
International Journal of Network Security & Its Applications (IJNSA), Vol.1, No 1, April 2009 

 34

  A Comparison between Memetic algorithm and Genetic algorithm   for 
the cryptanalysis of Simplified Data Encryption Standard algorithm   

 
Poonam Garg  

Institute of Management Technology, India 
pgarg@imt.edu 

  
 

      
  

Abstract 
 

Genetic algorithms are a population-based Meta heuristics. They have been successfully applied to many 
optimization problems. However, premature convergence is an inherent characteristic of such classical 
genetic algorithms that makes them incapable of searching numerous solutions of the problem domain. A 
memetic algorithm is an extension of the traditional genetic algorithm. It uses a local search technique to 
reduce the likelihood of the premature convergence.  The cryptanalysis of simplified data encryption 
standard can be formulated as NP-Hard combinatorial problem.  In this paper, a comparison between   
memetic algorithm  and genetic algorithm were made in order to investigate the performance  for the 
cryptanalysis on simplified data encryption standard problems(SDES).   The methods were tested and 
various experimental results show that memetic algorithm performs better than the genetic algorithms for 
such type of NP-Hard combinatorial problem. This paper represents our first effort toward efficient 
memetic algorithm for the cryptanalysis of SDES. 
 
Keywords Simplified data encryption standard, Memetic algorithm, genetic  algorithm, Key search space 
 
1. Introduction 
 
 This paper proposes the cryptanalysis of simplified encryption standard algorithm using memetic and 
genetic algorithm. The cryptanalysis of simplified data encryption standard can be formulated as NP-Hard 
combinatorial problem. Solving such problems requires effort (e.g., time and/or memory requirement) 
which increases with the size of the problem. Techniques for solving combinatorial problems fall into two 
broad groups – traditional optimization techniques (exact algorithms) and non traditional optimization 
techniques (approximate algorithms).  A traditional optimization technique guarantees that the optimal 
solution to the problem will be found.  The traditional optimization techniques like branch and bound, 
simplex method, brute force search algorithm etc methodology is very inefficient for solving combinatorial 
problem because of their prohibitive complexity (time and memory requirement). Non traditional 
optimization techniques are employed in an attempt to find an adequate solution to the problem. A non 
traditional optimization technique - memetic algorithm, genetic algorithm, simulated annealing and tabu 
search were developed to provide a robust and efficient methodology for cryptanalysis. The   aim of these 
techniques to find   sufficient “good” solution efficiently with the characteristics of the problem, instead of 
the global optimum solution, and thus it also provides attractive alternative for the large scale applications.  
These nontraditional optimization techniques demonstrate good potential when applied in the field of 
cryptanalysis and few relevant studies have been recently reported. 

 In 1993 Spillman [16] for the first time presented a genetic algorithm approach for the cryptanalysis of 
substitution cipher using genetic algorithm. He has explored the possibility of random type search to 
discover the key (or key space) for a simple substitution cipher. In the same year Mathew [12] used an 
order based genetic algorithm for cryptanalysis of a transposition cipher. In 1993, Spillman [17], also 
successfully applied a genetic algorithm approach for the cryptanalysts of a knapsack cipher. It is based on 
the application of a directed random search algorithm called a genetic algorithm. It is shown that such a 
algorithm could be used to easily compromise even high density knapsack ciphers. In 1997 Kolodziejczyk 
[11] presented the application of genetic algorithm in cryptanalysis of knapsack cipher .In 1999 Yaseen  
[18] presented a genetic algorithm for the cryptanalysis of Chor-Rivest knapsack public key cryptosystem. 
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In this paper he developed a genetic algorithm as a method for Cryptanalyzing the Chor-Rivest knapsack 
PKC.  In 2003 Grundlingh [9] presented an attack on the simple cryptographic cipher using genetic 
algorithm.  In 2005 Garg [2] has carried out interesting studies on the use of genetic algorithm & tabu 
search  for the cryptanalysis of mono alphabetic substitution cipher.  In 2006 Garg [3] applied an attack on 
transposition cipher using genetic algorithm, tabu Search & simulated annealing.   In 2006 Garg [4] studied 
that the efficiency of genetic algorithm attack on knapsack cipher can be improved with variation of initial 
entry parameters. In 2006 Garg[5] studied  the use of genetic algorithm to break a simplified data 
encryption standard algorithm (SDES). In 2006 Garg[6] explored the use of memetic  algorithm to break a 
simplified data encryption standard algorithm (SDES). 

