2n . Then 3n  retransmits 3B  because of 

IdBIdB .>. 31  or IdBIdB .>. 32  (Sequence 7). After receiving 3n 's beacon 3B , both 1n  and 

2n  will make a forwarding decision (Sequence 8 and 9). But in asynchronous duty-cycled 

WSNs, 1n  and 2n  do not transmit simultaneously according to their expected sending time. 

Since 2n  listens 1n 's transmitting and learns from the footer  indicating the broadcast message 

3n  wants has been transmitted by 1n , 2n  will abort the sending task at time 
send

t2  to avoid 

collision and reduce broadcast redundancy (Sequence 10). Unfortunately 6n 's wake-up happens 

during 1n 's transmitting time, 6n  cannot receive the broadcast message correctly. Then 6n  must 

set its sleep time st6,  to 
backoff

s Tt 66, −  (Sequence 11). Upon this adjustment, 6n  will wake up at 
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time 
a

t6
 (

sendaa
ttt 161 << ) in next duty cycle. The worse case for 

6n  is that it cannot receive 

anything else during its active period from its neighbors such as 1n  and 
5n . It will prolong its 

active time till receiving neighboring nodes' beacons, i.e. 1B  from 1n . If IdBIdB .>. 61  holds, 

6n  will retransmit its beacon 6B  at time t ( backoff
an Ttt 6,

1
= + ) to trigger 1n 's forwarding. 6n  

switch to sleep state at st6,  (
backoff

ss Ttt 61,6, = + ). 

 

Figure 5.  Overview of distributed quasi-synchronized broadcast protocol of DQSB regarding 

the scenario in Figure 4. Every node transmits a beacon message when it wakes up at time 
a

it , 

indicating the maximum broadcast message ID it recently receives. Broadcast source node, such 

as 0n , makes broadcast forwarding decision according to the received beacons. If so, transmit at 

0= Ttt
s

i

send

i − , where 
s

it  is node 
in 's time to switch to sleep state. Other nodes with received 

beacons will adjust their sleep scheduling and trigger their neighbor nodes to forward based on 

our quasi-synchronized mechanism in Figure 3, i.e. the adjustment of 1n  and 2n  for 0n 's 

broadcast due to early sleep problem. 

4.3. State Diagram Description 

DQSB protocol has 7 states. They are idle, sleep, forward-decision, receiving, routing, 

transmitting and forward-unicast. Let's revisit the example shown in Figure 4. Figure 6 

illustrates the state transition diagram for DQSB's running triggered by different conditions 

given in Table 2. 

 

Figure 6.  The state transition diagram for DQSB. 
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Table 2.  Conditions for DQSB’s state transition diagram. 

Id Transition Condition 

 1   node in 's wakeup time 
a

it  arrive; 

 2   node 
in  transmit its beacon 

iB  at time 
a

it ; 

 3   node 
in 's active time t, 

0Tttt
s

i

a

i −≤≤ ; 

 4   node in  receives beacon, broadcast or unicast message; 

 5   node in  receives beacon, such as jB  from node jn ; 

 6   node 
in  satisfies IdmMmnullM ii .,&(&)=!( ∈∃  >  ).IdB j ; 

 7   node 
in 's forwarding broadcast time 

0= Ttt
s

i

send

i − ; 

 8   node in  abort the broadcasting task at 
send

it  by received footer; 

 9   node in  finishes transmitting task and move to idle state; 

 10   node 
in  learns the next hop from received broadcast message; 

 11   node 
in  receives unicast message or sensed data from itself; 

 12   node in  looks up the route table for forwarding unicast message; 

 13   node in  gets the next hop for unicast message from route table; 

 14   node 
in  transmits the unicast message when the channel is idle; 

 15   node 
in 's sleep time 

s

it  arrive; 

 

1. Suppose 0n , as a sink, broadcasts and triggers the other nodes to transmit their sensed data to 
it. When Condition 1 is established for 

0n , 
0n  switches to idle state and transmits a beacon 

0B  

with 0=.0 IdB  (Condition 2). Under Condition 3, 0n  is waiting for beacons from its neighbors 

to make forwarding decision. But 1n  and 2n  wake up before 0n , they can receive 0n 's beacon 

message 0B  and fail to receive in 's broadcast message because of early sleep problem. Both 

IdB .1  and IdB .2  are equal to -1, IdBIdB .<. 01
 and IdBIdB .<. 02

. They will retransmit 

their beacons before 
send

t0  which will be received by 0n  (Condition 4). 

