
International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

DOI : 10.5121/ijwsc.2011.2101 1

EXTENDING WS-CDL TO SUPPORT REUSABILITY

Farhad Mardukhi, Naser NematBaksh

and Kamran Zamanifar

Department of Computer Engineering, Isfahan University, Isfahan, Isfahan
{Mardukhi, Nemat, Zamanifar}@eng.ui.ac.ir

ABSTRACT

WS-CDL is a very rich language that is specially designed to describe choreography of services.

However it is very poor to adopt reusability mechanisms for making the choreography easy to design and

confident to use. The main challenge is that there is no mechanism to make a reusable sub choreography

which is able to expose an interface. Therefore, it is impossible to inject variables like exception variables

from performing choreography into performed sub choreography.

In this paper, a complex element namely Template is added to WS-CDL making it more adequate to

support reusability. A template is an abstract definition of an interaction pattern which is appeared

frequently through a family of business services choreographies. The paper is also details how to use the

template as black box in main choreography including assigning the variables to template interface

parameters. We enhanced meta model of WS-CDL by adding template related elements, then produced a

simple engine that loads the our enhanced meta model of WS-CDL, the file paths of main and template

choreographies and automatically generate an output file includes a compiled choreography code

expressed with standard WS-CDL.

KEYWORDS

Web service, Choreography, Reusability, Interaction Pattern, Template

1. INTRODUCTION

Service-oriented architecture (SOA) is a new modern paradigm for developing distributed

software systems. Each system is composed of a set of independent and interoperable entities

namely Web services. Web Services are software components that provide self-contained

functionality via Internet-enabled, interoperable interfaces for their clients in stateless

communications.

A Service oriented system is usually large-scale and complex resulting in high development

cost, low productivity and usually high risk to develop [2]. The most promised solution for this

problem in software engineering is reusability [14]. Though, the SOA is defined on the basis of

some main concepts in which reusability is one, this concept is not supported at all levels of

SOA standard stack as well.

Each Web service behaves as a reusable block box entity that provides its functionality through

its interface. The interface of a Web service is published as WSDL
1
 [16] in UDDI

2
 repository.

The client invokes the computing ability of a service when it knows about its capabilities when

parses WSDL. Invocation of single Web service is a simple interaction scenario however

complex multi party interactions will be appeared when a numbers of services corporate to

make a composite application (service). A simple interaction with a service (service invocation)

actually is a type of reuse which is handled in current SOA standard stack; however the

reusability of complex interaction among services is not supported [1,6]. In other words, the

1 . Web Service Definition Language
2 . Universal Description Discovery and Integration

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

2

functionality interface of a Web service is easily reused in current SOA standards; however the

reuse of interactional (behavioral) interface of a Web service taking part in a corporation is not

resolved. This paper regards to this issue in multi-party interactions among services entitled as

service choreography.

The concepts of choreography come into regard when two or more parties wish to embed

complex long-running multi-party interactions within their corporations [4]. Choreography

defines the sequence of dependencies between interactions between multiple parties in order to

implement a business corporation comprising multiple web services. W3C define choreography

as a view which covers collaborative process involving services where their interactions are

described from a global perspective [4,9]. From this view, WS-CDL
3
 is a known and standard

language supported by W3C. It is a work-flow based language which describes the interactions

and their dependencies to establish choreography.

In several related researches, the reused interactions are known as interaction patterns [1,7,12].

Each interaction pattern describes a problem which occurs over and over again in

collaborations, and then describes the core of the solution to that problem. Interaction patterns

today play key roles for developing high quality software systems:

• Reduce a component's dependence on its environment by defining interaction protocols

between components separately from the components themselves. Specify these

interactions in terms of abstract interfaces, and implement components to communicate

with each other through them.

• Avoid poor design of interaction protocols between collaborating components. Poor design

of interactions can lead to unwanted behavior and internal dependencies that complicate

system architecture. Interaction patterns

• Make the systems to be evolved accord to requirement changes.

This work is going to bring the interaction patterns into choreography of services, here WS-

CDL. This goal will be met when two corresponding questions is addressed; how to define an

interaction pattern and how to be reused it, both in WS-CDL syntax style.

In WS-CDL, there is a tag entitled as Perform used to execute a separate choreography through

the main choreography. This feature only calls an independent choreography at a specified point

of main choreography process. Comparing with interaction pattern concept, performed

choreography in WS-CDL lacks capabilities expected for reusability; hence it is not true to call

it as an interaction pattern. Because it does not support even the minimum requirements needed

for developing and reusing interaction patterns. For example, there is no a way to parameterize

the performed (reused) choreography.

2. BASIC CONCEPTS AND PROBLEM STATEMENT

Service oriented applications are usually leveraged in distributed computation environments

which face several complexities like heterogeneity, dynamism and uncertainty conditions of

environment and user requirements [15]. Such complexities define key requirements for service-

oriented applications. The main requirement is development of independent and reusable

entities which are able to interoperate and compose. The reusable elements of a service oriented

application can be divided into three main categories in accordance with the architecture of

SOA (figure 1):

 (1) Computation Patterns: A computation pattern collects a set of functions delivered on its

interface.