2. The Simplified data encryption algorithm description  
 
The SDES [18] encryption algorithm takes an 8-bit block of plaintext and a 10-bit key as input and 
produces an 8-bit block of cipher text as output. The decryption algorithm takes an 8-bit block of ciphertext 
and the same 10-bit key used as input to produce the original 8-bit block of plaintext. The encryption 
algorithm involves five functions; an initial permutation (IP), a complex function called Kf  which 
involves both permutation and substitution operations and depends on a key input; a simple permutation 
function that switches (SW) the two halves of the data; the function Kf   again, and a permutation function 

that is the inverse of the initial permutation ( 1−IP  ). The function Kf  takes as input the data passing 
through the encryption algorithm and an 8-bit key. Consider a 10-bit key from which two 8-bit sub keys are 
generated. In this case, the key is first subjected to a permutation P10= [3 5 2 7 4 10 1 9 8 6], then a shift 
operation is performed. The numbers in the array represent the value of that bit in the original 10-bit key. 
The output of the shift operation then passes through a permutation function that produces an 8-bit output 
P8=[6 3 7 4 8 5 10 9] for the first sub key (K1). The output of the shift operation also feeds into another 
shift and another instance of P8 to produce subkey K2. In the second all bit strings, the leftmost position 
corresponds to the first bit. The block schematic of the SDES algorithm is shown in Figure 1.  

              
 

Figure 1: Simplified Data encryption algorithm 
Encryption involves the sequential application of five functions: 
 

IP 

SW 

IP-1 

IP-1

SW

IP

P10 

Shift 

P8 

Shift 

P8 

Kf

Kf

Kf

Kf

8 bit cipher text 

 8 bit plain text  

K1 K1 

K2 K2 

   Decryption 
8 bit plain text 

8 bit cipher text 

   Encryption 

10 bit key 



International Journal of Network Security & Its Applications (IJNSA), Vol.1, No 1, April 2009 

 36

1. Initial and final permutation (IP). 
The input to the algorithm is an 8-bit block of plaintext, which we first permute using the IP function IP= 
[2 6 3 1 4 8 5 7]. This retains all 8-bits of the plaintext but mixes them up. At the end of the algorithm, 
the inverse permutation is applied; the inverse permutation is done by applying, 1−IP  = [4 1 3 5 7 2 8 6] 
where we have 1−IP (IP(X)) =X.  

2. The function Kf , which is the complex component of SDES, consists of a combination of permutation 
and substitution functions. The functions are given as follows.  
Let L, R be the left 4-bits and right 4-bits of the input, then, Kf  (L, R) = (L XOR f(R, key), R) 
where XOR is the exclusive-OR operation and key is a sub - key. Computation of f(R, key) is done as 
follows. 

  1.  Apply expansion/permutation E/P= [4 1 2 3 2 3 4 1]  to input 4-bits. 
2.  Add the 8-bit key (XOR). 
3.  Pass the left 4-bits through S-Box 0S  and the right 4-bits through S-Box 1S . 
4.  Apply permutation P4 = [2 4 3 1].  

 
The two S-boxes are defined as follows:                   

 

0S                                       1S    
       

2313
3120
0123
2301

   

3012
0103
3102
3210

 

 
The S-boxes operate as follows: The first and fourth input bits are treated as 2-bit numbers that specify a 
row of the S-box and the second and third input bits specify a column of the S-box. The entry in that row 
and column in base 2 is the 2-bit output. 
 3. Since the function Kf  allows only the leftmost 4-bits of the input, the switch function (SW) 

interchanges the left and right 4-bits so that the second instance of Kf  operates on different 4- bits. In this 

second instance, the E/P, 0S , 1S and P4 functions are the same as above but the key input is K2. 