2. With the received beacons 1B  and 2B , 0n  makes a forwarding decision (Condition 5). Either 

the value of IdB .1  or IdB .2  holds by Condition 6. Then, 0n  sets forwarding broadcast task at 
time 

send
t0

 and waits for transmitting (Condition 7). After its sending, 1n  and 2n  receive the 

broadcast message (Condition 4), and IdB .1  and IdB .2  are set to 0 when they wake up next 

time to transmit their beacons. If it is the sleep time of st0,  for 0n , 0n  turns into sleep state 

(Condition 15). 

3. For 1n  and 2n , they learn the next hop to 0n  from received broadcast message and switch to 

routing state (Condition 10). In the next duty cycle, when their sensed data are delivered by the 

upper layer (Condition 11), they wake up and transmit their beacons according the routing table 

immediately if the channel is idle (Condition 12, 13 and 14). If there is no message to forward, 

then switch to idle state (Condition 9). 

4. When 3n  and 6n  wake up, they perform in the same way as 1n  and 2n  in step (1). Here, it is 

important to notice both 1n  and 2n  receive beacons 3B  and 6B  from 3n  and 6n . Due to the 

case that 1=.3 −IdB  and 1=.6 −IdB , both 1n  and 2n  launch forwarding task at time 
send

t1  and 
send

t2 , respectively. Because 
send

t1  is earlier than 
send

t2  according to the forwarding mechanism, it 

is the right time for footer to let 2n  abort its forwarding task (Condition 8) and further reduce 

broadcast times for energy efficiency. 

5. After receiving the broadcast message, 3n  and 6n  execute what are described in step (3) to 
transmit their sensed data to 0n . 
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4.4. Further Discussion 

Property 1 (Validity and Reliability) With our assumption of intermittent connectivity , for 

any node jn , there is at least one node of its neighborhoods that have received the broadcast 

message jn  wants. Then jn  finally receives the broadcast message from one of its neighbor in  

within )( jT∆ ,  

.=,)()( sa

a

j

s

i TTTwhereTttiTjT ++−+∆≤∆  

Proof: This property is proved based on the cases shown in Figure 3. Our assumption of 
intermittent connectivity implies case 4 that node receives no beacon and listens nothing else 

will never exist. But we introduce this case to help nodes recover from failure or join in the 

network, which can improve the robustness and adaptively for our protocol. We will prove this 

in Property 2. So, except case 4, we will deduce the latency 1T∆ , 2T∆  and 3T∆  for case 1, case 
2 and case 3 in Figure 3, respectively. According to the assumption, we can infer a significant 

result that every new broadcast message can arrive at one of jn 's neighbor nodes such as node 

in , then this can make sure jn 's successful receiving for the broadcast message from in , even 

if jn  cannot receive the broadcast messages during time t , 
backoff

jsendiaj Tttt −,, << . Because 

IdB j .  still satisfies inequality IdBIdB ij .<.  which will trigger 
in 's forwarding decision. For 

case 1, the maximum latency of node jn 's receiving for the broadcast message equals to 

)(1
jT∆ , 

,11 )(=)( a

j

s

i ttiTjT −+∆∆ . Similar to case 1, the maximum latency of case 2 

satisfies the equation that 
,22 )(=)( a

j

s

i ttiTjT −+∆∆ , and )(<)( 21
jTjT ∆∆  because of 

,2,1 > a

j

a

j tt . Case 3 is different from case 1 and case 2 for its late wake-up feature mentioned in 

Task 4. Obviously, this case will lead to longer latency than that can be obtained by the 

expression that TttiTjT a

j

s

i +−+∆∆ ,33 )(=)( . Since )(>)(>)( 123
jTjTjT ∆∆∆ , the 

maximum latency of node jn 's receiving the broadcast message )( jT∆  satisfies the inequation 
that TttiTjT a

j

s

i +−+∆≤∆ )()( , then Property 1 holds.  

