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ABSTRACT 

We propose a multi-party quantum key distribution protocol which enables all the receivers can convert 

their respective private shared key into common secret key without use of entanglement. The main 

component of our protocol is a simple post quantum scheme for achieving the higher secret key rate. 

Efficiency of the extracted key rate is almost 100%. We assume that sender established the pre-shared 

private secret keys and a common secret number with the receivers. Our proposed scheme sends n strings 

of number to n receivers in the public channel to convert their respective shared secret key into common 

secret key in the presence of Eve. We also analyze the complexity of attack by the adversary to guess the 

secret key.  
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1. INTRODUCTION   

Communication security is become a critical aspect of today’s hi-speed world. Today’s 

transmission security relies on the unproven computational security. There have been so many 

intrigue researches on providing better security. Under the Quantum Information Science (QIS), 

quantum cryptography (QC) researches promise to provide the unconditional security. QC 

protocols are relied on the principles of quantum mechanics or laws of nature. From the ground 

breaking research from Bennet and Brassard [1] until recent second generation QC called QLE-

1, QC undergoes various changes and an active target for both code developers and code 

breakers. QC consist of various domains i.e. quantum key distribution (QKD), quantum secret 

sharing key (QSSK), quantum authentication and so on. QKD is one of the matured fields in 

QIS. There have been many researches on QKD attributes include environment, hardware, 

encoding methods, algorithms to achieve low cost and efficient key distribution system. 

Multiparty QKD (MQKD) is a key distribution protocol in which the same key is distributed to 

different parties using quantum mechanism. In the jargon of digital cryptography, MQKD can 

refer as a conference key distribution protocol (CKDP) establishes a common key among a 

number of users forming a conference. To achieve the practical feasibility and simplicity in 

MQKD is the hot research.  In the history of QC after the QKD research, QSSK is much 

concentrated work because it aligns with nature of quantum mechanism. In other words, we can 
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refer as stochastic or non-deterministic nature. While for MQKD or conference key is much 

lesser than compare to QSSK. Most researches have used entanglement property to achieve 

multiparty system. 

The aim of this paper is to propose a simple protocol without use of entanglement to achieve 

high efficient key rate and attack resilient MQKD. 

2. RELATED WORKS 

Fundamentally, QC protocols can be classified into two major kinds’ namely single photon and 

entangled photon. Furthermore teleportation, quantum computer and other derivatives of 

quantum mechanics family supports development of QC protocols. Entanglement based 

protocols are still in state-of-art while fainted laser or single photon concept protocols have been 

presented in the market since some solid years. 

The main goal of this paper is to achieve MQKD without use of entanglement. Therefore, we 

have only a small recap on the entanglement based protocols. The entanglement has different 

states like Einstein-Podolsky-Rosen (EPR) and Greenberger-Horne-Zeilinger (GHZ) and 

Calderbank-Shor Steane CSS). Cabello extended his entanglement swapping concept for 

MQKD and QSSK [2]. His protocols are efficient in both data transmission and eavesdropper 

detection. However, the protocol is impractical due to difficult in differentiation of complete 

Bell state and GHZ. Hong et al. proposed an enhanced MQKD using entanglement swapping 

and a distributor [3]. Nishioka  expressed the possibility of constructing multiparty architecture 

by extending one to many link architecture and looped networks [4]. He demonstrated circular 

type interferometer system for two parties.  Zeng et al. proposed group of key establishment 

protocols suitable for small or medium-sized groups by using semi-trusted servers [5]. Some of 

the protocols are able to achieve authentication among the groups.  Sing et al. presented a 

MQKD using EPR and group theory [6]. They proves unconditional security using mechanism 

of bipartite key distribution and also convert the n-KD problem into 2-KD. Ramzan et al. 

proposed a MQKD protocol  using GHZ sate and decoding matrix [7]. They also proved the 

security in the presence of Eve with intercept and resend attacks. Nihira et al. proposed two 

parties with multi-level using mixed entangled state generate a secret key by taking advantage 

of residual entanglement of the reduced density matrix [8]. This protocol also explained the 

practical realization of photon orbital angular momentum. Chen et al. utilized wide class of 

distillation schemes for multi-partite entangled states that are CSS-states and bipartite graph [9]. 