 (2) Composition Patterns: A Composition pattern controls the computation elements to play

correctly in a composition. A composition pattern is a pattern of data and control flow

among computation patterns. These patterns are two main types: Workflow Patterns and

3 . Web Service Choreography Language

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

Interaction Patterns [5,11]

sequence of tasks. The later describes an abstract interaction protocol among services.

 (3) Management Patterns: A management pattern

rules derived from human knowledge to manage and configure the runtime

components.

Figure 1. Pattern Types relative to SOA architecture

This work targets to develop

interaction pattern in choreography of services.

business collaboration as a known term, service choreography.

works, inspired from [4,9] and also the level of choreography abstraction defined in W3C

specification [8], defines a set of independent roles and their interaction behaviors.

Choreography is discussed from two points of views: public and local.

choreography is a centralized abstract process basically that d

services which collaborate to obtain a common goal

is decentralized processes amongst the participants that describes interaction

service taking part in choreography.

choreography from public view

describe the choreography from local perspective.

2.1. TEMPLATES AND APPLICATIONS

Template is an abstract structure which is often used to provide a blueprint or an outline for

concrete structures. In this work, a template describes an abstract choreography to explain a

generic conversation among services

interaction protocol appeared in a business domain.

developing software systems which some cases

1) Standard business Processes

through deferent business

many businesses. The payment process is

through consumer business

template while developing processes

designed by an expert in figure 2.a and two different businesses

applications by mapping

exception handling logics)

Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

[5,11]. The former describes the frequent abstract process including a

sequence of tasks. The later describes an abstract interaction protocol among services.

A management pattern is usually expressed by high level

rules derived from human knowledge to manage and configure the runtime

Pattern Types relative to SOA architecture

This work targets to develop a mechanism namely template aids us to develop and

ion pattern in choreography of services. We point to interaction of services through

business collaboration as a known term, service choreography. Choreography in view of this

] and also the level of choreography abstraction defined in W3C

specification [8], defines a set of independent roles and their interaction behaviors.

Choreography is discussed from two points of views: public and local. In public perspective,

is a centralized abstract process basically that describes observable behaviors of

services which collaborate to obtain a common goal and from local point of view, choreography

is decentralized processes amongst the participants that describes interaction behavior of each

service taking part in choreography. WS-CDL is a known and standard language to describe the

from public view and BPEL4Chor[16] and WSMO[17] are two famous

describe the choreography from local perspective.

AND APPLICATIONS

Template is an abstract structure which is often used to provide a blueprint or an outline for

concrete structures. In this work, a template describes an abstract choreography to explain a

generic conversation among services and provides a designed solution to address similar

interaction protocol appeared in a business domain. Templates are applied to various areas for

s which some cases are followed.

Processes: There are many standard processes which can be used

business scenarios. For example, the payment process can be used in

The payment process is developed as a template which can be adopted

consumer business processes. They have to inject associative instances into

while developing processes. Figure 2 shows this issue where a template is

designed by an expert in figure 2.a and two different businesses customize

mapping their instances (service end points, information types,

exception handling logics) to template interfaces (figure 2.b and 2.c).

Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

3

abstract process including a

sequence of tasks. The later describes an abstract interaction protocol among services.

is usually expressed by high level pattern of

rules derived from human knowledge to manage and configure the runtime behavior of

a mechanism namely template aids us to develop and use

We point to interaction of services through

Choreography in view of this

] and also the level of choreography abstraction defined in W3C

specification [8], defines a set of independent roles and their interaction behaviors.

In public perspective,

escribes observable behaviors of

and from local point of view, choreography

behavior of each

CDL is a known and standard language to describe the

are two famous that

Template is an abstract structure which is often used to provide a blueprint or an outline for

concrete structures. In this work, a template describes an abstract choreography to explain a

a designed solution to address similar

various areas for

here are many standard processes which can be used

can be used in

which can be adopted

instances into

Figure 2 shows this issue where a template is

customize it for their

ces (service end points, information types,

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

4

Figure 2. Applying a template on two business cases

2) Implementation of Patterns: like other software architectures, SOA has its own

patterns. They are classified into two categories, workflow patterns [4,8,2] and

interaction patterns [5,2]. In this work, templates are specified as assistance for

creating interaction patterns.

3) Discovery a specified choreography for displaying a required service behavior

from a repository is an interesting application of templates. This requirement has

not deal with yet in SOA. It is like service discovery, but the search items are

service behavioral interface not service functionality interface. Figure 3 shows

this application. Suppose a party is playing a role in choreography like CH1. He

needs some services to accomplish its works. He sends its request to a directory

and receives a list of candidate choreographies. After selecting more suitable

one, he retrieves its role Interface from selected choreography, as a service

consumer. Then he injects its own instances into retrieved Interface via a

Mapping element. Actually CH1 uses CH2 as a Template. Figure 20 depicts this

scenario.