 
3.  Objective of the study 
 
Cryptanalytic attack on SDES belongs to the class of NP-hard problem. Due to the constrained nature of 
the problem, this paper is looking for a new solution that improves the robustness against cryptanalytic 
attack with high effectiveness. 
 
 The objective of the study is: 

• To determine the efficiency and accuracy of memetic algorithm for the cryptanalysis of  SDES. 
• To compare the relative performance of memetic algorithm with genetic algorithm. 
 

4. Cost function 

The ability of directing the random search process of the genetic algorithm by selecting the fittest 
chromosomes among the population is the main characteristic of the algorithm.  So the fitness function is 
the main factor of the algorithm. The choice of fitness measure depends entirely on the language 
characteristics must be known. The technique used by Nalini[13] to compare candidate key is to compare 
n-gram statistics of the decrypted message with those of the language (which are assumed known). 
Equation 1 is a general formula used to determine the suitability of a proposed key(k), here ,K is known as 
language Statistics i.e for English, [A,…….,Z_],  D is the decrypted message statistics, and u/b/t are the 
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unigram, bigram and trigram statistics.  The values of α, β and γ allow assigning of different weights to 
each of the three n-gram types where α + β + γ =1. 
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 When trigram statistics are used, the complexity of equation (1) is O(P3) where P is the alphabet 

size. So it is an expensive task to calculate the trigram statistics. Hence we will use assessment function 
based on bigram statistics only.  Equation 1 is used as fitness function for genetic algorithm attack. The 
known language statistics are available in the literature [12].  
 
5. Methodology 
 
5.1 Genetic algorithm approach 
 
The genetic algorithm is based upon Darwinian evolution theory. The genetic algorithm is modeled on a 
relatively simple interpretation of the evolutionary process; however, it has proven to a reliable and 
powerful optimization technique in a wide variety of applications. Holland [10] in 1975 was first proposed 
the use of genetic algorithms for problem solving. Goldberg [7] were also pioneers in the area of applying 
genetic processes to optimization. As an optimization technique, genetic algorithm simultaneously 
examines and manipulates a set of possible solution. Over the past twenty years numerous application and 
adaptation of genetic algorithms have appeared in the literature. During each iteration of the algorithm, the 
processes of selection, reproduction and mutation each take place in order to produce the next generation of 
solution. Genetic Algorithm begins with a randomly selected population of chromosomes represented by 
strings. The GA uses the current population of strings to create a new population such that the strings in the 
new generation are on average better than those in current population (the selection depends on their fitness 
value).   The selection process determines which string in the current will be used to create the next 
generation. The crossover process determines the actual form of the string in the next generation. Here two 
of the selected parents are paired. A fixed small mutation probability is set at the start of the algorithm. This 
crossover and mutation processes ensures that the GA can explore new features that may not be in the 
population yet. It makes the entire search space reachable, despite the finite population size.   Figure 2 
shows the generic implementation of genetic algorithm.  
 

 
Figure 2 : A generic genetic algorithm 

 
5.2 Memetic algorithm approach 

1. Encode solution space 
2. (a)  Set pop_size, max_gen, gen=0 

 (b) set cross_rate, mutate_rate; 
3. initialize population 
4. while max_gen ≥ gen 

evaluate fitness 
for (i=1 to pop_size) 
       select (mate1,mate2) 
       if (rnd(0,1)≤  cross_rate) 
               child = crossover(mate1,mate2) 
         if (rnd(0,1)≤  mutate_rate) 
               child = mutation(); 
          repair child if necessary 
 end for 
Add offspring to new generation 
Gen=gen+1 

