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ABSTRACT

Recently, secure in-network aggregation in wireless sensor networks becomes a challenge issue, there is
an extensive research on this area due to the large number of applications where the sensors are
deployed and the security needs. In the last few years, aggregation of encrypted data has been proposed
in order to maintain secrecy between the sensors and the sink, so the end-to-end data confidentiality is
provided. However, the data integrity was not addressed. In this paper, we propose RSAED that allows
integrity verification at intermediate nodes, ensures the base station to receive ciphertexts which come
only from legitimate nodes and also improves the efficiency. Through implementation results, we evaluate
our scheme using computation and communication overhead.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are composed of a large number of sensor nodes, which
actually have a wide range of applications such as military surveillance, environmental
monitoring and construction safety. Due to their design, sensor nodes tend to have a limited
storage space, energy supply and communication bandwidth, and every possible solution that
aims to reducing the usage of these resources is widely sought [1]. Data aggregation is one of
solutions, which is widely used, it allows in-network processing which leads to lesser packet
transmission and reduces redundancy, and hence, helps in increasing the network lifetime [2].

In-network processing is done at aggregator node or intermediate node in the case of multi-hop
network, it aggregates the data coming from its child nodes by performing the aggregation
function such as min, max, average, sum etc. and sends the result to the upper level node or
sink. However, in hostile environments, the aggregated data should be protected from various
types of attacks that can be launched by unauthorized or compromised nodes, and hence,
security services such as data confidentiality and data integrity are widely desired for providing
security [3].

To cope with the security risks, several studies have been proposed to secure data aggregation in
WSNs, and they can be classified into two categories: hop-by-hop security schemes and end-to-
end security schemes. In the former, the data is encrypted in each node of the network, and
before encrypting, each intermediate node needs to decrypt and aggregate the data, this process
not only prevents the secrecy of data, but also, results in an important computation overhead and
delays. In order to provide data secrecy, several end-to-end security schemes have been
proposed in which the data is concealed end-to-end i.e. the data is encrypted only at sensing
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nodes and decrypted only at the base station. In these schemes, the intermediate nodes perform
the aggregation function over encrypted data without decrypting which leads to lesser
computation overhead and provides the end-to-end data confidentiality [4]. However, in these
solutions, the homomorphic encryption is used and it is known that this kind of encryption
suffers from malleability, in other word, given a ciphertext c, an attacker can easily generate a
ciphertext c’ in order to deceive the base station by accepting the corresponding m’ that is
related to the original plaintext m, and without necessarily known to the attacker [5]. Therefore,
it is of primordial importance to develop secure in-network aggregation schemes that provide
both data confidentiality and data integrity.

In this paper, we present RSAED to solve the above problems and also improve the efficiency
and the robustness of WSNs. Our contributions are summarized as follow:

• We introduce the additive homomorphic Elliptic Curve El Gamal (ECEG) to provide
the end-to-end confidentiality.

• We propose (S-ECEG) a secure ECEG with respect to active attacks.

• We propose RSAED to reduce the overhead at aggregator nodes.

• We provide implementation results of our scheme using TinyECC library.

The rest of the paper is organized as follow: in the next section, we present our system model
and design goals. In section III, we give a secure version of ECEG for end-to-end security with
respect to active attacks. In section IV, we present our RSAED. In section V, we review some
previous related works. Finally, we end the paper by conclusion.

2. SYSTEM MODELS AND DESIGN GOALS

2.1. Security model

In order to provide the end-to-end confidentiality, the homomorphic encryption is used, which
allows calculation on encrypted data without decrypting and prevents the intermediate nodes to
access to the plaintext [6]. An encryption algorithm is accepted to be additively homomorphic
if:

Enc (α+β) = enc (α) + enc (β) (1)

And multiplicatively homomorphic if:

Enc (α × β) = enc (α) × enc (β) (2)

Both symmetric and asymmetric encryption can satisfy the homomorphic encryption, but
recently [7], those based on symmetric cryptography were cryptanalyzed [8], and therefore, for
security reasons, it is preferred to use the Public Key Cryptography (PKC). It is known that
using PKC incurs a very high computation overhead, but the recent results showed that elliptic
curve cryptography is feasible, and can be implemented in devices that have limited resources
[9]. The major advantage of using ECC is that it provides the same security level as that offered
by existing PKC schemes with smaller key size ‘see table 1’.