Figure 2. The repository of Service Choreography (Behaivor)

4) Templates can be used in Software Product Line (SPL) techniques to create more

reusable services and functions [14]. SPL is a bunch of techniques to predict reusable

parts in software. It could improve software maintenance, software quality and decrease

software cost and times. Templates are very suitable facilities to implement predicted

reusable parts.

5) There are a lot of unpredictable changes in service oriented applications especially

within composition layer. Thus, a choreography model must be dynamic to be able to

adapt itself against those changes. WS-CDL structure is not rich enough to support this

requirement. The choreography is given dynamic structure when equipped by templates.

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

5

Of course, the template is not only and albeit complete way to make a dynamic

choreography model.

2.2. WS-CDL AND REUSABILITY

This work focuses on WS-CDL because it is the most productive and popular language for

defining the choreography and being used widely both in research and industrial projects.

However, some problems are not addressed by WS-CDL as well. For example, WS-CDL has a

static work-flow based structures and it is not possible to alter its parts during run time. The

choreography in WS-CDL outlined in two main parts: package and choreography. The package

part is a static view to choreography and declares the data types, variables, channel type, role,

relationships, and so on. The process of choreography during life time is depicted at

choreography part [5,9].

Also, the reusability of predefined elements of choreography is addressed very poorly in WS-

CDL. This later problem is an important problem when addressed can help address first problem

too[12].

Standard WS-CDL has introduced a structure namely “Perform activity” to use of external or

internal sub choreographies. A main choreography calls sub choreography just as an

independent choreography by performs activity. There is no ability to transfer data through the

interface of sub choreography. This ability of WS-CDL is very simple and it is very far from the

capabilities expected for reusability; some of weaknesses are below:

This language’s documents [9] haven’t said any things about reusing of some elements such as

Exception Blocks , Finalizer Blocks and Variable Definitions within performed sub

choreographies. This could be a notable weakness. Because performed choreography has to

again define some static elements like RoleTypes, Information types and Channel Types, but

they are package level elements and defining them through choreography part is inflexible. In

this reason, sub choreographies face problems when intending to share several elements.

A possible objection to define a new extension, template, is “why have we tried to introduce a

new extension instead of improving and extending Perform activity?” Firstly, as a general

solution, the WS-CDL designers declared that defining new extensions for handling new

requirements is preferable than altering standard format of its elements [9]. Secondly, on the

basis of choreography definition the Perform activity element is used for running an instance of

a called choreography at a particulate point. This is very different from those requirements the

interaction patters follow. The interaction pattern is going to make the choreography easy to

design. Beyond these reasons, suppose that the Perform activity element is extended to support

reusability. In this situation, Perform activity must substitute all elements of performed

choreography interface by corresponding elements of host choreography. When the performed

choreography is defined within a package out of host choreography, the host must be aware of

all shared data between its enclosed package and the package encompasses the performed

choreography (figure 3).

For example CH2 which is included in a package entitled ExternalPackage uses RoleType1,

ChannleTypes1 and Relationship type. These types must be informed to host choreography,

CH1. It means that Relationship1 must be a connection between true roleTypes which are

shared between CH1 and CH21.

This situation is against “loosely coupling” as a fundamental principle in SOA. According to

this principle, “services must be designed to interact without the need for tight and cross-

service dependencies [8,12]”.

To resolve this problem we should prepare a new mechanism to inject necessary instances (e.g.

RoleTypes, Relationships etc) into performed choreography so that performed choreographies

can be designed independent of host choreographies. This new mechanism in this work is called

mapping when a Template is used.

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

6

Figure 3. CH1 has to be aware of used elements by CH2

 2.2. REUSABLE CHOREOGRAPHY DESIGN: OUTLINED PROCESS

In a usual development process for making a service based application, firstly the choreography

process is designed, then each party of choreography must designed own behavior interface

manually or automatically derived from choreography. The behavior interface of each party

should be complement with internal behavior of a service to access to internal resources.

Currently, the BPEL
4
 is promised language to implement the behavior of a party. After

generating the BPEL of each party, it is executed by orchestration engine like BizTalk,

ActiveBpel etc. This works targets to bring the benefits of reusability into choreography design

phase.

Reusability in choreography means developing mechanisms to design the choreography as a set

choreography templates and reuse them during the design of next choreographies.

Choreography template is an interaction pattern (protocol) which is appeared frequently among

a family of business process.

For example, a credit card validation needs usually a common interaction scenario between the

bank party and card owner. Therefore, the interactions among the card owner and bank are

modeled as a template.

Figure 4. The outlined process of Template-enabled Choreography design

3 TEMPLATE STRUCTURE

4 . Business Process Execution Language

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

7

The Template is organized at three main parts as below. Template exposes its capabilities

through Interface. Entrance is to initialize and check preconditions before Template being used,

and internal contents of Template are declared within Body section.

Template = Interface1 + Entrance0..1 + Body1

Accord to above equation, for each Template there is just one Interface and one Body and

Entrance is optional part. Template is taken in host choreography by a new defined

extension:UseTemplate. UseTemplate has a Mapping sub element to inject necessary instances

from host choreography into the Template. This issue is called with “element injection”.

