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ABSTRACT 

Email systems have suffered from degraded quality of service due to rampant spam, phishing and 

fraudulent emails. This is partly because the classification speed of email filtering systems falls far behind 

the requirements of email service providers. We are motivated to address this issue from the perspective 

of computer architecture support. In this paper, as the first step towards novel architecture designs, we 

present extensive performance data collected from measurement and profiling experiments using 

representative email filtering systems including CRM114, DSPAM, SpamAssassin and TREC Bogofilter. 

We provide detailed analysis of the time consuming functions in the systems under study. We also show 

how the processor architecture parameters affect the performance of these email filters through 

simulation experiments. 
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1. INTRODUCTION 

Email and instant messaging systems have suffered from degraded quality of service due to 
spam, phishing and fraudulent emails and messages. A surprising fact is that 9 out of 10 emails 
are spam [25]. Gartner estimated that 3.5 million Americans would give up sensitive 
information to phishers and the total financial losses amounted to $2.8 billion in 2006 [22]. 
Widely spreading spam and phishing emails have drawn attention from both the academia and 
industry. There is a plethora of research on spam detection, filtering and elimination [1], [2], 
[13], [12], [18], [33], [21], [10]. Some anti-spam appliances have been introduced to the market 
[32], [28]. Moreover, fighting spam has gone beyond the technical regime and had its social, 
legal and economical impacts on people’s life [7], [30]. 

However, the growth of spam messages remains rampant. There exists a strong call to design 
high-performance email filtering systems. A careful analysis of spam shows that the 
requirements of an efficient filtering system include: (1) accuracy: low false positive and low 
false negative filters are desirable; (2) self-evolving capability: the systems should be able to 
adapt themselves to new spam; and (3) high-performance: the detection of spam incur complex 
operations including regular expression matching and statistical computation, which need to be 
completed quickly especially in large email or messaging systems. 

Most of the existing research focuses on the design of protocols, authentication methods, neural 
network based self-learning and statistical filtering. In contrast, we address the spam filtering 
issues from another perspective - improving the filtering speed through computer architecture 
support. We are motivated by the inadequate classification speed of current anti-spam systems. 
Data have shown that the classification speeds of current spam filters fall far behind the growth 
of messages handled by servers. In this paper, we analyze the workload of spam filters and 
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identify the critical operations in spam filtering. We intend to provide insight to the critical 
workloads that must be accelerated by novel architecture designs. 

The contribution of this paper is as follows. 

• We first qualitatively compare and analyze representative open source spam filtering 
systems including CRM114 [1], DSPAM [2], TREC [11], SpamAssassin [4], etc. 

• We then conduct extensive measurement and profiling experiments on the above email 
filtering systems using realistic email samples. We collect statistical data on the 
frequently executed time-consuming functions of these filtering systems. 

• We further simulate the CRM114 in a processor architecture simulator, SimpleScalar 
[8], to evaluate how the architecture parameters affect its performance. 

The paper is organized as follows. Section II introduces the background and motivation of this 
research. Section III describes the representative email filtering systems and their main 
operations. The methodology of the experiments is also described in Section III. Section IV and 
V show the performance data we collect from the extensive measurement and profiling 
experiments, respectively. Simulation results are reported in Section VI. Finally the paper is 
concluded in Section VII. 

2. BACKGROUND AND MOTIVATION 

The following formatting rules must be followed strictly.  This (.doc) document may be used as 
a template for papers prepared using Microsoft Word.  Papers not conforming to these 
requirements may not be published in the conference proceedings. 

2.1. Related Work 

Spam flooding has outpaced the growth of legitimate emails. Data have shown that spam now 
represents nearly 93 percent of all email, and over 2006, the number of spam messages grows 
by 147 percent, up 73 percent in the last quarter [25]. Graham-Cumming maintains an archive 
of different categories of spam emails [17], and such a list keeps expanding constantly. It is also 
evident that approaches taken by spammers become more versatile and spam emails are harder 
for filters to capture. Recently, a number of actions are taken to address the spam issue. We 
briefly summarize them as follows. 