Symmetric
Key Size

(bits)

RSA and DSA
Key Size

(bits)

ECC Key Size
(bits)

80 1024 160
112 2048 224
128 3072 256
192 8192 384
256 15360 512

Table 1. Comparison of key length [10]
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In this work, we use Elliptic Curve El Gamal (ECEG) and its additive homomorphic property
described in [11], where the authors studied the PKC candidates for end-to-end security in
WSNs, and they showed that ECEG is the most promising scheme. In the following, we give a
brief introduction to ECC and then describe the additive homomorphism for ECEG.

 Elliptic curve cryptography

ECC is a public key cryptography approach based on the algebraic structure of elliptic curves
over finite fields [10]. There are two types of finite fields where the elliptic curves are defined:
prime fields Fp, where p is a large prime number, and binary fields F2m. In this work, we are
interested in the use of elliptic curves over prime fields E (Fp). Let p > 3, then a non-
supersingular elliptic curve E over Fp is defined as the solution of (x, y) ∈ Fp x Fp to the cubic
equation:

y²=x3+ax+b mod p (3)

Where a, b ∈ Fp such that 4a3 + 27b2 ≠ 0 (mod p) together with a special point ∞ called the point
at infinity, The group of points forms an abelian group with addition operation so that the
addition of any two points results in another point on the same curve. The addition operation
between two points is defined as follows: Given two points P1 and P2, with the coordinates (x1,
y1), (x2, y2), respectively. If P1 ≠ P2 then the addition result of P1 + P2 is P3=(x3, y3), with:

x3 = λ2 – x1 – x2 mod p (4)
y3 = λ (x1 – x3) – y1 mod p                                                 (5)

And

λ = ((y2 - y1)/(x2 - x1)) mod p, if P1 ≠ P2 (adding) (6)
λ = ((3x1

2 + a)/2y1) mod p, if P1 = P2 (doubling) (7)

Note that the inverse of a point P1 is –P1= (x1,-y1) and P1 + ∞ = ∞ + P1 = P1, The product Q =
k.P of a point P on curve with a scalar k is called scalar point multiplication and it is performed
by a sequence of point addition and point doubling. The security of all cryptographic protocols
based on elliptic curves depends on the Elliptic Curve Discrete Logarithm Problem (ECDLP).
The ECDLP can be defined as the problem of finding the scalar k such that Q=kP given Q and
P. The reader is referred to [10] for more detail.

 The additive homomorphism for EC El Gamal

KeyGen: Given the domain parameters (a,b,p,G,n,E) of an elliptic curve E over finite field Fp

where p is a large prime that satisfy equation (3). Where G is the base point of order n, note that
n*G = ∞, the private key x is randomly selected from [1, n-1], the public key is Y=xG, another
point on the curve.

Encryption: Given the plaintext m and Y, output C

1. k ∈ [1, n – 1]
2. M = map (m)= mG
3. C= (R, S) = (kG, kY+mG)

Homomorphic operation: Given C1, C2... Cn, output C’

C’= (k1G, k1Y+m1G)+(k2G, k2Y+m2G)+…+(knG, knY+mnG)
C’= ((k1+k2+..kn)G, (m1+m2+mn)G+(k1+k2+..kn)Y)
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Decryption: Given C’ and the private key x, output m

1. M = S – xR
2. m =rmap(M)

The map function satisfies the desired additive homomorphic property. However, the reverse
mapping function is the shortcoming of this scheme, the reverse function maps a given point M
into a plaintext m, and thus, the ECDLP (defined above) on M must be resolved. In the
following, we give an illustrative example.

