Study and Simulation of Quasi and Rotated Quasi Space Time Block Codes in MIMO systems using Dent Channel model

Priyanka Mishra¹, Rahul Vij², Gurpreet Singh³ and Gaurav Chandil⁴

¹Department of Electronics Engineering, United Group of Institution, Allahabad
mishrapriyanka6@gmail.com

²Department of Electronics Engineering, L R of Institute of Engineering, Solan
rahulvij2@gmail.com

³Department of Electronics Engineering, Shaheed Bhagat Singh State Technical Campus, Ferozpur, Punjab
gurpreet2828@hotmail.com

⁴Department of Electronics Engineering, United Group of Institution, Allahabad
gaurav.iiitm18@gmail.com

ABSTRACT

Multiple Input Multiple Output (MIMO) has become one of the most exciting field in modern engineering. It has become one of the key technologies for wideband wireless communication systems. It is mainly used to increase capacity and data rate of any wireless systems. In this paper, we exploit the space and time diversity to decode the quasi and rotated quasi space time block codes (QOSTBC) based on dent channel model. For doppler shifting and rayleigh distribution we make use of dent channel model. A general Quasi and rotated quasi Space-Time Block Coded (STBC) MIMO structure is presented in this paper. BER analysis is presented in terms of code rate and diversity achieved using Quasi and Rotated quasi STBC methods. Furthermore, simulations are carried out using above two O STBC methods with various modulation schemes in quasi static dent channel model and then optimum coding method is suggested for 4×2 quasi and rotated quasi Space time block coded MIMO systems. This provide fast decoding and gives better performance of communication system. BER analysis is presented in terms of diversity and code rate.

KEYWORDS

MIMO, QUASI ORTHOGONAL SPACE-TIME BLOCK CODES (QOSTBC), ROTATED QOSTBC, MAXIMUM LIKELIHOOD (ML) DECODING.

1. INTRODUCTION

MIMO technology constitutes a breakthrough in wireless communication system that offers a number of benefits that helps in improving the reliability of link. The advantage of MIMO technology includes improvement in array gain, spatial diversity gain, multiplexing gain and interference reduction. MIMO systems provide diversity to mitigate fading, that is realized by providing the receiver with multiple copies of the transmitted signal in space, frequency or time. By increasing number of signal replicas, the probability of getting least faded signal is increased.

The information capacity of a system is increased by employing multiple transmit and receive antennas. An effective and practical way to gain the capacity of the multiple input multiple output (MIMO) is to employ Space Time (ST) Coding. Space-Time (ST) coding schemes combines coding along with transmit diversity to achieve high diversity performance. It can be implemented in two forms ST-Trellis and ST-Block codes.
The main problem with ST-Trellis scheme is that its decoding complexity increases exponentially with diversity and transmission rate. To address this problem Alamouti proposed Orthogonal ST block codes (OSTBC) for 2×1 and 2×2 systems.

Space-time block code designs have recently attracted considerable attentions. One attractive approach of space-time block codes (STBC) is from orthogonal designs as proposed by Alamouti [5] and Tarokh, Jafarkhani and Calderbank [9]. STBC (Space-Time Block Code) is a coding technique used in MIMO system which has time and space domain correlation among signals transmitted from the multiple antennae. Relative to the non coded system, STBC can provide higher gain of diversity and power with no bandwidth loss. OSTBC (Orthogonal Space-Time Block Code) is one important subset of linear space time block coding, with its rows and columns keep orthogonal. One basic OSTBC is Alamouti code[7], which as standard, was adopted in third generation mobile telecommunication system[8]. OSTBC had one shortcoming, that is, when utilizing plurality modulation meanwhile the number of transmitting antenna is more than 2,even the OSTBC with full diversity gain obtained by using complex orthogonal, it still cannot obtain full transmission rate.How to improve the transmission rate is one topic to study. Per above mentioned shorting, Jafarkhani proposed QOSTBC (Quasi-Orthogonal Space-Time Block Code).