Email Authentication Standards 

Extensions to SMTP protocol introduce new methods to enhance security. Identified Internet 
Mail [12] determines if the sender of the message has authorization (from the administration of 
the domain) for the use of an email address by associating the signature with the message itself. 
The signature is calculated with cryptographic hash such as SHA1 and encapsulated in the 
message header. DomainKeys Identified Mail (DKIM) [18] defines a domain-level 
authentication framework for emails using public-key cryptography to generate the signature of 
a domain. The Sender Policy Framework (SPF) [33] explicitly authorizes the hosts that are 
allowed to use its domain name by associating SPF entries to the domain names as Resource 
Record in Domain Naming Systems (DNS). Such SPF entries can be multiple and use wildcard. 
The Sender ID Framework [21], working together with SFP, addresses the problem of spoofing 
and phishing by verifying the domain name or IP address from which an e-mail is sent against a 
registered list of servers that the domain owner has authorized to send e-mails. 

Software Email Filters 
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The continuous anti-spam efforts have resulted in several popular software tools. CRM114 [1] 
is an open source software tool that supports a programming language to write filters. CRM114 
is primarily based on regular expressions [5]. Its criteria for classification of data can be a set of 
methods, including regular expressions, approximate regular expressions, a Hidden Markov 
Model [26], etc. DSPAM [2] is another open-source content based spam filter designed for large 
enterprise systems. Its core engine, libdspam library, uses various filtering algorithms such as 
Concept Identification [35], Neural Networking and Bayesian Noise Reduction[34]. POPFile 
[3] classifies emails into spam or not spam using a naive Bayes algorithm. 

Statistical Filtering Algorithms 

Most anti-spam systems use statistical filtering algorithms, which determine the accuracy. There 
is an increasing number of statistics algorithms used in current systems. Bayesian algorithms are 
a category of algorithms that are widely used in spam filters [24], [27], [16]. The representative 
one, Naive Bayes classifier selects the most likely classification Vnb given the attribute values 

a1, a2, ...an., using Vnb = argmaxvj∈V P(vj)ΠP(ai|vj). P(ai|vj) is practically estimated with m-
estimates as P(ai|vj) = (nc+mp)/(n+m) , where n is the number of training examples for which v 
= vj , nc is the number of examples for which v = vj and a = ai, p is a priori estimate for P(ai|vj), 
and m is the equivalent sample size. Other popular statistical filters include Markov Chain [26], 
Fisher-Robinsons’ Inverse Chi Square[36], etc. 

Image Processing Algorithms  
 

As the spammers have begun to use image based spam emails, the filtering process relies on 
complex image processing algorithms to extract useful information from obscured images 
similar to CAPTCHA [37]. For example, recent work in [38] first computes the perimetric 
complexity of p °— q image cells of a suspicious image and then computes three quantitative 
metrics on the broken characters and their interference level with background noise. 
 

2.2. Common Steps in Fighting Spam 

There is a growing set of software tools, hardware appliances and statistical filtering algorithms 
for fighting spam [1], [2], [24], [3], [32], [28]. Although these systems differ in deployment, 
formats and algorithms, they follow very similar processing procedure as depicted in Figure 1. 