They also highlighted the actualization.  

As a prior relevant research, Matsumoto proposed a first protocol without use of entanglement 

to achieve MQKD which enables three parties agrees at once on a shared common random bit 

strings in presence of eavesdroppers [10]. The main difference between proposed protocol and 

Matsumo’s protocol is that proposed protocol allows n parities to share a common secret key 

after the establishment of secret key among the parties. Furthermore our protocol utilizes one 

way public communication (post processing) to share a final secret key. Here, Matsumoto’s 

protocol requires three way post processing effectively. All the parties are required participate in 

the calculation. On contrast, our proposed protocol needs only the sender to transmit a public 

message to the parties. As long as, the public channel is authenticated and unedited by Eve then 

our proposed protocol proves unconditional security. Moreover we use simple post-processing 

technique to share a common secret key among the parties. The disfavour of our protocol, all 

parties are required to establish a secret key among the parties. However, proposed protocol is 

higher efficiency in terms of extract common secret key. Our protocol has the feature which 

allows using the same key repeatedly and differently. 
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3. MOTIVATION 

One of the deficiencies of the QC protocols is not deterministic. On the other hand, this 

stochastic nature is the center of providing unconditional security. Sending efficiently the same 

data to different users by using quantum protocols is still challenging goal to the researchers.  

To achieve a higher key rate MQKD using simple algorithm without entanglement, one-way 

public communication and resilient to sophisticated attacks are our motivation. To accomplish 

this task, we propose a protocol in this paper as a first of many steps. So far, QKD can establish 

secret key between the parties. Is there any way to convert the shared secret keys into common 

secret key in the presence of Eve? We would like to answer this question by following puzzle 

game. 

This is a multiplayer puzzle game. Players are organized as team. Each player in the team is 

given with a row matrix of 0’s and 1’s in a random order. The aim of the game is to find out 

first team is able to convert their players’ different matrix into common matrix. The rules of the 

game are players are not allowed to discuss the value and the team members are not allowed to 

view other members’ matrix except the leader. Each team leader has got an equal time to see 

their players’ matrix. After the time over, leader are separated, they have to give voice 

commands about the position or index of the matrix to his team players for converting their 

respective matrix into common matrix. How it would be possible? 

Firstly, leader has to determine the common secret matrix’s elements arrangement or order of 

0’s and 1’s in a row matrix. This can be done by two ways; first, he can create a new matrix or 

simply use his given matrix as a common matrix.  The secret of success is the memory power of 

the leader, if he able to remember his team members’ matrix then it is a simple game. For 

example, the leader matrix’s index n contains value 0. He also knows his team players’ matrix 

index n
th
 value. Suppose one of his player got value 1 in the nth index of the matrix. Leader 

simply gives a command which is the position or index of the matrix to the specific player. The 

corresponding team player understands that the particular matrix element position should 

change to 0. Indeed, it is a matrix with binary elements i.e. 0’s and 1’s. For the players who got 

their nth index value 0 then leader has no need to give any command on that position to the 

team players. Using this same strategy, leader able to convert all his team members’ matrix into 

common matrix under the assumption of leader knows exact values of all matrices. 

Let us map this above game to multiparty environment scenario and each party’s shared secret 

key with the sender as player’s matrix in the game. Sender can view as a leader and the 

receivers can regard as team players. Sender established a shared secret key with each user. In 

the game scenario, leader knows the matrix of the other players and gives voice command to 

convert. Likewise, sender creates a common secret key and gives commands to the player to 

convert their respective private shared secret keys into common secret keys.  

Let us evaluate difficulty of eavesdropping in the above puzzle game. The only information for 

converting into common matrix is voice commands given by the leader to his respective team 

players. This command is just a position of matrix. Eve tries to hear all the commands and guess 

the matrix. As long the players’ matrices are secret, Eve has to try all possibilities for matrix 

size and sequence of matrix’s elements. Additionally, leader can give some false commands like 

imaginary matrix’s index to confuse eavesdropper and easy to differentiate by his team player. 