                       End while 
        5.            return best chromosomes 
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The genetic algorithm is  not well suited for fine-tuning structures which are close to optimal solution[7]. 
The memetic algorithms [15] can be viewed as a marriage between a population-based global technique 
and a local search made by each of the individuals. They are a special kind of genetic algorithms with a 
local hill climbing. Like genetic algorithms, memetic Algorithms are a population-based approach. They 
have shown that they are orders of magnitude faster than traditional genetic Algorithms for some problem 
domains.   In a memetic algorithm the population is initialized at random or using a heuristic. Then, each 
individual makes local search to improve its fitness. To form a new population for the next generation, 
higher quality individuals are selected. The selection phase is identical inform to that used in the classical 
genetic algorithm selection phase. Once two parents have been selected, their chromosomes are combined 
and the classical operators of crossover are applied to generate new individuals. The latter are enhanced 
using a local search technique. The role of local search in memetic algorithms is to locate the local 
optimum more efficiently then the genetic algorithm. Figure 3 explains the generic implementation of  
memetic algorithm.  
 

 
    

Figure 3: The memetic algorithm 
 
5.2.1 Hill climbing local search algorithm 
 
The hill climbing search algorithm is a local search and is shown in figure 4. It is simply 
a loop that continuously moves in the direction of increasing quality value[15]   
 

 
Figure 4 :   The Hill climbing local search  algorithm 

  
6.  Result & discussions 

 
In this section a number of experiments are carried out which outlines the effectiveness of both the 
algorithm described above. The purpose of these experiments is to compare the performance of memetic 
algorithm approach with  genetic algorithm approach for the cryptanalysis of simplified SDE algorithm.   
The experiments were conducted on Pentium IV using ‘C’ language. Experimental results obtained from 
these algorithms were generated with 100 runs per data point e.g. ten different messages were created for 
both the algorithms and each algorithm was run 10 times per message. The best result for each message 
was averaged to produce data point. 
 

1. Encode solution space 
2. (a)   set pop_size, max_gen, gen=0; 

(b)   set cross_rate, mutate_rate; 
3. initialize population 
4. while(gen < gensize) 

Apply   generic GA 
Apply local search 

end while 
Apply final local search to best chromosome       

 

While (termination condition ins not satisfied) do 
            New solution ←  neighbors(best solution); 
             If new solution is better then actual solution then 
                           Best solution  ←  actual solution 
              End if 
End while 



International Journal of Network Security & Its Applications (IJNSA), Vol.1, No 1, April 2009 

 39

For each algorithm there are number of different parameters which need to varied to “fine-tune” the 
optimization process. For the memetic algorithm, the population size was set to 10; the probabilities for 
crossover and mutation were both 0.5 for all the test problems because it was the best configuration found 
empirically for the memetic algorithm. For the genetic algorithm, the population size was set to 100, the 
probability for crossover was 0.95, and the probability for mutation was 0.05 for all test problems as it was 
the best configuration found empirically for the genetic algorithm. We did not use the same configuration 
for the memetic algorithm and the genetic algorithm because it would be disadvantageous to either of them 
if the other party’s best configuration is used.   
 
Table 1 depicts the results of the memetic algorithm along with a comparison of genetic algorithm. This 
table basically compares the average number of key elements (out of 10) correctly recovered versus the 
amount of cipher text  and the computation time to recover the keys from the search space. The table shows 
results for amounts of cipher text ranging from 100 to 1000 characters. 
   

Table 1: Comparison of memetic algorithm and genetic algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figure 5,  the first point to note is that the numbers of keys obtained from both the algorithms are 
acceptable. From Table 1, it can be seen that the standard deviation values for memetic algorithm is less 
than genetic algorithm this shows that memetic algorithm has a less variance in its results. So statistically, it 
can be proved that the performance of memetic algorithm approach is slightly superior to genetic algorithm 
for the cryptanalysis of SDES. This may be because when the search technique is incorporated in GA then 
the solution space in better searched. According to the experimental results we can conclude that the local 
heuristic play an important role in GA process. Also we can say that including a high quality heuristic 
solution can help the GA to improve its performance by reducing the likelihood of its premature 
convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M e m e t i c  A l g o r i t h m G e n e t i c   A l g o r i t h m 