First, SMTP protocol stack on mail servers handles network packets and parses them into email 
headers and bodies. An unknown email will then go through several steps before it is classified 
as a spam or a legitimate email. Tokenization breaks the email, including header and body, into 
interesting tokens (keywords) to prepare for further processing. A subset of the tokens, e.g. 
domain names or URLs, are then checked against whitelists and blacklists for immediate 
acceptance or rejection (explained later). The majority of the tokens are counted to calculate the 
statistical metrics. Then various statistical filtering algorithms, such as Bayesian and Chi-
Square, are applied to compute the probability of the email under investigation being a spam. 
Finally a decision is made and the email is classified as either a legitimate email or a spam. The 
essential operations and techniques within this classification procedure are summarized as 
follows. 
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Figure 1. Common Work Flow of Spam Filtering 

• SMTP Protocol Processing 

Mail servers communicate interactively with mail transfer agents through SMTP that is 
primarily based on TCP/IP protocol. The header and body of an email are received by the server 
after a series of SMTP commands and replies. During such a session, the server needs to 
process various security extensions such as SHA1 decryption, and handle certain message 
formats such as MIME [15], in addition to the underlying TCP/IP protocol processing. 

• Tokenization 

Tokenizer or parser extracts interesting and significant terms from both the header and body of 
emails. This procedure is called tokenization [36]. The tokenizer shall understand HTML tags as 
well as different URL encoding methods such as Base64 [19] that are used in various standards 
[20], [15]. The tokenizer removes whitespace characters but allows a small set of them to appear 
within terms (e.g. ‘.’, ‘+’, ‘-’, ‘ ’, ‘$’). Pure numbers, IP addresses and money amounts are also 
differentiated. 

• Checking Against Blacklist, Whitelist and Graylist 

Blacklist, whitelist and graylist are checked against to classify unknown emails before statistical 
filters are leveraged. A whitelist is a list of accepted items, confirming that the item being 
analyzed is acceptable. A blacklist is, on the contrary, a list of entities that are being denied a 
particular privilege, or marked as “spam”. Entries in a graylist cause a mail transfer agent to 
“temporarily reject” an email from a sender on the list and wait for a retry from the originating 
server, which a spammer usually does not do. These lists are created from the past classification 
results. The interested fields, including From, ReturnPath and URL, are extracted from an 
incoming email and checked against the lists. 

• Hashing Operations 

Hashing functions are used to find the attributes and count the occurrences of a token. The 
number of tokens and their attributes keep expanding, which results in the growth of token 
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databases and hash tables. Hashing functions are widely used to speed up the searching of a 
token. They are usually implemented on general purpose processors using linked lists. 

2.3. Challenges 

Most popular anti-spam systems focus on the accuracy of the filter, in terms of false positive 
and false negative rates. However, the classification speed, in units of messages per second, is 
as critical as accuracy to the effectiveness of the system, but often overlooked. Existing email 
servers are already heavily loaded and subject to denial of service attacks. When spam filtering 
becomes another significant workload for email servers to carry out, the servers can be easily 
overloaded and become more vulnerable to attacks. 

Current anti-spam applications have not met the performance requirements. The majority of the 
current antispam tools [1], [2], [3], [11] are software running on general purpose processor 
based platforms. Their performance suffers from both the overhead of protocol processing in 
operating systems and the inefficiency of regular expression matching and hashing operations 
on general purpose CPUs. We have measured the performance of a representative anti-spam 
tool, TREC Spam Filter Kit with bogofilter [11]. The experiment results show that classifying 
6034 emails on a 2.2GHz Pentium 4 takes 20 minutes and 18 seconds, i.e., less than 5 emails 
per second, shown as the second right-most bar in Fig. 2. Another spam filtering software, 
DSPAM, reported similar performance (0.25 second per message on average, or 4 emails per 
second as shown as the rightmost bar in Fig. 2) [2]. On the other hand, various sources [29], [6], 
[23], [9] show that the emails processed by service providers such as Hotmail, America Online 
and Microsoft are several magnitude more than the capacity of current anti-spam systems, as 
depicted in Figure 2. The left four bars depict the number of emails processed by the email 
service providers. Both Hotmail and AOL process over 10,000 emails per second. Instant 
Messengers such as AOL, Yahoo and MSN each process over 10,000 messages per second 
(shown as the “IM” bar.) An enterprise level email server (e.g. Microsoft) needs to handle about 
100 emails per second. Such performance gap is not acceptable for enterprise level or ISP email 
systems where both the number and size of emails keep increasing. 