Let consider p=11, a=1, b=6. The elliptic curve E over F11 is represented by the equation
y²=x3+x+6 mod 11, all points of this curve are (2,4), (2,7), (3,5), (3,6), (5,2), (5,9), (7,2), (7,9),
(8,3), (8,8), (10,2), (10,9), along with a point at infinity ∞. The point G= (2, 7) is the generator.
The group of points generated by G over E (F11) can be calculated using the above equations of
addition and doubling formulas. The points are: G=(2,7) 2G=(5,2), 3G=(8,3), 4G=(10,2),
5G=(3,6), 6G=(7,9), 7G=(7,2), 8G=(3,5), 9G=(10,9) 10G=(8,8) 11G=(5,9) 12G=(2,4). So the
domain parameters are (1,6,11,G,n,E) where the order n is equal to 13 because nG=∞. Assume
the private key x=6, we obtain the public key point Y=xG = 6G = (7,9). We take m1=5 and
m2=3. The random number k1 for m1 is 7, k2 for m2 is 4.

M= M1+M2 = (3,6) + (8,3) = (3,5)

C1 = (k1G, M1G+k1Y) = (7(2,7),(3,6)+7(7,9) = ((7,2),(3,5))

C2 = (k2G, M2G+k2Y) = (4(2,7),(8,3)+4(7,9) = ((10,2),(2,7))

C1+C2 = ((7,2),(3,5)) + ((10,2),(2,7))

= ((7,2)+(10,2), (3,5)+ (2,7))

= ((5,9),(10,9))

M = S-xR = (10,9) – 6(5,9)

= (10,9) – (2,7)

= (10,9) + (2,-7)

= (10,9) + (2,4)

= (3,5)

The numbers utilized in the above example are very small in order to simplify the
comprehension. However, very large numbers are used in practice [12].

In order to provide integrity, we use Message Authentication Code (MAC). It is clear that the
end-to-end integrity is impossible since MAC cannot satisfy the additive homomorphic
property:

MAC (α+β) ≠ MAC (α) + MAC (β) (8)

In RSAED, hop-by-hop verification is adopted to provide both integrity and source
authentication. We use HMAC, the hash-based MAC, and the latter has the same properties as
the one way hash function including a key [13].

2.2. Network model

We assume that the network is divided into stationary clusters, and each cluster contains n
sensors nodes,”see Figure1“, each of them shares a unique authentication key with its
corresponding Cluster Head (CH). The public key of the base station is preloaded in each node.
The CH away from the base station forwards the packet to the nearest CH, and both must have a
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common authentication key. The base station is assumed to have an unlimited energy and
powerful processing capability. The pair wise key establishment is out of scope of this paper.

Figure1. Network model

2.3. Design goals

Security: For dealing the security risks, secure data aggregation scheme must provide the
following security requirements.

Confidentiality: ensures that the plaintext can only be accessible by the authorized user. All data
captured must be encrypted and prevent intermediate node to access to the plaintext.

Integrity: ensures that the received data has not been altered, either maliciously or accidentally,
during transmission.

Authenticity: ensures that the received data is sent by the claimed sender.

Availability: ensures the survivability of the network despite denial of service attacks.

Freshness: ensures that each message is recent and no old messages replayed by an attacker.

Efficiency: a security protocol must be efficient in term of computation and communication
overhead in order to preserve energy and prolong the network life time.

Robustness: a security mechanism must ensure the availability of packets even with the
presence of compromised or malfunctioning nodes.

3. SECURE ECEG
In this section, we describe a secure ECEG with respect to active attacks. In [5], the authors
studied the security of several homomorphic encryption algorithms, and they showed that
ECEG cannot be secure without additional security, because the highest security level it can
reach is against passive adversary. In the following, we describe (S-ECEG), a secure ECEG for
WSNs.

3.1. Description

Once the data is captured by a sensor node, it is encrypted by using the preloaded public key of
the base station, and then a tag is produced using the authentication key ki

j (shared with its
corresponding CH j), the nonce N and the ciphertext. The nonce is a sequence number that
should be used just once for data freshness. Finally, the packet is sent to the CH which includes
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the encrypted data and the tag. In the following, we describe S-ECEG algorithm for sensor node
SNi which is a member of CH j.