3.1. TEMPLATE SYNTAX

The overall syntax for Template is shown in figure 5.a where Name attribute is an identifier,

Author and Version attributes respectively define authoring properties and Versioning of the

Template, and targetNamespace attribute defines address of a Namespace including all

necessary data schema used for defining the Template elements. The sign “?” is attached to the

parts which are optional. The figure 5.b depicts the Meta model of Template expressed by

XSD5. XSD provides an easily approachable description of the XML Schema definition

language [13].

<complexType name="tTemplate">
<complexContent>
<extension base="cdl:tExtensibleElements">
<sequence>

<element name="body" type="cdl:tBody"/>
<element name="interface" type="cdl:tInterface"/>
<element name="entrance" type="cdl:tEntrance" minOccurs="0"/>

</sequence>
<attribute name="name" type="NCName" use="required"/>
<attribute name="author" type="string" use="optional"/>
<attribute name="version" type="string" use="optional"/>
<attribute name="targetNamespace" type="anyURI" use="required"/>

</extension>
</complexContent>
</complexType>

Figure 5. a) The structure of Template b) The Template Meta model

The Template is considered as a complex type of Package in choreography. Therefore, to insert

Template as an extension into Package the figure 6 demonstrates the essential XSD.

Figure 6. The Schema of Package element of WS-CDL when Template is added

5 . XML Schema Definition, http://www.w3.org/TR/xmlschema11-2/

<complexType name="tPackage">
<complexContent>
<extension base="cdl:tExtensibleElements">
<sequence>
<element name="informationType" type="cdl:tInformationType" minOccurs="0"
maxOccurs="unbounded"/>
<element name="token" type="cdl:tToken" minOccurs="0" maxOccurs="unbounded"/>
<element name="tokenLocator" type="cdl:tTokenLocator" minOccurs="0" maxOccurs="unbounded"/>
<element name="roleType" type="cdl:tRoleType" minOccurs="0" maxOccurs="unbounded"/>
<element name="relationshipType" type="cdl:tRelationshipType" minOccurs="0"
maxOccurs="unbounded"/>
<element name="participantType" type="cdl:tParticipantType" minOccurs="0" maxOccurs="unbounded"/>
<element name="channelType" type="cdl:tChannelType" minOccurs="0" maxOccurs="unbounded"/>
<element name="choreography" type="cdl:tChoreography" minOccurs="0" maxOccurs="unbounded"/>
<element name="template" type="cdl:tTemplate" minOccurs="0 maxOccurs="unbounded"/>

</sequence>
<attribute name="name" type="NCName" use="required"/>
<attribute name="author" type="string" use="optional"/>
<attribute name="version" type="string" use="optional"/>
<attribute name="targetNamespace" type="anyURI" use="required"/>

</extension>
</complexContent>

</complexType>

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

8

3.1. 1. Template Body Syntax

The main idea of Template extension is reusability of sub workflows. Therefore, the body

section of Template should be included in dynamic structures of standard WS-CDL language

[9]. They are called activity in WS-CDL. In Figure 7 we have tBody’s schema in XSD.

<complexType name="tBody">
<sequence>
<group ref="cdl:activity" maxOccurs ="unbounded"/>
</sequence>
</complexType>

Figure 7. The XSD schema of tBody part of Template

3.1. 3. Interfaces

The Interface is the most important concept used in Template extension. Generally, interface

and inheritance are two prominent concepts for obtaining reusability especially in object

oriented systems. Interfaces are used for pattern definitions, dependency injection, loosely

coupling etc in programming techniques [5, 6]. An interface is observable view of an object.

A Template uses Interface to display its observable functions. Of course, the Interface in current

object oriented programming has more capabilities; Nevertheless Interfaces have a sort of

utilizations in this work. For example, Interface declares what elements must be mapped while

element injection or what Template is appropriate for a particular purpose.

Regard to figure 8, each interface has zero or more Elements. When a Template is being used

Interface’s elements will be mapped to real elements of host choreography. If a template has no

element to be mapped, the Interface part will be leaved empty. Each element has a unique name

inside Template. This name is also used for mapping real instances to that element. The

elementType’s values are detailed in Figure 9 encompass the statics elements within Package

and Choreography parts. TockenLocator is not included in this list, because it is not an

identified element but it is a query mechanism for selecting the Token element. Token is a

reference for a piece of data in a variable or message [4].

<complexType name="tInterface">

<complexContent>

<extension base="cdl:tExtensibleElements">

<sequence>

<element name="element" type="cdl:tElement" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="tElement">

<complexContent>

<extension base="cdl:tExtensibleElements">

<attribute name="name" type="NCName" use="required"/>

<attribute name="required" type="boolean" use="optional" default="true"/>

<attribute name="elementType" type="cdl:tInjectableTypes" use="required"/>

</extension>

</complexContent>

</complexType>

Figure 8. XSD schema for Interface

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

9

Figure 9.Acceptable elements for Package part of a Template derived from WS-CDL (The white

items are not acceptable)

The default value for required attribute is true. When an element is required within an Interface,

Template users have to map real instances of host choreography into it.