 

Figure 2. ISP Email/Message Load vs Performance of Current Anti-Spam Systems (IM: instant 
messaging) 
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Tokenization takes considerable time in spam filtering. Tokenization depends heavily on regular 
expression techniques. However, regular expression matching is a memory access intensive 
task. We profiled the CRM114 spam filter system and found that over 51% of the processing 
time is on pattern matching functions (e.g. tre_tnfa_run_parallel()). Whitelist (and other lists) 
checking is another performance bottleneck. Various whitelists and blacklists are currently used 
and they contain an increasing number of entries . For example, the URL blacklist [31] contains 
2,208,371 entries as of Dec 19, 2006, and this list keeps expanding as new domains and URLs 
are registered. The entries in a list can be either explicit URLs, domain names or regular 
expressions, which make the matching a non-trivial task. 

Hashing, an essential operation in finding attributes of tokens and updating statistics data, incurs 
large overhead as well. Software-based hashing on general purpose CPUs is popular but not 
efficient. A common implementation of hashing uses linked lists to store hash nodes and resolve 
collisions. The CPU computes hash value using a large number of arithmetic or logic 
instructions. Such prolonged instruction execution and dynamic memory allocation/deallocation 
degrade the performance of hash operations. For instance, profiling results show that hash 
functions in TREC kit take significant portion of time (30%) in accessing message counters 
[11]. 

Protocol stack processing on email servers requires a significant amount processing power from 
processors. Most email protocols (e.g. SMTP) and popular messaging protocols (e.g. AOL and 
MSN) are based on TCP/IP protocol stack. The processing overhead of TCP/IP is known to be 
deteriorating on general purpose processors. The rule of thumb is that 1GHz processing power 
is needed to sustain 1Gbps TCP/IP network traffic [14]. With the processing of SMTP protocol 
and its security extensions, email servers are not able to filter spam and keep up with the growth 
of email volume. As a result, email servers are vulnerable to denial-of-service attacks when they 
need to handle both message forwarding and spam classification. The same risk is present in 
instant messaging servers. 

Therefore, it is indispensable to seek novel architecture designs to improve the performance of 
spam filter. The first step towards new design is to thoroughly analyze the workload of spam 
filtering systems. We choose to conduct measurement, profiling and simulation experiments on 
representative spam filter tools. 

3. EMAIL FILTERING SYSTEMS UNDER STUDY AND EXPERIMENT 

METHODOLOGIES 

We focus our research on email filtering systems that run on or are tightly coupled with email 
servers, although there are filter plug-ins embedded in email clients. The filters at end systems 
require end users to understand email filtering policies and update their filter rules frequently. 
This imposes management overhead and is often ineffective for users with inadequate 
knowledge on email filters. On the other hand, centralized email filters ease the management 
and reduce the cost of supporting general users. Therefore we focus on server-side centralized 
email filtering systems in our study. 

3.1. Email Filtering Systems Under Study 

We summarize the features of four representative open source email filters in Table 1 including 
the language in which the source code is written, whether the filter software includes training 
functions and sample emails, and which software library the filter relies on. We briefly 
introduce these email filter applications as follows. 
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CRM114 is a filtering system that can examine emails, system log files, user data files and other 
data streams. It can scan or alter the data stream through user defined scripts. It supports various 
statistical algorithms such as Hidden Markov Model, Orthogonal Sparse Bigrams, etc. CRM114 
is written in C language and has been ported to Linux, BSD, MacOS and Windows. It relies on 
TRE [5], the POSIX compliant regular expression matching library for scanning and 
tokenization. CRM114 can be used at both server and client side. 

DSPAM is an open-source content-based spam filter that is designed to be used at server side. 
The software is written in C and supports different mathematical paradigms including Bayes, 
Chi-Square, Geometric, and Markovian Discrimination. DSPAM does not rely on heuristic rules 
or regular expressions. 