Algorithm 1: S-ECEG algorithm for sensor SNi

1. Use ECEG to produce Ci=( Ri, Si )

2. Compress the points Ri, Si

3. Compute tagi= HMAC (ki
j , Ri || Si|| Ni)

4. Send ( Ri, Si, tagi) to CH j

5. Ni = Ni + 1

Once the data received from SNi, CH j first verifies the tagi received and then decompress the
pair of points. In the other case i.e. if the verification fails then it just drops the packet. This
means that the packet was generated, either maliciously or accidentally. Finally, the
homomorphic operation is performed using point addition on elliptic curve. In the following, we
describe the S-ECEG algorithm for CH j.

Algorithm 2: S-ECEG algorithm for CH j

1. Compute tagi’= HMAC (ki
j ,Ri || Si|| Ni)

2. Compare tagi’ and tagi ; if tagi’= tagi then go to 3; otherwise drop the packet.

3. Decompress the points Ri, Si

4. Use the homomorphic property of ECEG to combine valid Ci and produce C’=( R’, S’ )
5. Compress the points R’, S’
6. Compute tag j= HMAC (kj

bs , R’|| S’|| N’)
7. Send (R’, S’, tag j) to the sink or the nearest CH.

8. N’=N’+1, and also Ni..n=Ni..n+1

This process is repeated until the final encrypted aggregate reaches the base station. Once the
data received, the base station first verifies the integrity of all the incoming packets from CHs,
and then decompresses the points. Finally, the decryption process is applied using the private
key. For retrieving the aggregated plaintext m= m1+m2+ … + mn, the ECDLP on M must be
resolved and since the base station is assumed to be secure with unlimited available energy, the
ECDLP can be calculated efficiently using Pollard-λ method on elliptic curve cryptosystem
[14].

3.2. Security analysis

It is clear that, with the use of a homomorphic encryption algorithm, the data is concealed end-
to-end, and therefore the data confidentiality service is ensured. The passive adversaries cannot
learn anything from any ciphertext about its corresponding plaintext, thanks to the properties of
ECEG algorithm which is probabilistic and where the security relies on the hardness of ECDLP.
However, when considering security against active adversaries, a verification of the data
integrity is needed in order to ensure that all the data were ported successfully, in S-ECEG, each
sensor of the network computes a tag using HMAC algorithm on ciphertext, and every
intermediate node then verify the data integrity, execute the homomorphic operation if the
verification hold; otherwise, the packet will be dropped, with this process the data integrity of
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all packet is maintained and all senders are authenticated. In the following, we provide a
security analysis of S-ECEG regarding the active attacks described in [5].

Replay attacks: a compromise node cannot replay an old packet due the use of nonce and once
the tag is verified, the verifier can be sure that the packet received is recent and not replayed and
hence, S-ECEG provides data freshness.

Malleability: the malleability is one of the open research problems in cryptography because the
adversary can easily change the ciphertext content, and the fact that this ciphertext is accepted
by the reader device once received, so an additional security is severely desired. In S-ECEG, we
use HMAC to prevent attacks against data integrity. Therefore, the attacker cannot succeed
because it cannot produce a valid tag for a modified ciphertext without the valid key.

Unauthorized aggregation: in S-ECEG, an unauthorized aggregation can be performed if and
only if the attacker can obtain the valid MAC key. Otherwise, our scheme is secure against this
attack.

Forge packet: due to the properties of public key cryptography, anyone can produce his own
ciphertext, so the data integrity is needed, as previously mentioned S-ECEG use HMAC to
prevent packet forgery.

Physical attacks: in S-ECEG, if an attacker can physically compromise an aggregator node and
can obtain the MAC key, so the data integrity is affected. However, the data confidentiality is
maintained due to the use of a public key encryption scheme.