3.1.4. Entrance sub element

This element is created to initialize and check preconditions of a Template before applying.

Figure 10 depicts an overview of Entrance’s structure. This element accesses to all instances

injected into Template, and is responsible to set up the Template. It performs two main

activates: Initialization and Precondition. Firstly, Template Injector runs Initialization activity.

This part helps to setting up Template injection process. After that, all conditions in

Precondition part will be checked. When a condition evaluates to false, injecting process’s state

will be changed into Failure. Entrance is internal element for Template presents all essential

information needed to initialize and deploy the Template. Figure 11 shows how designers can

use Entrance element through a process namely injecting process to generate the final

choreography. It includes four main steps:

Initialization: This step provides the initial conditions for performing the injection process as

detailed below:

• The mapping between the instances of host choreography to parameter of Template.

• Providing the default structures as Error exception handler.

• Providing enough capabilities to instantiate the Template and making decision about

possibility of mapping all context data types (instances) to the Interface of Template.

<complexType name="tEntrance">
<complexContent>
<extension base="cdl:tExtensibleElements">
<sequence>

<element name="tStandardPackage" type="cdl:tInitialization"
 minOccurs="0"/>
<element name="tPreconditions" type="cdl:tPreconditions"
 minOccurs="0"/>

</sequence>
</extension>
</complexContent>
</complexType>

Figure 10. a) Outlined structure of tEntrance b)XSD schema of tEntrance element

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

10

Figure 11. a) The element injection process b) A hierarchal structure of Entrance element

Failure: is a step to handle raised errors. For example, any error exception during Initialization

or Precondition parts triggers this step.

Precondition: This step checks preconditions must be met to use the Template. Each

precondition is an XPath Boolean expression which declares a specified condition must be met

by host choreography. For example, the requirements of security for using the Template are

expressed in precondition part.

 <complexType name="tPreconditions">
<complexContent>
<extension base="cdl:tExtensibleElements">
<sequence>
<element name="condition" type="cdl:tCondition" maxOccurs="unbounded"/>
</sequence>
<attribute name="causeException" type="QName"use="optional"/>

</extension>
</complexContent>
</complexType>
<complexType name="tCondition">
<complexContent>
<extension base="cdl:tExtensibleElements">
<attribute name="name" type="NCName" use="required"/>
<attribute name="check" type="cdl:tBoolean-expr" use="required"/>
<attribute name="causeException" type="QName" use="optional"/>

</extension>
</complexContent>

</complexType>

Figure 13 is the schema of tEntrance type.

Deployment: The deployment is a state which the final choreography is generated and it must

be deployed on participants. The deployment can be regarded as a generating the behavioral

interface of participants from generated choreography. This step is out of this paper scope.

4.5. UseTemplate element

Last sections explained how to define Template. This section presents the mechanism to use it

within choreography. A new element, UseTemplate is added to WS-CDL for this purpose. It

syntax is shown in figure 16. Two main arribues, templateName and version, are used to

identify used Template. In spite of syntax of Perform activity in WS-CDL, UseTemplate doesn’t

have a ChoreographyInstanceID. Because ChoreographyInstanceID is a reference to an

instance of choreographies are being executed during runtime. In mapping sub element, all used

static structures in Template, have to be defined. They are defined in Interface part of

Templates.

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

11

According to the previous sections, Template’s Body consists some dynamic elements of WS-

CDL. Hence, UseTemplate element just can be used in dynamic parts of a choreography

definition. As a result, a new sub element is added to Activity group, as you can see in Figure

7.a.

<complexType name="tUseTemplate">
<complexContent>
<extension base="cdl:tExtensibleElements">
<sequence minOccurs="0" maxOccurs="unbounded">
 <element name="mapping" type="cdl:tMapping"/>
</sequence>
<attribute
name="templateName" type="NCName" use="required"/>
<attribute name="version" type="string" use="optional"/>
</extension>
</complexContent>
</complexType>

Figure 14. The syntax of UseTemplate

4.5.1 Mapping

We have a Mapping element to inject real instances of used element into a Template. Figure 15

depicted its structure.

Target element is a reference to an element within a Template that will be bound to Source one.

Then, the Source is a real instance for Target and will be injected into it. A structural exception

will be raised if type of Source element doesn’t mach to type of Target element, during

deployment time. This type is defined in element type attribute of mapping elements.

<complexType name="tMapping">
<complexContent>
<extension base="cdl:tExtensibleElements">
<sequence>
 <element name="source" type="cdl:tVariableRef2"/>
 <element name="target" type="cdl:tVariableRef2"/>
</sequence>
<attribute name="elementType" type="cdl:tInjectableTypes"
 use="required"/>
</extension>
</complexContent>
</complexType>
<complexType name="tVariableRef2">
<complexContent>
<extension base="cdl:tExtensibleElements">
 <attribute name="elementName" type="QName" use="required"/>
</extension>
</complexContent>
</complexType>
<simpleType name="tInjectableTypes">
<restriction base="string">
 <enumeration value="informationType"/>
 ……
 <enumeration value="finalizerBlock"/>
</restriction>

</simpleType> </simpleType>

Figure 15. The XSD schema of mapping element

Target element is a reference to an element within a Template that will be bound to Source one.