 To achieve an efficient MQKD, we apply the concept of the above puzzle game. This can be 

done by transforming the shared secret keys between sender and receiver into group of matrices 

and inform the positions or indices for converting their shared keys into common secret key. 

Sender includes fake index and imaginary matrices in the information to confuse the Eve. As far 
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as shared secret key and matrix information are fully secret, it is subtle for Eve to determine the 

information about key even she computationally strong. To increase the complexity of 

mechanism we convert the one dimensional key into square matrix format (two dimensions). 

Hence, without the knowledge of secret key and matrix size, for the Eve would be difficult to 

guess the correct key exactly like eavesdropping in the puzzle game. 

4. PROTOCOL DESCRIPTION 

This section introduces our proposed protocol. Section 4.1 explains the assumptions of the 

proposed protocol. Section 4.2 illustrates the protocol’s components or functions. The detailed 

sequence of proposed protocol is presented in section 4.3 and a three-party environment 

protocol setup is demonstrated as an example of proposed protocol in section 4.4. 

4.1 Assumptions 

Each party has point-to-point quantum channel or private channel to other parties and a common 

public channel. Quantum channel can be eavesdropped and modified by adversary or Eve while 

public channel’s message can be eavesdropped but cannot be modified by Eve. These 

assumptions are pointed in Ref. [10]. In our proposed protocol, additional to the above 

assumptions, we have some more assumptions which are elaborated in the following points.   

• Each party established a shared secret key with all parties in the network. We assume 

that this establishment can be done by any QKD protocols. From this point of writing, 

we refer shared secret key between sender and receiver as a private key.  Let say, a 

network consist of n parties and then each party has (n-1) keys. The total number of 

keys in the network is (n * (n-1)). This is a limitation of our proposed protocol, as the 

party increases in the network then the total number of keys also increases.  

• Sender can send a common secret number to the receivers. We assume that transmission 

of secret number in quantum channel. Until now, there no such quantum protocol to 

send the short common bits or deterministic data to the receivers. This limitation leads 

towards the realization of short key quantum deterministic protocol as our future work. 

Here we consider the secret number or square matrix’s dimension value from range 1 -

99. 

4.2 Illustrations of Protocol’s Components 

In this section, we define and elaborate some of the proposed protocol’s components. 

4.2.1. Definition of key 

 This key is same as digital cryptography key presentation.  Key is a random binary string. In 

other words, a row matrix with random of 0’s and 1’s. In our proposed protocol, the position or 

index of the elements is important. The following diagram illustrates a key structure. 

 

Figure 1. Key with n size 
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4.2.2. Conversion of the key into square matrices 

 This conversion mechanism is the heart of our proposed protocol. Private keys are in a structure 

of row matrix with the random binary numbers. MQKD aims that all parties have common key 

or common row matrix. Simply say, all parties’ private key should have common order or 

arrangement of 0’s and 1’s. Converting one dimensional matrix in to two dimensional matrixes 

needs well defined algorithm. Instead of applying complex algorithm, we use a simple method. 

Our method still considers the key as a one dimension matrix.  

Firstly, we split the key into multiple keys or sub keys by the size of square of secret number or 

size of the matrix. Secondly, we create few empty square matrices by defined condition. The 

total number matrices are equal to the total number of sub keys. Then, we match each sub key 

with a matrix. Lastly, we merely fill square matrix’s empty spaces with the sub key’s binary 

elements. Thus, creating and filling the matrix are the important functions of our proposed 

protocol. These two functions are explained elaborately in this remaining section. 

Basically a square matrix has two subscripts represents row and column. Both row and column 

values are same. Let say mi,j is a square matrix. The following figure 2 (2.1, 2.2, 2.3) explain 

the general format of square matrix with n * n size, conversion of standard 4*4 matrix indices 

and an example of  conversion of secret key’s element into square matrix.  