These codes achieve full diversity and have fast Maximum Likelihood (ML) decoding at the receiver. It is a modulation schemes for multiple transmit antennas that provide full diversity with simple coding and decoding technique. Alamouti STBC scheme is the first space time block codes to provide full transmit diversity for two transmitting antenna. It is a simple single decoder scheme for 2×2 antennas that provide full rate. It is not possible provide full transmission rate for more than two antennas. Quasi orthogonal codes[8] of full rate have been proposed to overcome the shortcomings of orthogonal codes that cannot achieve full rate. In order to design full transmission rate that provide maximum possible diversity, the decoder performs pairwise symbol decoding instead of single symbol decoding. This is called quasi orthogonal space time block codes (QOSTBC). Typically, quasi orthogonal space time codes perform best with ML decoding. This technique provide full rate with maximum possible diversity. It is impossible to achieve full diversity if all the symbols are chosen from the same constellation’s, the solution to this problem is rotation based method, which aims at maximizing the minimum distance in the space time constellation by using different constellation for different transmitted symbols. Using this concept it is possible to provide full diversity. This is called Rotated Quasi Orthogonal Space Time Block Codes.

The rest of the paper is organized as follows. In section 2, we introduce MIMO space time block code transceiver model and briefly review the ST code design criteria. In section 3, space time block codes is discussed with its two methods. In section 4, ML decoding method is discussed. The simulation results are presented in section 5, and some conclusions are drawn in section 6.

2. SYSTEM MODEL

A typical MIMO communication system consists of transmitter, channel and receiver. Space Time coding involves use of multiple transmit and receive antennas. Figure 1 shows the transceiver of MIMO in space time code. Bits entering to the system are mapped into the symbol mapper using different modulation techniques like BPSK, QPSK and 16-QAM. Bits entering the quasi and rotated quasi space time block code encoder serially are distributed to parallel substreams. Within each substream, bits are mapped to signal waveforms, which are then emitted from the antenna corresponding to that substream. Signals transmitted simultaneously over each antenna interfere with each other as they propagate through then wireless channel. The receiver collects the signal at the output of receiver antenna element and reverses the transmitter operation in order to decode the data with quasi and rotated quasi space time decoder.
3. SPACE TIME BLOCK CODES (STBC)

Space time block codes (STBCs) [3] have been proposed to realize the enhanced reliability of multi-antenna systems. It is a transmit diversity scheme in which full diversity is achieved while a very simple ML decoding algorithm is used at the decoder. This new paradigm uses the theory of orthogonal designs to design space time block codes [4]. When transmitter has two antennas, Alamouti codes [3] achieve the full diversity performance with a symbol rate of 1 (rate-one) and simple linear processing under the assumption of no channel data information at the transmitter (CSIT) but perfect channel state information at the receiver (CSIR). Alamouti code provides the full diversity of 2 with 2 transmitting antenna with a rate of 1. For more reliable communication, Alamouti code can be further generalized for more than two transmitting antenna using the concept of orthogonal designs. But unfortunately it neither provide any coding gain nor achieve a rate larger than \(\frac{3}{4} \) [3].

It is proved in [4] that a complex orthogonal design and corresponding Space Time Block code which provide full diversity and full transmission rate is not possible for more than two antennas.

3.1. QUASI ORTHOGONAL SPACE TIME BLOCK CODES (QOSTBC)

Full-rate orthogonal designs with complex elements in its transmission matrix are impossible for more than two transmit antennas [8]. The only example of a full-rate full-diversity complex space-time block code using orthogonal designs is Alamouti schemes [8]. The generator matrix [8] of Alamouti code is given as,

\[
G(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \\ -x_2^* & x_1^* \end{pmatrix}
\]

(1)

to design full rate codes, we consider codes with decoding pair of symbols [8].

\[
G = \begin{pmatrix} G(x_1, x_2) & G(x_3, x_4) \\ -G^*(x_3, x_4) & G^*(x_1, x_2) \end{pmatrix}
\]

(2)
we denote the ith column of above matrix by \(v_i \), then for any intermediate variable \(x_1, x_2, x_3, x_4 \), we have,

\[
(v_1, v_2) = (v_1, v_3) = (v_2, v_4) = 0
\]

where, the above symbols are inner product of each other independently.