SpamAssassin is part of the Apache Software Foundation projects. It attempts to identify spam 
through text analysis, Bayesian filtering, DNS blocklists, and collaborative filtering databases. 
SpamAssassin is written in Perl, which well supports regular expressions. It provides APIs that 
are can be used on a wide variety of email systems including procmail, sendmail, Postfix, qmail, 
etc. 

TREC spam filter evaluation kit is a tool to assess the effectiveness of spam filters. The goal is 
to increase the availability of appropriate evaluation techniques for use by industry and 
academia [11]. The default filter included in TREC kit is “bogofilter”. The TREC kit is written 
in C. 

Table 1.  Representative Email Filtering Systems 

Name Source Code 

Language 

Trainers 

included 

Email Samples 

Included 

Software 

Libraries Used 

CRM114 C Yes No TRE 

Bogofilter C Yes  No Berkeley DB 

SpamAssassin Perl Yes Yes Perl reg-ex 

Dspam C Yes No libdspam 

 

3.2. Spam and Ham Email Samples 

Spam is known as the “unsolicited commercial emails” while ham refers to the emails that users 
expect to receive. Some of the filter systems include archives of spam and ham emails for the 
purpose of training the system initially. For example, SpamAssassin contains an archive of 4150 
ham and 1898 spam emails. Such emails are collected from various sources and reflect realistic 
ones received by general users. They are textual and without any attachments. These emails 
serve well for training spam filters. 

We utilize the emails from SpamAssassin as the sample inputs to be fed into the filtering 
systems. There are three categories of these samples, namely “Easy Ham”, “Hard Ham” and 
“Spam”. These emails are categorized by the characteristics of their content. Easy Ham emails 
are legitimate ones one receives from expected senders. These emails often contain plain text 
only. Hard Ham emails are also expected legitimate emails, however, they contain a fairly large 
number of HTML tags and URL links which make it harder for the email filters to recognize 
them as good emails. Spam emails are those unsolicited ones. Table 2 lists the characteristics of 
these emails. Furthermore, for each category, we construct synthetic email samples of a range of 
sizes (e.g. 8KB, 32KB, up to 2MB) by concatenating multiple randomly selected emails so that 
we can evaluate how the size of an email affects the filtering performance. We use these 
original and synthetic email samples in our following experiments. 
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3.3. Experiment Methodology 

Table 2.  Email Samples 

Sample 

Name 

Total Emails Total Size 

(Mbytes) 

Average Size 

(bytes/email) 

Spam 1898 11.9 6270 

Easy Ham 3900  14.1 3615 
Hard Ham 250 5.5 22000 

 

In this paper, we conduct three categories of experiments: measurement, profiling and 
simulation as listed in Table 3. For measurement experiments, we set up a testbed of a Pentium 
4 2.6GHz based Linux box running Fedora Core 5. The Linux box has 1GB DDR DRAM 
memory. We install the software packages of the email filters under test as user level 
applications. For profiling study, we compile the C language based filters with “-pg” option for 
gcc such that “gprof” can be used to collect profiling data. We use “gprof -s” to combine the 
data from several runs for avoiding statistical inaccuracy. Finally we use SimpleScalar simulator 
to investigate how the architecture parameters affect the performance of CRM114. 

Table 3. Experiments Conducted (T: Training, F: Filtering) 

 

Each application has both training process and filtering process. Most email filtering systems 
rely on the past knowledge of known emails, either spam or ham. As the initial step, known 
emails are used to train the filters before working on classification of incoming unknown 
emails. Such training is performed frequently either explicitly by issuing training commands or 
implicitly after receiving and classifying new emails. After the training, the filters can start 
classification of incoming emails. 