 

Figure 2. Mechanism of Key Conversion 

 

In our proposed protocol sender sends the column (or row) value of the square matrix as a 

common secret number Φ to the receivers. Then receivers break their private key into smaller 

keys or group of blocks by the number of matrix size or square of secret number. Let denote k 

as size of a key and m as the matrix size or square of secret number (Φ).  Let Tm denotes the 

total number of matrices can be extracted from the key. To find the Tm , we perform a simple 

calculation called matrix calculator. Matrix calculator has two criteria. Depends on the private 

key size and secret number, matrix calculator satisfies one of the criteria.  

 

Fig. 2.1. General format of Square Matrix

Fig.2.2. Conversion of 4*4 matrix indices

Fig.2.3. Conversion of key element as square matrix

Figure. 2.1.      General format of Square Matrix

Figure.2.2.      Conversion of 4*4 matrix indices

Figure.2.3.       Conversion of key element as square matrix
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       Matrix Calculator 

 

If  k % m = 0 then,                  � criteria (i) 

        Tm  = quotient ( k / m)  

 

 else  k % m ≠ 0 then,               � criteria (ii) 

       Tm = Integer(quotient(k / m)+ 1 

        

Empty spaces = (Tm * m) - k   

                                                 

 

 

 

 

 

 

 

                                                                      

From the above calculation, users can attain the total number of empty square matrix. The main 

idea around this calculation is to create small size square matrices for filling the big size key’s 

elements which is in one dimensional matrix.  Suppose the size of the sub key is exactly equals 

to size of matrix or total number of the matrix’s elements.  This situation occurs where the size 

of key is equal to the square of any positive integer number. Then, all the sub key’s elements are 

filled evenly in the matrices. Thus Tm satisfies the criteria (i). On the other hand, the size of sub 

key is lesser than the size of the matrix, then the matrix’s indices that don’t have equivalent 

key’s element to fill. Then fill those indices as empty. This situation occurs when Tm falls on 

the criteria (ii). To find the total number of empty matrix’s elements by simply subtracting total 

size of the key from total number of matrices’ element.  

The following figure.3 illustrates the conversion of n length key into n matrices with secret 

number or matrix dimension is 2. So size of matrix or the total number of elements in a matrix 

is 4. Let say k, m denote key size and matrix size. By the matrix calculator, If the k % m = 0 

then all matrix elements are filled with elements of key. On the other hand, if the k % m ≠ 0, 

then extra matrix indices are filled with empty. 

 

 

Figure 3. Conversion of key into matrices 
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{  
  

 n List [Actual matrices’   real+ fake positions] 

  n List [Imaginary matrices’ element positions] 

   (Positive integer value)// optional 

   }                                                                                                      

where Matrix index ∈ {1, 2, 3…9800} 

   

4.2.3. Convertor Command 

 This is the vital component of our proposed scheme which converts the receivers’ private key 

into common secret key. This command is a plaintext consist of some numbers transmit through 

public channel by the sender to the receivers. It has two segments, namely conversion is a 

mandatory segment and an optional segment called destruction. Conversion segment contains 

set of lists. Each list is a collection of positive integers and enclosed in square brackets. The 

destruction segment contains a positive integer value which is enclosed in parenthesis. 

4.2.4. Conversion segment 

 Each list represents the positions or indices of an actual matrix or imaginary matrix. When 

receivers obtain this message, they change the element’s value of the particular matrix’s index 

or position. Here, changing the value means to convert 0’s to 1’s and vice versa. To make subtle 

for the eavesdropping, fake indices are included in the actual matrix. The index of a matrix is 

range from 1-9800. The maximum number is fixed because of the assumption that maximum 

value of the secret number is 99. Hence the maximum number of elements in a square matrix is 

9800 (992). The total number of matrices or list depends on the sender, because he/she can 

include many imaginary matrices to obscure the Eve. This command varies for the receivers 

depending on their private keys. 

4.2.5. Destruction segment 

 Typically, the receivers’ private key established by the QKD protocols may not be same in size. 