  

 

Amount of 

Cipher text TIME       Std.     Number  of    

  (M)            devi.             bit  matched

                                  in the key 

                                      (N) 

TIME        std.             Number  of    

  (M)         devi.           bit  matched     

                                  in the key 

                                      (N) 

100 5.1                  .4.70                            8  2.62                  4.82                      6 

200 14                  3.40                         6 4.5                  6.13                    6  

300 15.3               2.72                         5 2.13                6.01                    4  

400 12.5               2.27                         7 2.35                4.61                    6  

500 1 0                 2.16                         6 2.52                4.61                    6  

600 5.5                  1.86                          8 2.07                4.37                    7  

700 3.05                 1.73                             7 4.07               4.42                    6  

800 2.85                 1.59                            8  2.4                3.39                    8  

900 2.24                 1.56                           9 2.53                2.23                    6  

1000 2.14               .  1.49                           9.17 2.17                2.20                    8  
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Figure 5 : The Accuracy comparison  of  memetic algorithm and genetic algorithm 
 
Comparing the running time of the two algorithms, we found that genetic algorithm is not sensitive to the 
amount of cipher text.  Figure 6 clearly shows that the running time of memetic algorithm is severely 
reduced as we are increasing the amount of cipher text whereas results suggest that the genetic algorithm is 
unaffected. Genetic algorithm can be seen to be the most efficient algorithm as almost same keys is 
achieved in shorter time.  In contrast memetic algorithm is more sensitive to amount of cipher text,   for a 
large amount of cipher text the memetic algorithm can be seen outperform Genetic algorithm. It means a 
small amount of cipher text provides an insufficient search space, which memetic algorithms perform 
poorly.  However, a large amount of cipher text is having the large search space, possibly resulting 
improvement in case of memetic algorithm.  
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Figure 6: The running time comparison of memetic and genetic algorithm  
 

 
7. Conclusion 
 
In this paper we have presented a memetic algorithm & genetic algorithm approach for the cryptanalysis of 
simplified data encryption standard algorithm – A challenging optimization problem in NP-Hard 
combinatorial problem. A memetic algorithm is an extension of the traditional genetic algorithm.   It is 
based on a genetic algorithm extended by a search technique to further improve individual’s fitness that 
may keep high population, diversity and reduce the likelihood premature convergence. 
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 Our objective is to determine the performance of memetic algorithm in comparison with genetic algorithm 
for the cryptanalysis of SDES.  The first performance comparison was made on the average number of key 
elements (out of 10) correctly recovered versus the amount of ciphertext. Our experimental result shows 
that memetic algorithm is slightly superior for finding the number of keys accurately in comparison of 
genetic algorithm because search technique is incorporated in genetic algorithm and the solution space is 
better searched.   The second comparison was made upon the computation time for recovering the keys 
from the search space.  From the extensive experiments, it was found  that  genetic algorithm can be seen to 
be the most efficient algorithm as almost same keys is achieved in shorter time but in contrast for a large 
amount of cipher text the memetic algorithm can be seen outperform genetic algorithm.   Result indicates 
that memetic algorithm is extremely powerful technique for the cryptanalysis of SDES. 
 

 
6. References 

[1] Davis, L. , “Handbook of Genetic Algorithms”, Van  Nostrand Reinhold, New York ,1991. 
[2] Garg Poonam, Sherry A.M., Genetic algorithm & tabu search attack on the monoalphabetic  

substitution cipher,   Paradime Vol IX no.1, January-June 2005,pg  106-109   
[3] Garg Poonam, Shastri Aditya, Agarwal D.C, Genetic Algorithm, Tabu Search & Simulated  

annealing Attack on Transposition  Cipher   ,proceeding of Third AIMS International conference 
on management at IIMA – 2006, pg 983-989 

[4]      Garg Poonam, Shastri Aditya, An improved cryptanalytic attack on knapsack cipher using genetic 
algorithm approach,   International journal of information technology, volume 3 number 3 2006, 
ISSN 1305-2403,  145-152 

[5] Garg Poonam,  Genetic Algorithm Attack on  Simplified Data Encryption Standard Algorithm,   
International journal Research in Computing Science, ISSN 1870-4069, 2006.    