4. MEASUREMENT RESULTS 

4.1. Training of Filters 

Fig. 3 shows the training of the four email filters under test. The training input is a set of emails 
(4150 ham emails and 1898 spam emails.) SpamAssassin consumes over 500 seconds in the 
training process while CRM114 and DSPAM consume as little as 82.5 and 103.6 seconds, 
respectively. Bogofilter has the fastest training procedure taking only 10.8 seconds. On average, 
the training process takes about 179.3 seconds. 
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Figure 3. CPU Time of Email Filters Running in Training Mode. 

4.2. Filtering Email Samples 

Fig. 4 shows the performance of four filters on a set of Easy Ham email samples. The x axis of 
the figure is the size of Easy Ham email samples and y axis is the CPU time spent by the filters 
under test. The CPU time increases as the size of email samples increases, which is intuitive. 
CRM114, DSPAM and Bogofilter show scalable performance: the increase of CPU time is 
proportional to the size of samples. SpamAssassin consumes one order of magnitude more time 
than the other three filters. The contributing factor is that SpamAssassin is written in Perl, which 
inherently has much larger runtime overhead. 

 

Figure 4. CPU time of filters on Easy Ham email samples 
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Figure 5. CPU time of filters on Hard Ham email samples 

Fig. 5 shows the performance of four filters on a set of “Hard Ham” email samples. The CPU 
time of CRM114, DSPAM and Bogofilter increases with email size. SpamAssassin differs in 
the cases when the email size is 128KB and 512KB: the increase in CPU time is not significant. 
This is due to the runtime overhead of Perl libraries. Fig. 6 shows the performance of four filters 
on a set of “Spam” email samples. All the four filters show similar performance to that on Easy 
Ham: the time spent is proportional to the size of email samples. 

Comparing the CPU time spent on the Easy Ham, Hard Ham and Spam Emails with the same 
size, there is no universal conclusion can be drawn from the measurement results: each filter 
behaves differently. For example, DSPAM spends more time on 2MB Hard Ham than 2MB 
Easy Ham while Bogofilter is the opposite. Hard ham does not necessarily incur more 
processing time than easy spam because hard ham is named after the probability of false 
positive. 

 

Figure 6. CPU time of filters on Spam email samples 

5. PROFILING RESULTS 

We present in this subsection the profiling results obtained with “gprof”. The three filtering 
systems under test, CRM114, DSPAM and Bogofilter, are compiled with “-pg” options for gcc. 
SpamAssassin is written in Perl thus we exclude it from the profiling experiments. 
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5.1. CRM114 

Training 

Fig. 7 shows the profiling result of CRM114 during the training process. The x axis depicts the 
functions sorted by the CPU time and y axis is the percentage of total CPU time that a function 
consumes. The input of the training is a set of ham and spam emails. The most time consuming 
function is crm_expr_osb_bayes_classify() that takes 37.5% of the total time. Following that is 
tre_tnfa_run_parallel(), taking 22.2% of the total. Then crm_vht_lookup() consumes 12.1% of 
the time. The operations of these three functions are as follows. 

 

Figure 7. Profiling results of CRM114 in training mode 

Tre_tnfa_run_parallel() function is the key function to match regular expression patterns. Such 
matching procedure is based on a Nondeterministic Finite Automata (NFA) structure. First, the 
function allocates a chunk of memory that is used for matching the current input stream. Such a 
memory space is used to store the NFA states which contain tag bits for the current state and 
next states. Next, the function starts to search the first matching character in the input string, 
from which the complete NFA matching process will begin. The main loop in the function 
migrates from one NFA state to the other one based on the input character and the tag bits of the 
current state. Finally, the function reports a match or not match based on the ending NFA state 
and the tag bits it reaches. 