Unlikely, our proposed protocol requires same size private keys to achieve the common secret 

key. Thus, sender’s responsibility is to make all the different size private keys into equal size. 

To accomplish this task, sender chooses the shortest private key’s size as the size for the 

common secret key.  Besides, sender knows all the private keys length. Sender sends key 

reducing size as a plain text to the receivers whose private keys are greater than common secret 

key. Upon receiving this value by the receivers, they simply delete the rightmost elements of 

their private key. Like conversion segment, this value also varies according to the receivers. 

This segment is an optional. 

The format of the convertor command as follows 

     

 

         

 

 

 

4.2.6. Key scheduler command 

 This is the final function of our proposed protocol. This function transmits the plaintext or 

command in the public channel to the corresponding receiver by the sender. The purpose of this 

command is to extract multiple common secret key from the common secret which is 

established by the convertor command. To derive the multiple keys from the key scheduler 
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command, receivers need same private shared keys with the sender and same or different secret 

number (matrix size). Then, receivers have to convert their respective private keys into matrices. 

This process is same as conversion of key into square matrices.  Thus, our proposed protocol is 

more efficient than the previous protocols in terms of repeat usage of shared keys. This 

command can be act as privacy amplification for the common secret key too.  Therefore, we 

propose few simple techniques to extract or retrieve a new key from the old key.  These 

techniques are publicly defined. So user can create his/her own methods and publish in the 

public. Sender issues single or combination of extraction techniques to the receivers, only the 

legitimate receiver can retrieve a new key. The following figure. 4 explains our techniques. 

 

Figure 4. Key Scheduler Methods 

 

The rationale behind these techniques is once the parties attain common secret key, they can 

manipulate it to derive more secret keys. Our main idea, sender can dictate some fetching order 

from the matrices and combine all these order to attain a new key. Square matrix is a 

combination of rows and columns. Therefore, sender can dictate the row or column values in a 

defined order. To get a new key just combine all outputs of the methods. The figure. 4 explains 

few methods for creating a new key from old key. For example, L* is a method of retrieving the 

combination of row and column value in an L shape. The * refers to the attributes of the method 

i.e. refers to different angles of L like inverted L, flipped L and so on. Row * or Column* 

method is used to fetch the sender determined row or column elements. The attributes are ones 

operation or two’s operation on row or column binary elements. Snake* method   retrieves by 

cyclic combination of rows and column elements. It contains attributes like full cover or half 

cover. Box* method retrieves like a box style and Diagonal* read the diagonal element of a 

matrix. Users can develop their own method and apply it. 

4.3 Higher key rate MQKD protocol 

1. This section explains the proposed protocol with all functionalities together to achieve 

the higher key rate in MQKD.  

2. Sender creates the common secret key (Ω). Sender can generate the key randomly or 

use any other techniques from digital cryptography to derive from all the private keys. 

Let say, Kxyi be the private keys between sender and receivers. Here, K represents the 

private key and x refers to a sender and y refers to receivers (where i = {1…n}).  The 

length of the common secret key is lesser or equal to the shortest private key.  

Length (Ω) < = length (shortest ((Kxy)) 
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3. Sender sends the common secret number or matrix’s size (Φ) to all the receivers in the 

quantum channel.  

4. Sender converts Ω into set of matrices and receivers transform their respective private 

keys into group of matrices by the value of matrix size.  

5. Sender creates and sends the convertor commands to the receivers for converting their 

respective shared secret key into common secret key.  

6. Sender sends same key scheduler command to the receivers to derive multiple secret 

key or privacy amplified common secret key. 