Property 2 (Robustness and Adaptively) When jn  recovers from failure or newly joins in a 

network, there is at least one node of its neighborhoods that have received the broadcast 

message jn  wants. Then jn  finally receives the broadcast message from one of its neighbor in  

within )( jT∆ ,  

.=,)()( sa TTTwhereTiTjT ++∆≤∆  

Proof: To make DQSB be tolerant with node's failure in realistic environment and be adaptive 

to new node's joining, we consider the case 4 shown in Figure 3 that jn  receives no beacon and 

nothing else during its active period of [( 0, Ttt s

j

a

j − )]. Let )(4
jT∆  be receiving latency of the 

broadcast message in case 4. Then, a

a

j

a

i TttiTjT +−+∆∆ )(=)(4
. In the most extreme, the 

maximum latency occurs when node jn 's wakeup time 
a

jt  happen in node in 's sleep time 
s

it , 

and node in 's next wakeup time 
a

it  satisfies the condition that s

a

j

a

i Ttt =− . This can make the 

equation of )(4
jT∆  convert to as TTiTjT ++∆∆ )(=)(4

, then Property 2 has been proved 
upon the condition as TTT += .  

With Property 1 and Property 2, the lower bound of latency for any node is given. 

4.4. Less Latency Routing 

We observe that a routing protocol to a sink node is related to a broadcast protocol. If a 

broadcast protocol constructs a good bottom-up tree path to all the other nodes in a WSN, the 

tree path in the reverse direction, then is a satisfying road map for all the nodes transmitting 

their data to the sink node. Without time synchronization in asynchronous duty-cycled WSNs, 

unicast protocols, such as B-MAC, WiseMAC and X-MAC, have more or less waiting latency 
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because of the unawareness of sleep schedules of neighboring nodes. DQSB's quasi-

synchronization helps the nodes to properly adjust others' wake-up schedules. For instance, 
6n  

wakes up earlier than 1n , and 1n  is earlier than 0n  in Figure 5. Although they do not wake up at 

the same time, if 6n  and 1n  adjust their sleep schedules according to quasi-synchronization 
mechanism, the broadcast messages sent by 

0n  are received by all its neighbor nodes in one 

cycle, such as 1n  and 2n . The result of their sleep schedule relationship comes out that 
0n  

wakes up earlier than 1n , and 1n  is earlier than 6n . So when 6n  and 1n  wake up respectively, 

there is no extra waiting time for them to transmit their sensed data to the sink node 0n . 
Therefore, the less latency route for each sensed data from source to data collection node is 

constructed, as shown in Figure 7. The broadcast forwarding for each broadcast message only 

needs four nodes, i.e., 0n , 1n , 3n  and 7n . This is of great significance for energy efficient in 

terms of transmitting times, rather than every node's forwarding. In addition, the less latency 
routes are learned during broadcasting, such as 

6n  →  1n  →  
0n , 

5n  →  
3n  →  1n  →  

0n , 
9n  

→  
7n  →  

3n  →  1n  →  
0n  and so on. 

 

Figure 7.  Every node’s less latency routing path to the broadcast source node with the 

distributed quasi-synchronized broadcast in our DQSB protocol for the simple network scenario 

shown in Figure 4. 

6. SIMULATION AND ANALYSIS 

6.1. Simulation Setting 

The ONE simulator is an open source tool for Delay-tolerant Networking (DTN), specifically 

designed for evaluating routing and application protocols in intermittent connective networks, 

such as asynchronous duty-cycled WSNs. We develop our simulator based on the ONE 

simulator [11] to evaluate our DQSB protocol. To satisfy the evaluation requirements, we 

develop extensive simulator functions based on the ONE simulator as shown in Figure 8. 

Broadcast Message Event Generator is used to generate broadcast messages in the given 

interval; Random Sleep Scheduling Generator lets randomly deployed nodes work in 

asynchronous duty-cycled WSNs; Reliable Broadcast provides distributed quasi-synchronized 

broadcast; and DQSB is applied to data collection based on Reliable Broadcast. We also 

implement Hybrid-cast and OppFlooding protocols in order to compare with our DQSB 

protocol. 
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Figure 8.  An Extended Simulator based on The ONE Simulator 

6.2. Regarding Duty Cycles 

We evaluate the performance in asynchronous duty-cycled WSNs with various duty cycles. In 

this simulation, wireless loss rate is set to 0.1, wireless communication range to 15m and 

transmitting speed to 250kbps. The size of a broadcast message is fixed as 512 bytes and its 

transmitting time of 
0T  is 50ms. We randomly generate 10 topologies with 200 nodes, and run 

on each topology for 10 times. 

Figure 9 illustrates the performance of forwarding times and broadcast latency, respectively. 