Then, the Source is a real instance for Target and will be injected into it. A structural exception

will be raised if type of Source element doesn’t mach to type of Target element, during

deployment time. This type is defined in element type attribute of mapping elements.

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

12

5. IMPLEMENTATION AND CASE STUDY

For realizing the Template-enabled choreography, we built a prototype to generate the deployed

choreography from host choreography that uses Template choreographies. Deployed

choreography is a compiled and error-free choreography specified with standard WS-CDL. A

snapshot of the prototype is shown in figure 16. There are three input files to the prototype. The

first file is a standard Meta model of choreography based on WS-CDL. The second is an extended

Meta model of choreography based on our extensions to WS-CDL, and third file is the source

choreography which enriched by Template (figure 17). The output file of this prototype is a final

choreography which is able to be deployed.

Figure 16. A snapshot of implemented prototype

To test the prototype, we modelled a typical Build To Order process by extended WS-CDL and save it in

a XML file. Then, this file is given to the prototype. The prototype generated the final choreography

correctly as what we had expected. The input file source code is depicted partially in figure 15.

<cdl:package

targetNamespace="http://www.cdlEtention/TemplateSample/"

name="BuyerSellerByTemplate" author="Farhad Mardukhi and Mahdi

Etehadi" version="1.0" xmlns:cdl="http://www.w3.org/2005/10/cdl"

xmlns:tns="http://www.cdlEtention/TemplateSample/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.w3.org/2005/10/cdl

D:\University\MS\PAYANN~1\Final\CDLSCH~1.XSD"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:bs="http://cdlEtention/TemplateSample/cdl/BuyerSellerExampleB

yTemplate">

<cdl:informationType name="BooleanType" type="xsd:boolean"/>

………

<cdl:informationType name="StringType" type="xsd:string"/>

<cdl:token informationType="tns:StringType" name="BuyerRef"/>

……..

<cdl:token informationType="tns:StringType" name="ShipperRef"/>

<cdl:roleType name="BuyerRoleType">

<cdl:behavior name="BuyerBehavior"/>

………

</cdl:roleType>

<cdl:relationshipType name="BuyerSeller">

…..

</cdl:relationshipType>

<cdl:relationshipType name="SellerCreditCheck">

<cdl:roleType typeRef="tns:SellerRoleType"/>

………..

</cdl:channelType>

<cdl:channelType name="Buyer2SellerChannelType">

<cdl:passing channel="tns:ToBuyerChannelType" new="true"/>

<cdl:roleType typeRef="tns:SellerRoleType"/>

<cdl:reference>

<cdl:token name="tns:SellerRef"/>

</cdl:reference>

</cdl:channelType>

…………………..

<cdl:choreography name="Main" root="true">

<cdl:relationship type="tns:BuyerSeller"/>

<cdl:template

targetNamespace="http://www.cdlEtention/TemplateSample/"

name="BarteringLoop">

<cdl:body xmlns:n1="http://www.cdlEtention/TemplateSample/">

<cdl:workunit name="BarteringLoop"

repeat="Template_barteringDone = false">

<cdl:description type="documentation">

Repeat until bartering has been completed

</cdl:description>

<cdl:choice>

<cdl:silentAction roleType="tns:SomeBuyerRoleType"/>

<cdl:sequence>

<cdl:interaction channelVariable="tns:Template_Buyer2SellerC"

name="AcceptQuoteInteraction" operation="quoteAccept">

………………………

</cdl:interaction>

<cdl:interaction channelVariable="tns:Template_Buyer2SellerC"

name="SendChannelInteraction" operation="sendChannel">

………………….

</cdl:interaction>

<cdl:assign roleType="tns:SomeBuyerRoleType">

<……………….

</cdl:assign>

</cdl:sequence>

<cdl:sequence>

<cdl:interaction channelVariable="tns:Template_Buyer2SellerC"

name="RequestNewPrice"

operation="quoteUpdate">

</cdl:interaction>

</cdl:sequence>

</cdl:choice>

</cdl:workunit>

</cdl:body>

<cdl:interface>

<cdl:element elementType="variable"

name="Template_barteringDone"/>

<cdl:element elementType="roleType"

name="Template_BuyerRoleType"/>

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

13

<cdl:relationship type="tns:SellerCreditCheck"/>

<cdl:relationship type="tns:SellerShipper"/>

<cdl:relationship type="tns:ShipperBuyer"/>

<cdl:variableDefinitions>

<cdl:variable channelType="tns:Buyer2SellerChannelType"

name="Buyer2SellerC" roleTypes="tns:BuyerRoleType

tns:SellerRoleType"/>

<cdl:sequence>

<cdl:interaction channelVariable="tns:Buyer2SellerC"

name="BuyerRequestsQuote" operation="requestForQuote">

………………….

</cdl:interaction>

<cdl:useTemplate templateName="BarteringLoop">

<cdl:mapping elementType="variable">

<cdl:source elementName="barteringDone"/>

<cdl:target elementName="Template_barteringDone"/>

</cdl:mapping>

…………………….