 

 4.4. Three-party MQKD protocol setup 

In this section, three-party system namely Alice, Bob and Charlie are establishing the common 

secret key by using proposed protocol. Here, we assume that Alice is the sender, Bob and 

Charlie as receivers. Receivers already established a private key with sender. From this 

assumption, Alice knows both private secret keys of Bob and Charlie. Let denote ΚΑΒ  as a 

private shared secret key between Alice and Bob and KAC is between Alice and Charlie. Alice 

creates the common secret key (Ω) randomly with the length as following condition  

Length (Ω) <  min (length (ΚΑΒ) , length (ΚΑC)) 

 For instance, KAB is 850 bits long and KAC is 860. Alice chooses the length (Ω) < 850. For this 

example, Alice chooses 850 as the size of Ω. Next she has to choose the value for secret number 

Φ. Here, Alice chooses 8 as a secret number or matrix size and transmits to both Bob and 

Charlie in the quantum channel. 

4.4.1. Preparation of matrices by Alice 

 After completion of sending the secret number, she has to prepare the matrices from the 

common secret key. Here k refers to the common secret key. Let m denotes the total number of 

elements or size of the matrix. By applying the matrix calculator (refer section: 4.2). She 

calculates total matrices and total empty space as following. 

 

 

 

 

 

 

 

             

 

 

 Total Size of Key (k) = 850  

 Matrix Size   (m) = 64 (Φ2 = 82) 
 Matrix Calculator 
     i)  k % m = 0 then  

           Tm = quotient (k / m)  

     ii) k % m ≠ 0 then 

          Tm = Integer (quotient ( k /m))  + 1 

           Empty spaces = = (Tm * m) - k   

 Criteria (ii) fits, Total number of matrices (Tm) can be calculated as 

follows,  

      850/ 64 = 13.28 

      Tm  =  13 + 1 = 14 

      Empty spaces= (14 * 64) – 850 = 46  
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4.4.2. Preparation of matrices by Bob and Charlie 

Bob and Charlie also apply the similar way by Alice to convert their private keys into set of 

matrices by utilizing received secret number. Both of them fill with blank for the empty matrix 

indices. 

 

 

                  

                      

         

 

               

                                                                                                 

4.4.3. Bob’s convertor command by Alice 

Alice creates a convertor command for Bob. The following diagram represents a convertor 

command for Bob which exclude destruction segment. This is due to the size of his private key 

is equal to the common secret key size. Actually, convertor command contains no attributes to 

the font.  This below convertor command is only for illustration purpose.  The numbers in bold 

and single underline are represents the actual value position and numbers in italic and single 

underline represents fake elements. Three dots with underline represent the combination of 

actual matrix’s real element position and fake position. Three dots with double underline 

represent the fake matrix’s positions.  

 

Figure 5. Convertor Command for Bob 

     

 

 

Bob Matrix Calculator 

 

Private Key size (k) = 850  

Matrix size        (m) = 64 

Matrix Calculator 

�850 % 64  ≠ 0  

∴ criteria (ii)  

  Tm = 13 + 1  

Tm  = 14  

Empty matrix spaces  

 =896 -850                                       

= 46 

Charlie Matrix Calculator 

 

Private Key size (k) = 860  

Matrix size        (m) = 64 

Matrix Calculator 

�860 % 64  ≠ 0  

∴ criteria (ii)  

Tm   = 13 + 1  

Tm  = 14  

Empty matrix spaces  

= 896 – 860   

= 36 
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4.4.4 The convertor command for Charlie by the Alice 

For Charlie, both conversion and destruction segments are included in convertor command. The 

destruction segment is included because of the size of his private key is greater than common 

secret key     (860 > 850). Number 10 is enclosed in parentheses as discarding bits for Charlie’s 

private key.  

 

 

 

   

 

 

4.4.5. Deduce the common secret key from convertor command 

 For legitimate users to derive the key is simple, because they know the matrix size and total 

number of matrix. Receiver can easily differentiate between real and fake matrix’s index. In the 

case of Eve, she has to use brute force attack. Eve captures all the receivers’ convertor 

commands in order to guess key. As for the matrix dimension and shared key are fully secret, 

Eve has to try all possible values of matrix dimension, arrangement of binary elements and total 

number of matrices. Due to the unavailable of verification scheme between sender and receiver 

in our proposed protocol makes more complication to Eve, even if she determine a key by 

guessing. Our proposed protocol is a one-way public message transmission scheme. Moreover, 

to calculate the complexity of guessing the key by Eve is explained in the next section.  