From Figure 9(a), we notice that DQSB outperforms Hybrid-cast and OppFlooding. This is 
because node's forwarding is triggered by its receivers in DQSB. The nodes that cannot receive 

the beacon will adjust their sleep schedules in order to receive broadcast messages, which is 

different from the other two protocols. Regarding broadcast latency in Figure 9(b), DQSB 

behaves particularly because its latency does not decrease in spite of the increasing of duty 
cycle. This contributes to DQSB's mechanism that each node in one cycle either receives a 

broadcast message or forwards the message received in the last cycle. Broadcast latency is 

related to duty cycle and forwarding times. The relationship between them is that one-hop 

latency follows the increasing of duty cycle in that a node launches forwarding at 

0= Ttt
s

i

send

i − . Generally speaking, the more nodes receive a broadcast message during one 

forwarding, the fewer forwarding times is. Consequently, broadcast latency in DQSB is a 

tradeoff between duty cycle and forwarding times. 

  

(a) Forwarding Times     (b) Broadcast Latency 

Figure 9.  Forwarding Times and Broadcast Latency with various duty cycles. 
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6.3. Regarding Network Size 

 Network size varies from 200 nodes to 1200 nodes and duty cycle is set to 0.2. The experiment 

aims to show the impact of network size in DQSB. As shown in Figure 10(a), as network size 

goes up, forwarding times of all the three protocols exhibit an increasing trend. However, 

DQSB outperforms the other two due to the same reason given before. As shown in Figure 

10(b), compared with other two protocols, the broadcast latency of DQSB keeps relative 

tolerant and stable as the increasing in network size. So, we can conclude that DQSB can be 

recognized as a tradeoff between broadcast times and broadcast latency. One the one hand, 

node's forwarding is triggered by its receivers which helps to reduce forwarding times. On the 

other hand, only one of the nodes which receive beacons from neighbors forwards a broadcast 

message (it is an early sleep node), and the late wake-up nodes are exempt from forwarding 

these messages. Furthermore, quasi-synchronization greatly helps to let more nodes receive 

broadcast messages at each duty cycle and hence reduce forwarding times. Consequently, when 

network size expands, the number of nodes which can receive broadcast messages also goes up. 

The necessary forwarding times remains stable. 

  

(a) Forwarding Times     (b) Broadcast Latency 

Figure 10.  Forwarding Times and Broadcast Latency with various network sizes. 

6.3. Regarding Reliability with Unreliable Links 

 In Hybrid-cast and OppFlooding protocols, unreliable links which result in packet loss is not 
clearly discussed. In our DQSB protocol, beacon  packets are sent immediately as nodes wake 

up. These packets are dual-folded. (1) They trigger broadcast forwarding. When receiving 

beacons, nodes are able to decide whether or not to forward the received broadcast messages; 

(2) They facilitate DQSB tolerate unreliable links. As we known, wireless links are not always 
reliable for many reasons in realistic environment, especially in wireless sensor networks. 

Consider a scenario that some nodes applying DQSB do not receive the broadcast message 

when a triggered node forwards a broadcast message. This does not matter because in 's failure 

lets itself keep the value of IdBi .  in its beacon iB  and it triggers its neighbors's forwarding. 

Thus, confronting an unreliable link, in  is able to receive a specific message if one of its 

neighbors receives it. The performance of reliability under unreliable links is shown in Figure 

11. Regarding forwarding times, DQSB performs better than the other two protocols under the 

environment of unreliable links with wireless link loss rate equals to 0.1 shown in Figure 9. 
Even with loss rate of 0.3, broadcast latency of DQSB is still acceptable with the value of about 

6 seconds. 
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(a) Forwarding Times     (b) Broadcast Latency 

Figure 11.  Forwarding Times and Broadcast Latency with various link loss rates. 

6.5. Regarding Less Latency Routing 

 Different from the existing multi-hop broadcast protocols in asynchronous duty-cycled WSNs, 

DQSB is a joint design for reliable broadcast and less latency routing paths for reverse data 

collection to broadcast source node, such as a sink. In this simulation, a sink node informs other 

nodes to send their sensed data for data collection, and sensed data are transmitted along the less 

latency routing paths learned by quasi-synchronized mechanism in DQSB protocol. Packet size 

is set to 256 bytes for sensed data and packet generating interval is [25, 35] seconds. A sink 

which broadcasts a message helps other nodes learn their paths from themselves to the sink 

when they receive the broadcast message. Each node in the network is able to complete this task 

because of DQSB's reliability for broadcast explained before. Figure 12 shows that DQSB 

behaves better in latency than LPL (Low Power Listening) which is simple and asynchronous, 

and adopts long preamble to make the receiver keep awake for a period of time to receive the 

data. So, the latency is due to the waiting time for both sender and receiver. DQSB solves this 

problem depending on reliable broadcast and its quasi-synchronized sleep scheduling. Figure 12 

shows the less average latency for each hop in DQSB. It also illustrates that average latency for 

each hop in DQSB is not influenced by duty cycle due to no or less waiting time introduced. 