Crm_expr_osb_bayes_classify() is the main Bayesian classification function with 1069 lines of 
C code. This function serves as the “probabilistic evaluator” that computes the probability of an 
email being spam. It relies on hash functions that are stored in at least two offline files, one for 
spam (spam.css) and one for nonspam (nonspam.css). Before the first filtering procedure, the 
hash functions are constructed from the files and mapped into memory. This mapping 
processing involves validation of these files, hash function normalization and calculation of 
compensation correction. After the hash function is constructed, input stream is searched for any 
matched regular expression patterns. Such search is to extract interesting tokens from the input 
email. Next, the tokens are fed into the hash functions to examine the “hits” to the features of 
spam and ham. That is to say, if the token has a feature of spam, the corresponding counter will 
be incremented and the probability will be calculated with Baysian statistical formula 
subsequently, where some floating point computation is needed. 

Crm_vht_lookup() is responsible for looking up a variable in the hash table. CRM114 has its 
internal script language and CRM114 actually interprets and executes CRM scripts. The scripts 
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may contain any number of variables as long as they conform to the syntax of CRM114. The 
function manages a hash table where a variable can be looked up or a new hash slots can be 
allocated if it does not exist in the table. 

Filtering 

 

Figure 8. Profiling results of CRM114 using Hard Ham samples 

Fig. 8 to 9 depict the profiling results of CRM114 on “Hard Ham” and “Spam” email samples. 
The three most time consuming functions are the same as the ones in training process. In 
addition, function crm_zexpandvar() consistently consumes over 15% of the CPU time when 
the size of an email is over 512KB. Analysis of the CRM114 source code reveals that 
crm_zexpandvar() takes care of the variable expansion operations supported by CRM114 script 
language. 

 

Figure 9. Profiling results of CRM114 using Spam samples 

5.2. Bogofilter 

Training 

Fig. 10 shows the profiling result of Bogofilter during the training process with the percentage 
of total CPU time that a function consumes. The reason of having two bars is because Bogofilter 
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use has two training phases that use spam emails and ham emails separately. The most time 
consuming function is yylex() that takes 31.9% of the total time. Following that is 
wordhash_search(), taking 29.5% of the total. Then word_cmp() consumes 5% of the time. The 
operations of these three functions are as follows. 

 

Figure 10. Profiling results of bogofilter in training mode 

 

Figure 11. Profiling results of bogofilter with Ham samples 

The lexical analyzer function, yylex(), recognizes tokens from the input stream and returns them 
to the parser. The regular expression matching procedure in this function uses is based on a 
Deterministic Finite Automata (DFA), taking in a string of input symbols. For each input 
symbol it will then transit to a next state. When the last Input symbol has been received, it will 
either accept or reject the input stream depending on whether the DFA is in an accepting state or 
a non-accepting state. Wordhash_search() is a function of only with 16 lines of C code. It 
searches a keyword in the hashing data structure. The functions returns with hash buffer address 
or NULL depending on the comparison of the input parameter with the keyword stored in 
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hashing entries that organized in a linked list. The linked list traversing makes this function very 
time consuming. 

 

Figure 12. Profiling results of bogofilter with Spam samples 

Filtering 

The profiling results of bogofilter are shown in Fig. 11 and 12 depicting time-consuming 
situation of the functions on “Hard Ham” and “Spam” email samples, respectively. Results on 
the “Hard Ham” (Fig. 11) show that bogofilter spends considerable time (46.3%) on regular 
express matching function (yylex()) on average. The wordhash searching function (wordhash 
search()) takes average time of (13.3%). Analysis of the bogofilter source code reveals that 
function hash() takes care of the reasonable address for hash which should be a multiple of hash 
length takes amount of (9.9%) on average. 

 

Figure 13. Profiling results of DSPAM using Spam samples 
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Figure 14. Profiling results of DSPAM using Hard Ham samples 

5.3. DSPAM 

Fig. 13 and 14 present the profiling results of DSPAM on spam and ham emails. In both figures, 
three functions (bnr_list_create(), bnr_list_node_create(), bnr_list_insert()) related to Bayesian 
Noise Reduction are the most time-consuming functions. Bayesian Noise Reduction is a 
statistical approach to evaluating coherence by instantiating a series of machine-generated 
contexts to serve as a means of contrast [34]. The implementation of BNR relies on a linked list 
data structure, and the insertion and creation of nodes take a significant amount of CPU cycles. 