5. Security analyses 

The only region in our protocol requires security analysis is during the transmission of different 

convertor commands to the receivers. The convertor command contains some numbers, in order 

to deduce the key from this numbers Eve has to apply brute force attack. In other words, 

guessing all possibilities of the value.   Hence we analyze the security of our proposed protocol 

by directly relating it to the min-entropy and guessing entropy [11]. We estimate the complexity 

of probability to guess the common secret key. To make this paper self-contained, we shall 

briefly explain the entropy measurement. 

 

5.1 Reviews on Min-Entropy and Guessing Entropy 

In this section we give overview of the entropy measurement and mapping the key guessing 

complexity with guessing entropy. Massey [12] initiated the problem of guessing the value of a 

random variable X by asking only questions of the form “is X equal to x?” until the correct 

value is found and the answer is “yes”. This type of situation happens in the cryptanalysis of 

computationally secure ciphers. Massey’s assumption is that a cryptosystem is secure in the way 

intended by its designers, the only attack for finding the secret key is trying all the possible keys 

in sequence for a given plaintext-ciphertext pair. The probability that the correct value is 

guesses in the first trial is directly linked to the min-entropy of X and is equal to 2
-H∞(X) 

= 

maxx∈X PX(x) under an optimal strategy. An upper bound on this probability in terms of 

{ 
[2 10 15 19 … 9800] 

[1…9800] [1…9800] 

[1…9800] 

[3 7 12 29 34 35 …9800] 

[…] … n 

(10) 

} 
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Shannon entropy is provided by the well-known Fano inequality, which gives a lower bound on 

the error probability of guessing X from knowledge of a correlated random variable Y. The 

optimal strategy for successive guessing until the value of X is found is obviously to try the 

possible values in order of decreasing probability. Denote the elements of the probability 

distribution PX by p1,…,pn such that p1 > p2 > … >  pn  with n = |χ|. For a fixed optimal guessing 

strategy, let a guessing function for X is a function G: χ −> Ν  such that G(x) denotes the 

number of guesses needed when X = x. The average number of guesses needed to determine X  

can be called the guessing entropy of X [11]. 

                                                        E [G(X)] =  ∑
=

n

i 1

ipi,                                       (1) 

  In the case of guessing X with knowledge of a correlated random variable Y, let G(X | Y) be a 

guessing function for X given Y when G(X | y) is a guessing function for the probability 

distribution PX | Y = y for any fixed  y∈γ. Thus can be called the conditional guessing entropy of 

X given Y. 

 

E[G(X|Y)] = Σy∈γ PY (y) E[G(X | y)]                                       (2) 
                                                  

5.2. Guessing Complexity of the Common Secret Key 

To guess the key by Eve needs all matrices’ element arrangements. Eve has to guess the size of 

the matrix and the total number of matrices. Further, she has to predict a probability of 

arrangement or sequence of the elements for each matrix. Therefore, matrix size, total number 

of matrices and sequence of matrices’ elements can be considered as random variables to Eve.  

Eve has the only information from the convertor command which contains combination of 

actual and fake matrices’ index. Therefore, we relate this guesses by Eve with min-entropy and 

guessing entropy to generalize the complexity of determining key. Min-entropy can be applied 

if Eve chooses all the random variable guesses on a first trial. Otherwise, guessing entropy is 

more suitable determining the key’s complexity. Thus, we applied guessing entropy for finding 

common secret key complexity. 