3.2. ROTATED QUASI SPACE TIME BLOCK CODES (RQOSTBC)

Sometimes, it is impossible to achieve code rate 1 for the complex orthogonal codes. To provide full diversity, different constellations are sent through different transmitted symbols. This is done by rotating the symbols before transmission. This provides full-diversity with code rate 1 and these pairing of symbols gives good performance as compared to QOSTBC.

For \(M \) receive antennas, a diversity of \(2M \) is achieved while the rate of the code is one. The maximum diversity of \(4M \) for a rate one complex orthogonal code is impossible in this case if all symbols are chosen from the same constellation. By using same constellation for all symbols in the subset reduces the minimum distance for such codes. As a remedy to this problem, rotation based method is used that aims in maximizing the minimum distance in the space time constellation. To provide full diversity, we use different constellations for different transmitted symbols.

For example, we may rotate symbols \(x_3 \) and \(x_4 \) before transmission. Let us denote \(x'_3 \) and \(x'_4 \) as the rotated versions of \(x_3 \) and \(x_4 \), respectively. We show that it is possible to provide full-diversity QOSTBCs by replacing \((x_3, x_4)\) with \((x'_3, x'_4)\). The resulting code is very powerful since it provides full diversity, rate one, and simple pairwise decoding with good performance. Different modulation techniques use different rotation. In this paper, we are using bpsk, qpsk and 16-qam. The optimum rotation is given in Table 1.

<table>
<thead>
<tr>
<th>Modulation techniques</th>
<th>Optimum rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>(\pi/2)</td>
</tr>
<tr>
<td>QPSK</td>
<td>(\pi/4)</td>
</tr>
<tr>
<td>16-QAM</td>
<td>(\pi/4)</td>
</tr>
</tbody>
</table>

3.3. DENT CHANNEL MODEL

A Rayleigh fading channel constitutes Dopplers spectrum is produced by synthesizing the complex sinusoids. The complex output of the jakes model [18], is given as,

\[
h(t) = \frac{E_0}{\sqrt{2N_0 + 1}} \left(h_1(t) + jh_0(t)\right)
\]

(5)
The real and imaginary parts [7], is given as,

\[h(t) = 2 \sum_{n=1}^{N_t} (\cos(\phi_n) \cos(\omega_n t) + \sqrt{2} \cos(\theta_n) \cos(\omega_n t)) \]

\[h_\varphi(t) = 2 \sum_{n=1}^{N_t} (\sin(\phi_n) \cos(\omega_n t) + \sqrt{2} \sin(\theta_n) \cos(\omega_n t)) \] \hspace{1cm} (6)

The unwanted correlation of Jake’s model is removed in a modification by Dent model. The unwanted correlation can be corrected by using orthogonal functions generated by Walsh-Hadamard codewords to weigh the oscillator values before summing so that each wave has equal power [11]. The weighting is achieved by adjusting the Jake’s model so that the incoming waves have slightly different arrival angles \(\alpha_n \). The modified Jakes model is given by

\[T(t) = \sqrt{\frac{2}{N}} \sum_{n=1}^{N} [\cos(\beta_n) + i \sin(\beta_n)] \cos(\omega_n t + \theta_n) \] \hspace{1cm} (7)

where, the normalization factor \(\sqrt{\frac{2}{N}} \) gives rise to \(E \{ T(t) T^*(t) \} = 1 \), \(N_t = N / 4 \).

\(i = \sqrt{(-1)} \), \(\beta_n = \pi \frac{n}{N} \) is phase, \(\theta \) is initial phase that can be randomized to provide different waveform realizations and \(x_n = u_n \cos(\alpha_n) \) is the doppler shift. Dent’s model successfully generates uncorrelated fading waveforms thereby simulating a Rayleigh multi-path air channel.