 

Figure 12.  Average latency for each hop. 
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6.6. Selecting λ  for Intermittent Connectivity 

Parameter 
0λ  indicates the number of nodes that are waken at t . According to Poisson 

distribution, it is proportional to RN  and inversely proportional to 
aT . For any node 

in  in a 

network, if network density increases, in 's number of neighborhood RN  increases. Thus, in 's 

probability to reach other nodes via its neighbor nodes may increase. Moreover, if aT  increases, 

in 's probability to be in connection with its neighborhood increases because of the increment of 

node's duty cycle. But the number of neighbor nodes decreases if 0λ  declines. 

We believe that if duty-cycle scheme for nodes is introduced to a connected network, the 

network exhibits its intermittent connection feature. We should choose the proper value of α , 
and let 

0= λαλ ⋅  in order to guarantee DQSB's feasibility, i.e., there is at least one path for any 

node in the network to other nodes via some intermediate nodes within a period (e.g., one cycle 

length T). 

Table 3.  Least value of α  for 1.0=λP . 

Network Size  aT    λ  ( 1.0=P
λ

)  Least value of α  
 200 nodes   0.1   50   0.3808 

 200 nodes   0.2   40   0.6093 

 400 nodes   0.1   40   0.1467 

 400 nodes   0.2   30   0.2201 
 600 nodes   0.1   30   0.0725 

 600 nodes   0.2   20   0.0966 

 
In this set of simulations, we investigate the impact of the parameter λ  and select a reasonable 

α  to satisfy the assumption. This implies that if this assumption holds, every node in the 

network receives broadcast messages due to Property 1 and Property 2 of DQSB. So, here we 

use broadcast success ratio λP  instead of network's intermittent connectivity to represent 
whether a network is connected. Figure 13 shows the change of λP  with λ  which varies from 0 

to 80 in different network sizes when 0.1=aT  and 0.2=aT , respectively. For a given λ , λP  

increases with network size. When 20=λ , if network size changes from 200 nodes to 600 

nodes, λP  goes up from 0.5075 to 0.9215 in Figure 13(a) and from 0.8861 to 1.0 in Figure 
13(b), respectively. Comparing Figure 13(a) with Figure 13(b), we observe that under the same 

λ  and network size, if aT  moves larger, λP  also increases. When 20=λ  and network size is 

200 nodes, 0.5075=λP  with 0.1=aT  while 0.8861=λP  with 0.2=aT . Therefore, we set 
λ  to 1.0=λP , and compute the least value of α  in terms of the equation 0= λαλ ⋅ , where 0λ  
is available by RN  and 

aT . Least values of α  ave given in Table 3. 

  

(a) 1.0=aT       (b) 2.0=aT  

Figure 13.  The impact of the parameter λ  under 1.0=aT  and 2.0=aT . 
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7. CONCLUSIONS 

In this paper, we neither assume time synchronization which requires all neighboring nodes 

wake up at the same time, nor assume duty-cycled awareness which makes it difficult to use in 

asynchronous WSNs. A reliable broadcast protocol called DQSB is proposed by a distributed 

and quasi-synchronized manner for duty-cycled WSNs. Quasi-synchronization is reached after 

nodes execute DQSB in a local and distributed way. Under DQSB, a sink periodically 

broadcast. After receiving the broadcast messages, other nodes can build their paths to the sink 

for transmitting their sensed data. Moreover, these paths exhibit less latency because of no or 

very little waiting time. Simulation results show that DQSB performs well in broadcast times 

and keep relative tolerant broadcast latency performance. DQSB can be recognized as a tradeoff 

between broadcast times and broadcast latency. Further, it is still feasible under unreliable links. 

Our future work is to focus on applying DQSB to real WSN platforms, e.g., micaz and telosb, 

and investigate its performance. 
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