 

5.2.1. To determine the dimension of the matrix or secret number by the Eve  

The secret number or matrix dimension is an important value to extract the common secret key 

from the private keys. The value is publicly known as in range from 1 – 99. Therefore, Eve tries 

all the option and chooses one for applying to other guesses. We are applying the guessing 

entropy to guess the dimension of matrix. Let denote Dm as the dimension of matrix, then 

expectation value by guessing entropy using eqn.1.                                                                                    

                                                                            E [G(Dm)] =  ∑
=

99

1i

ipi                                                                              (3) 

 5.2.2. Guessing the sequence of matrix’s elements 

After the guessing of matrix dimension, now Eve tries to guess the sequence of a matrix’s 

elements. To find the sequence of matrix’s elements, the total number of matrix elements is 

important. Finding the total number of elements is simple because of the square matrix. Thus, 

total number of elements in a square matrix is equal to [matrix dimension]
 2

 = (E [G (Dm)])
2
 . 

Since the matrix elements are binary, then total number of possibilities in a matrix (Pm) is equal 

to 2
Total number of elements in matrix    

, the following equation expresses the total possibilities. 
    

 

                                                                       Pm=
( )2

2 mD
                                                      (4) 
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5.2.3. Guessing the total number of matrices 

Now Eve attempts for guessing the total number of matrices. By using the guessing entropy, we 

can estimate the total possibilities for the matrix.  Let Tm be the total number of matrices, then 

expectation value of Tm as follows 

                                                 

∑
=

=
n

i

im iPTGE
1

)]([

                                      (5) 

          

5.2.4. Guessing the common secret key 

Ultimately, Eve tries to guess the common secret key. Eve should guess all possibilities of 

matrix’s elements sequence. Then all possibilities should apply to all matrices. Thus complexity 

increases as big O(2
n
). In order to generalize the complexity, we calculate product of all 

matrices’ element with all possible sequences. By applying guessing entropy, the expectation 

value for common secret key Ω, 

 

                                                                                       

                                              (7) 

   

  

Here x = number of matrices and substitute the equation (4) in equation (7) then,  

                                            

 

                                                                                        (8)

               

Finally, substitute the equation (8)’s variable x eqn.5 then, 

 

                          







=

=Ω

∑

∏

=

n

i

i

TGE

m

iPTmGEwhere

PE
m

1

)]([

)]([

)(

                                

    (9) 

The equation (9) generalizes the complexity of guessing the common secret key.  As the number 

of matrices increases then the complexity also increases. In our proposed protocol addition of 

fake matrices method increases the hardness of guessing. Further, each matrix consists of fake 

indices which also increase the possibilities. In conclusion, Eve’s information about the key is 

negligible.   

5.3 Discussion 

From the above section, to achieve multi-party key distribution is simple for legitimate users 

and hard for illegitimate users are proved by the complexity calculation. The increase of the 

fake indices and imaginary matrices will increase the complexity of guessing the key. Our 

proposed protocol achieves this by a simple mechanism.  

 For instance, Eve guesses correctly the matrix dimension. She cannot retrieve any information 

about the key because the convertor command only contains the matrix position not its value. 

This situation is same as public discussion of BB84 [1] protocol which reveals the polarizer not 

the outcome. Additionally, this protocol is one-way post processing in which sender only 

( )nxE
x

iPi

i ≤≤
∑

=Ω ∏














= 12  )(

2
99

1
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communicate with the receivers. Thus, it reduces the usage of extensive public discussion 

among the parties. Furthermore, key scheduler command contains only publicly known methods 

name and Eve computes nothing from this information unless the private keys and matrix size 

are not fully secret.   

6. Conclusions 

We have proposed a scheme that allows n receivers to convert their private secret key with the 

sender into common secret key. The advantage of the scheme is sender can sends n public 

message to the n receivers for conversion. The amount of extraction of common secret key is 

almost same size as the private key. Additionally, same key can be used to derive multiple 

secret keys without any compromise in security. Thus high efficiency in usage of established 

key results in cost-effective protocol. Furthermore, it requires one-way public communication 

for transmitting and unavailable of verification scheme among the legitimate users makes harder 

for Eve to determine the key. The brute force method is only way to guess the key and 

probability of guessing the key involves so much complex. In discussion section is showed the 

Eve’s knowledge about key is negligible. However, our scheme requires pre-shared secret key 

and a common secret number among the parties. The future research agenda is practical 

realization of sending the secret number using quantum channel to all the parties.  
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