4. MAXIMUM LIKELIHOOD (ML) DECODING

At time \(T \), four elements in the \(t \text{th} \) row of \(C \) are transmitted from the four transmit antenna. The codeword matrix is given as

\[C = G \begin{pmatrix} s_1 \ s_2 \ s_3 \ s_4 \end{pmatrix} \] \hspace{1cm} (8)

Since, the four given symbols are transmitted in four time slots, this gives the code rate of 1. The ML decoding matrix for QOSTBC is given as,

\[\min_{s_1, s_2, s_3, s_4} \{ H^H C^H C H - H^H H r - r^H C H \} \] \hspace{1cm} (9)

After simple calculations, ML decoding amounts to minimizing the given sum [4],

\[f_{14}(s_1, s_4) + f_{23}(s_2, s_3) \] \hspace{1cm} (10)

where,

\[f_{14}(s_1, s_4) = \sum_{n=1}^{M} \left(|s_1|^2 + |s_4|^2 \right) + \sum_{n=1}^{4} |\alpha_{n,n}|^2 \]

\[+ 2R \left(-\alpha_{1,n}^* r_{1,n} - \alpha_{2,n}^* r_{2,n} - \alpha_{3,n}^* r_{3,n} - \alpha_{4,n}^* r_{4,n} \right) s_1 \]
\begin{equation}
+ \left\{ -\alpha_{4,m}^* r_{1,m}^* + \alpha_{3,m}^* r_{2,m}^* + \alpha_{2,m}^* r_{3,m}^* - \alpha_{1,m} r_{4,m}^* \right\} s_4 \right\}
+ 4R\left\{\alpha_{1,m}^* - \alpha_{2,m}^* \alpha_{3,m} \right\} R\left\{s_4^* \right\} \tag{11}
\end{equation}

and,

\begin{equation}
 f_{23} (s_2, s_3) = \sum_{n=1}^{N} \left\{ |s_2| + |s_3| \left\{ \sum_{v=1}^{4} |\alpha_{v,n}| \right\} \right\}
+ 2R\left\{-\alpha_{2,m}^* r_{1,m}^* + \alpha_{1,m}^* r_{2,m}^* - \alpha_{4,m}^* r_{3,m}^* + \alpha_{3,m}^* r_{4,m}^* \right\} s_2
+ \left\{ -\alpha_{3,m}^* r_{1,m}^* - \alpha_{4,m}^* r_{2,m}^* + \alpha_{1,m}^* r_{3,m}^* + \alpha_{2,m}^* r_{4,m}^* \right\} s_3
+ 4R\left\{\alpha_{2,m}^* - \alpha_{1,m}^* \alpha_{4,m} \right\} R\left\{s_2^* \right\} \tag{12}
\end{equation}

From, the above calculations symbols are independent and ML decoders decode the symbols separately.

5. SIMULATION RESULTS

In this paper, the simulation parameters used throughout in this work are listed out in Table 2. Results are then plotted and discussed using these simulation parameters.

5.1. SIMULATION PARAMETERS

Simulation parameters are shown MIMO space time block coding system given in figure 1. are listed in table 1.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No. of transmitters</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>No. of receivers</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Max. Doppler shift(fm)</td>
<td>200Hz</td>
</tr>
<tr>
<td>4</td>
<td>Sampling frequency(fs)</td>
<td>8000Hz</td>
</tr>
<tr>
<td>5</td>
<td>Career modulation</td>
<td>BPSK,QPSK,16QAM</td>
</tr>
<tr>
<td>6</td>
<td>Bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>7</td>
<td>Sampling time(ts)</td>
<td>1/fs</td>
</tr>
<tr>
<td>8</td>
<td>No. of Doppler shift(N)</td>
<td>8</td>
</tr>
</tbody>
</table>