<cdl:mapping elementType="informationType">

<cdl:source elementName="QuoteUpdateType"/>

<cdl:target elementName="Template_QuoteUpdateType"/>

</cdl:mapping>

</cdl:useTemplate>

………………….

</cdl:choice>

</cdl:sequence>

</cdl:choreography>

<cdl:element elementType="variable"

name="Template_Buyer2SellerC"/>

<cdl:element elementType="roleType"

name="Template_SellerRoleType"/>

<cdl:element elementType="relationship"

name="Template_BuyerSeller"/>

<cdl:element elementType="informationType"

name="Template_QuoteAcceptType"/>

<cdl:element elementType="channelType"

name="Template_ToBuyerChannelType"/>

<cdl:element elementType="variable"

name="Template_DeliveryDetailsC"/>

<cdl:element elementType="informationType"

name="Template_QuoteUpdateType"/>

</cdl:interface>

</cdl:template>

</cdl:package>

Figure 17. A typical process for Building an Order described by extended WS-CDL.

6. RELATED WORKS

 Reusability is a major need for all software system. This is why now the component oriented

development is being a promised technology in this area. Though, the most current programming

language support reusability but almost able to reuse computational elements and lack reusability of

interaction (composition) elements. Interaction patterns is a related idea were introduced by some

researchers [1,8,5] to model the interactions among components via a set of generic interaction patterns.

[18] Gathered a notable number of interaction patterns appeared at often businesses. Attempts to bring the

reusability to choreography language are very low. WS-CDL as choreography standard language only

supports an activity, Perform, to call predefined sub choreography [9]. But this feature is very far from

what we expect from a real reusability mechanism.

6. CONCLUSIONS

The most promised solution for managing the complexity of modern software is reusability. Interaction

pattern is an important type of reusable entities for collaborative systems. For service oriented

applications, an interaction pattern is a generic conversation protocol between several services. Currently

in standard service choreography (interaction) languages there is a very poor structure to support

interaction patterns. For example, WS-CDL as a popular language has only a structure namely Perform

activity to run an instance of a sub choreography at run time. This is not considered as a proper structure

to bring reusability into choreography. Therefore, this work proposed a new extension, Template, to

resolve this problem. The Template is a generic definition of interaction protocol between some services.

The template displays its functions through its interface. The caller (host) choreography adopts the

Template by mapping its elements to the parameters declared at interface of Template. This mechanism

helps designers to factor the code and design the choreography easier. Also, a simple prototype was built

to generate the final choreography automatically. The final choreography is a compiled and error-free

choreography in WS-CDL which can be deployed to the participants of choreography. Making a

repository of interaction patterns, developing the interaction pattern discovery and also making the

Template more adequate are the works left for future.

REFERENCES

[1] Alistair Barros, Marlon Dumas & Arthur ter Hofstede: Service Interaction Patterns.

In Proceedings of the 3rd International Conference on Business Process Management, Nancy,

France, September 2005. Springer Verlag, pp. 302-318.

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

14

[2] M.P Papazoglou , P. Traverso, Schabram Dustdar & F. Leymann, (2007) ," Service-Oriented

Computing: State of the Art and Research Challenges", Journal of Innovative Technology for

Computer Professionals, IEEE Computer Society, November 2007.

[3] M. Etehadi, F. Mardukhi & N. Nematbakhsh, N, (2009). “A Graphical Representation for WS-

CDL Supporting Multi Levels of Abstraction”. IEEE Services Computing Conference, APSCC

2009. Asia-Pacific : 7-11 Dec. 2009.

[4] M. Barros, M. Dumas & P. Oaks. (2005),”A Critical Overview of the Web Services Choreography

Description Language (WS-CDL)”, BPTrends [Online accessed: Jan, 2011]. Available:

http://www.bptrends.com.

[5] E. Börger & B.Thalheim, (2008), “Modeling Workflows, Interaction Patterns, Web Services and

Business Processes: The ASM-Based Approach”, Proceedings of the 1st international conference

on Abstract State Machines, B and Z. London, UK, Springer-Verlag, p. 24-38. [Doi: 10.1007/978-

3-540-87603-8_3]

[6] K. Czarnecki,(1998),”Generative Programming: Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component Models”, Ph.D

thesis, Technische Universität Ilmenau, Germany.

[7] E. Stroulia & J.NG, (2009),”Service interaction patterns. Proceedings of the 2009 Conference of

the Center for Advanced Studies on Collaborative Research”. Ontario, Canada, ACM, p. 337-337.

[Doi: 10.1145/1723028.1723093]

[8] W.M. Aalst, A.J. Mooij, C. Stahl & K. Wolf, (2009),”Service Interaction: Patterns, Formalization,

and Analysis. Formal Methods for Web Services”, B. Marco, P. Luca Z. Gianluigi, Springer-

Verlag: 42-88. [Doi: 10.1007/978-3-642-01918-0_2]

[9] W3C,”Web Services Choreography Description Language Version 1.0”,(2005), W3C Candidate

Recommendation, URI= http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109, (online accessed

Dec, 2010).