6. SIMULATION RESULTS 

We investigate how the architecture parameters affect the performance of email filters. We 
conduct the following experiments with SimpleScalar simulator. We port one of the filters, 
CRM114, into SimpleScalar. We fed Hard Ham and Spam email samples to CRM114’s filtering 
procedure. Table 3 summarizes the default parameters of Simplescalar simulations. The 
performance metrics interested are cycle numbers and cache miss rate. We vary parameters 
including the cache associativity and size, number of ALUs, issue width etc.  

Table 4. Default Parameters of Processor Architecture 

 

Fig. 15 shows how the L1 data cache associativity affects the miss rate. The performance 
improvement of two input email samples is similar. The miss rate drops significantly from 
direct mapped cache to 8-way. 16-way cache configuration brings no considerable benefits. Fig. 
16 shows how the L1 data cache size affects the miss rate. Two experiments show very similar 
results. There is large improvement on the miss rate when the cache size increases from 2KB to 
64KB. After that, the reduction of miss rate gets small. Fig. 17 shows how the L1 data cache 
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size affects the cycle time. Although the absolute cycle times are different in two experiments, 
larger cache shows better performance. However, the benefit is not significant when the cache 
size is over 128KB. Fig. 18 shows how the number of integer ALU affects the cycle time. More 
integer ALUs can improve the overall performance until the number reaches four. 

 

Figure 15. Miss Rate vs Cache Associativity 

 

Figure 16. Miss rate vs cache size 

We also vary the number of floating point ALUs and multipliers, however, find out that the 
performance is not sensitive to them (figures not shown). Two FP ALUs or two Multipliers does 
not outperform one FP ALU or multiplier cases. This is because the FP ALU/MULT 
instructions are only a tiny fraction of the Bayes classification function. Other functions such as 
regular expression matching and hashing consume the majority of the CPU cycles and use 
integer ALUs. 
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Figure 17. Cycle Time vs Cache Size 

 

Figure 18. Cycle Time vs the Number of integer ALUs 

 

7. CONCLUSIONS 

In this paper, as the first step towards novel architecture designs, we present extensive data 
collected from measurement, profiling and simulation experiments using representative email 
filtering systems including CRM114, DSPAM, SpamAssassin and TREC Bogofilter. From the 
obtained data, we make the following observations: 

• The data show that the types of emails (spam or ham emails) do not necessarily 
determine the processing time of the email filters. That is to say there is no direct 
correlation between the type of an email to the time that a filter needs to spend to 
classify it. 

• The filtering time generally increases as the size of an email increases for easy ham and 
spam emails. For hard ham emails, the filtering time is not directly related to the size. 
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• C language based filtering systems such as CRM114, DSPAM and Bogofilter spend 
less time on the same workload than Perl based ones such as SpamAssassin, although 
the latter one may provide better APIs to email systems. However, it is worthy noting 
that the experiments do not focus on the accuracy of the email filtering systems under 
study. 

• Profiling results reveal that regular expression matching, hashing and statistical 
algorithm computation take the majority of the CPU cycles. Among them, regular 
expression matching is the top cycle killer function. From simulation experiments on 
CRM114 with Simplescalar, we find out several guidelines that can help processor 
design for filtering emails. 

• Larger cache associativity improves the cache miss rate, but the improvement is not 
significant after 16-ways. 

• Larger data cache helps, but the benefit is not significant after the cache size increases 
to more than 128KB. 

• Four integer ALUs seems enough for the default processor configuration. Floating point 
functional units are not sparse resources, one FP ALU and one FP Multiplier are 
sufficient. 

The above findings help us understand the workload of email filtering systems. We will 
investigate hardware acceleration for the identified time consuming functions in the future. 
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