[6] Garg Poonam,  Memetic Algorithm Attack on  Simplified Data Encryption Standard Algorithm,   
proceeding of  International Conference on Data Management,  February 2008, pg 1097-1108  .    

 [7] Goldberg, D.E., “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-
Wesley, Reading, 1989. 

[8]    Giddy J. P and Safavi-Naini R., Automated cryptanalysis of transposition ciphers, The Computer 
Journal, Vol 37, No. 5,   1994. 

[9]  Gr¨undlingh, W. & van Vuuren, J. H., Using Genetic Algorithms to Break a Simple Cryptographic 
Cipher, Retrieved March 31, 2003 from http://dip.sun.ac.za/˜vuuren/abstracts/abstr genetic.htm,  
submitted 2002. 

[10]      Holland, J., “Adaptation in Natural and Artificial Systems”, University of Michigan Press,  Ann 
Arbor, 1975. 

[11]  Kolodziejczyk, J., Miller, J., & Phillips, P. ,The application of genetic algorithm in cryptoanalysis 
of knapsack cipher, In Krasnoproshin, V., Soldek, J., 1997 

[12]  Methew, R.A.J. (1993, April), The use of genetic algorithms in cryptanalysis, Cryptologia, 7(4),   
187-201. 

[13] Nalini, Cryptanalysis of Simplified data encryption standard via Optimization heuristics, 
International Journal of Computer Sciences and network security, vol 6, No 1B, Jan 2006   

[14]  P. Men and B. Freisleben, “Memetic Algorithms for the Traveling Salesman Problem,” Complex 
Systems, 13(4):297-345. 2001. 

[15]  P, Moscato, “on evolution, scorch, optimization. genetic algorithms and martial arts: toward 
memetic olgorithms“, Technical report, California, 1989. 

[16]  Spillman et. al., Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers, 
Cryptologia, 17(1):187-201, April 1993.  

[17]  Spillman R.,Cryptanalysis of knapsack ciphers using genetic algorithms. Cryptologia, 17(4):367–
377, October 1993. 

[18]  Schaefer E, A simplified data encryption standard algorithm, Cryptologia, Vol 20, No 1, 77-84, 
1996. 

[19] Yaseen, I.F.T., & Sahasrabuddhe, H.V. (1999), A genetic algorithm for the Cryptanalysis of Chor-
Rivest knapsack public key cryptosystem (PKC), In Proceedings of Third International 
Conference on Computational Intelligence and Multimedia Applications, pp. 81-85, 1999 

 



International Journal of Network Security & Its Applications (IJNSA), Vol.1, No 1, April 2009 

 42

 
 
 
Dr. Poonam Garg is an Associate Professor and Chairperson IT Infrastructure at IMT, 
Ghaziabad, India. Dr. Garg’s current research interests are in the area of developing heuristics 
and meta-heuristics particularly Genetic Algorithm, Tabu Search and Simulated Annealing based 
meta-heuristic for various optimization problem such as cryptanalysis of various encryption 
algorithms, scheduling and project management.     
 
Dr. Garg received her M.C.A.  degree in 1991 and Ph. D. Degree in 2006 in Cryptology from 
Banasthali Vidyapith (Now it is Banasthali University), Rajasthan, India. She is a   Cisco 
Certified Network Associate Instructor. 
 
Dr. Garg has 17+ years of experience in teaching, research and consulting. Her teaching interests 
are in Cryptology, Network Security, Information Security, Data File Structure, Networking 
concepts & planning, Wireless Networks, Programming Languages and Project Management. She 
has conducted large number of Management Development Programs for middle and senior level 
management in public and private sectors.  She has about 25 papers in different journals and 
conferences, and has four edited books. She has served many International Conferences as a 
conference cochair, conference track chair and members of program committee.  She can be 
reached at pgarg@imt.edu. 
 