[10] W3C, “XML Path Language (XPath) Version 1.0”,(1999), W3C Recommendation,URI=

http://www.w3.org/TR/xpath/ (online accessed= Nov, 2010)

[11] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst & N. Mulyar, (2006), “Workflow Control-

Flow Patterns, A Revised View”, BPM Center Report BPM-06-22 , (BPMcenter.org), (online

accessed= Nov, 2010).

[12] G. Decker & J. M. Zaha,(2006), ”Pattern-based evaluation of WS-CDL”, Queensland University,

Australia, URI=http://sky.fit.qut.edu.au/~dumas/LetsDance/WSCDLEval.pdf (accessed= Jan

2011).

[13] W3C, (2005) “WS-CDL XSD schema”, URI=http://www.w3.org/TR/2005/CR-ws-cdl-10-

20051109/#WS-CDL-XSD-Schemas (online accessed = Feb 2011).

[14] F. Mardukhi & N. Nematbakhsh, (2007), ” Engineering Practices and Guidelines to Enhance Reuse

Adequacy in Software Product Line Analysis”, SETP 2007, pp:133-140

[15] Z. Li & M. Parashar,(2006), "Enabling Dynamic Composition and Coordination for Autonomic

Grid Applications using the Rudder Agent Framework", The Knowledge Engineering Review, Vol.

00:0, pp: 1-15

[16] G. Decker, O. Kopp, F. Leymann & M. Weske, (2007), “BPEL4Chor: Extending BPEL for

Modeling Choreographies”. Proceedings of the IEEE 2007 International Conference on Web

Services, IEEE Computer Society, pp: 296-303.

[17] D. Roman, J. Scicluna, C. Feier, M. Stollberg & D. Fensel, “Ontology-based Choreography and

Orchestration of WSMO Services”, http://www.wsmo.org/TR/d14/v0.1/, (online accessed= Jan

2011)

[18] N. Mulyar, W. M.P. van der Aalst1, L. Aldred & N. Russell, (2007), Service Interaction Patterns:

A Configurable Framework”, accessed online: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.106.3612

International Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

Authors

F. Mardukhi received his B.Sc degree in Computer Engineering from Sharif University of Technology,
Iran in 1996 and Master of Sofware Engineering from University of Isfahan, Iran in 2002. Currently he
is pursuing his Ph.D degree in the Engineering Faculty og Engineer
interests include Web Service technology, Coordination problem, and adaptive software systems. He is
working on dyamic and adaptive choreography models for Web services in B2B coporation.

Dr. N. Nematbakhsh received his B.Sc degree of Science in Mathamatics from Isfahan University, Iran
in 1973 and Master of Science in Computer Science in 1978 from Worcester Polytechnic Institute, USA.
He received the Ph.D in Computer Engineering from University of Bradford, England in 1989
working as Assistant Professor in the Department of Computer Engineering, Isfahan University. His
expericed areas include Software Engineering Methods, Service Oriented Computig and Software
Realibility.

 Dr. K. Zamanifar received his B.Sc and M.
University of Tehran, Iran (1976-1985). He also received the Ph.D in Computer Science from School of
Computer Studies, University of Leeds, England in 1996. He is working as Associative Professor in the
Department of Computer Engineering, Isfahan University. He is member of Management Committee of
Computer Society of Iran and member of Iranian Association of Electrical and Electronic Enigeering.
He activated at the most conferences as member of Executiv
Parallel and Distributed Systems, Distributed Operating System, Concurrent Systems and Computer
Supported Cooperative Work.

Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

received his B.Sc degree in Computer Engineering from Sharif University of Technology,
Iran in 1996 and Master of Sofware Engineering from University of Isfahan, Iran in 2002. Currently he
is pursuing his Ph.D degree in the Engineering Faculty og Engineering in Isfahan University. His
interests include Web Service technology, Coordination problem, and adaptive software systems. He is
working on dyamic and adaptive choreography models for Web services in B2B coporation.

Sc degree of Science in Mathamatics from Isfahan University, Iran
in 1973 and Master of Science in Computer Science in 1978 from Worcester Polytechnic Institute, USA.
He received the Ph.D in Computer Engineering from University of Bradford, England in 1989. He is
working as Assistant Professor in the Department of Computer Engineering, Isfahan University. His
expericed areas include Software Engineering Methods, Service Oriented Computig and Software

Dr. K. Zamanifar received his B.Sc and M.Sc degree in Electrical and Electronic Engeering from
1985). He also received the Ph.D in Computer Science from School of

Computer Studies, University of Leeds, England in 1996. He is working as Associative Professor in the
Department of Computer Engineering, Isfahan University. He is member of Management Committee of
Computer Society of Iran and member of Iranian Association of Electrical and Electronic Enigeering.
He activated at the most conferences as member of Executive Committee. His research interests are
Parallel and Distributed Systems, Distributed Operating System, Concurrent Systems and Computer

Journal on Web Service Computing (IJWSC), Vol.2, No.1, March 2011

15