5.2. RESULTS

The simulation parameters used throughout in this work are listed in Table 1 and 2. Results are then plotted and discussed using these simulation parameters. The simulation result is conducted in MATLAB. In this we will make comparison of performance of rotated QOSTBC with rotated QOSTBC using dent model. Results with different modulation techniques is plotted for
BER with SNR. The modulation technique used is BPSK, QPSK and 16-QAM with rotation of $\pi/2, \pi/4$ and $\pi/4$ respectively for transmission of 1.5 bits/s/Hz. In figure 2 and figure 3, BER performance is better using BPSK as compared to QPSK and 16-QAM. Figure 4 shows the comparison of quasi and rotated quasi OSTBC with BPSK modulation, it is clearly observed that rotated quasi OSTBC gives better result when compared to quasi OSTBC. As it is clear from the figure by employing 4 transmitting antennas system performance is enhanced.

![BER for QOSTBC system in dent mobile radio channel](image)

Figure 2. BER for Quasi-OSTBC system with dent channel model

6. CONCLUSION

In this paper, we studied MIMO system performance under mobile radio channel using dent model. Further, system performance is compared with three different modulation techniques and system with BPSK modulation gives better result as compared to other modulation techniques. Quasi orthogonal space time block coding provide code rate of 1 and rotated quasi orthogonal space time block coding provide full rate and full diversity system with simple decoding technique. Maximum likelihood (ML) decoding reduces the decoding complexity of the system and enhances the system performance. It is clearly observed that the system performance enhances using dent channel model.
Figure 3. BER for rotated quasi-OSTBC system with dent channel model

Figure 4. BER for rotated quasi and quasi OSTBC system with dent channel model
REFERENCES

Authors

Ms. Priyanka Mishra received her M.Tech degree in Electronics and Communication Engineering degree from Jaypee University of Information Technology, Solan in 2012 and received her B.Tech degree from BBS College of engineering & technology in 2009. Currently, she is working as Assistant Professor in Electronics and Communication Engineering department in the United Group of Institutions, Allahabad. Her area of interest is Wireless communication, data communication, MIMO technologies and wireless 4G communication.

Mr. Rahul Vij received his B.Tech degree from GGSCET, Talwandi Sabo, Bathinda under PTU, Jalandhar in May, 2008 and received M.Tech degree from Jaypee University of Information and Technology, Solan in 2012. He worked as a Lecturer in ECE department in Eternal University, Baru Sahib, Distt. Sirmour, Himachal Pradesh. Currently, he is working as Asst. Professor in ECE department in L.R Institute of engineering and technology, Solan, Himachal Pradesh. His area of interest is MIMO Technologies, Digital electronics, Analog electronics, semiconductor devices and Wireless Communication.

Mr. Gurpreet Singh received M.Tech degree in Electronics and Communication Engineering degree from Jaypee University of Information and Technology, Solan in 2012 and received B.Tech degree from Lovely Institutes of Technology in Electronics and Communication Engineering from Lovely Institutes of Technology, Phagwara in 2010 with distinction. Currently, he is working as a Assistant Professor in Shaheed Bhagat Singh State Technical Campus, Ferozpur, Punjab. His area of interest is signal processing, MIMO, Wireless Mobile Communication Engineering, high speed digital communications and 4G Wireless Communications.

Mr. Gaurav Chandel received his M.tech degree in VLSI Design from ABV-IIITM, Gwalior(M.P.) in 2011 and received B.tech in Electronics & Communication Engineering from ITM University, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal in 2008. He worked as Lecturer in Electronics and Communication Engineering Department at Institute of Engineering Science & Management (IESM), Indore (M.P.), from July-2008 to June-2009, he also worked as an Assistant Professor in Electronics and Tele-communication Engineering Department at G L Bajaj Group of Institutions, Mathura (U.P) and at College of Engineering Roorkee (COER), Roorkee. Currently, he is working as a Asst. Professor in United Group of Institution, Allahabad. His area of interest are VLSI technology, Digital Signal Processing, linear integrated circuits, signal & system, Network Analysis and Control Engineering.