In addition, the forged ciphertext is dropped by intermediate nodes if the tag verification fail,
the modified packet can be filtered and dropped as previously as possible, and once the final
encrypted aggregate is successfully verified, the base station can be sure that the integrity of all
ciphertexts has not been breached and also, the base station can be certain that only legitimate
nodes could have produced that ciphertexts. In other words, S-ECEG blocks denial of services
attacks, it provides availability of packet even with the presence of compromised nodes in the
network. Therefore, our scheme improves the robustness of WSNs.

3.3. Performance evaluation and discussion

In this section, we present the performance evaluation of S-ECEG in terms of computation and
communication overhead.

• Computation overhead

S-ECEG is implemented on MicaZ mote from Crossbow [15], equipped with the 8-bit
ATmega128L processor clocked at 7.3728 MHz, 4 kB RAM, and 128 kB Flash memory. NesC
as a network embedded system language, using TinyECC library and TinyOS. TinyECC is a
freely available ECC implementation library that provides elliptic curve operation over Fp, for
more details see [16], and TinyOS is an open source operating system for WSN [17], for our
application, the SEC recommended secp160r1 parameters are used and the simulation is done
using TOSSIM/AVRORA, Tossim as a WSN simulator and Avrora to measure the execution
time of our cryptographic functions. Avrora is a cycle–accurate emulator for AVR
microcontroller [18], we use the beta 1.7.x version released in November 2007 that support
MicaZ platform.

The module SECEGM.nc implements initialization, encryption, homomorphic operation and tag
calculation functions, namely SECEG.init(), SECEG.encrypt(), SECEG.hom_add() and
SECEG.tag() respectively. In Elliptic Curve Cryptography, the most expensive operation is the
scalar point multiplication. TinyECC provides a number of optimizations switches, which can
be turn on or off based on application's needs, including Sliding Windows Methods (SWM)
which improves significantly the execution time of scalar point multiplication especially when
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the base point is fixed and known a priori. In our code, we use SWM, and HMAC provided by
TinyECC. According to [19], the energy consumption P of each arithmetic operation can be
calculated by using the formula P = U×I×t, whereby U denotes the voltage, I denotes the
current, while the execution time is represented by t, the voltage and the current was assumed to
be 3V and 8 mA, respectively. Table 2 summarizes the execution time and energy consumption
of various cryptographic function of S-ECEG.

Operation Execution
time

Energy
consumption

Encryption 2.844s 68.256 mj
Hom.operation 1.499s 35.976 mj
Tag calculation 0.028s 0.672 mj

Table 2: Execution time of S-ECEG functions in MicaZ motes.

The encryption involves following ECEG, two scalar point multiplications with a random 160
bits value and another one with the message m, which is taken 8 bits for test, also the points G
and Y i.e. the base point and the public key of the base station are known a priori then, by using
SWM, a table of precomputed point can be calculated offline and just once. Therefore, a sensor
node in our scheme spends 68.937 mj, 68.265 mj for encryption and 0.672mj for tag calculation.

The execution time showed in Table 2 for homomorphic encryption involves the addition of two
ciphertexts. In S-ECEG, once the data received, the CH first verifies tags, and for two packets
the CH spends 37.992 mj, 2*0.672mj for two tags verification, 35.976mj for homomorphic
operation and 0.672 mj for its own tag. In homomorphic operation, the most expensive
operation is point decompression. For bandwidth purpose, in S-ECEG we use point
compression on curve, and consequently, the CH cannot add ciphertexts in their compressed
form, in order to decompress, the CH must resolve the curve equation [20].

• Communication overhead

For communication aspect, the ciphertext is represented with a pair of points on curve namely R
and S. As previously mentioned, we use point compression which allows representing a point
using the minimum possible number of bits where a point is represented by it x coordinate and
one additional bit of information. The corresponding y coordinate can be computed using x and
this additional bit. In the example presented in section 2.1, assume that SN1 senses the data m1

and SN2 the data m2. The compressed ciphertexts sent to the CH are ((7,0),(3,1)) and
((10,0),(2,1)) for SN1 and SN2, respectively. The additional bit is necessary because there exist
two solutions to equation (3) for a given x, for example x=7 have the two solutions y=2 and
y=9. In our implementation, we use secp160r1, so the total size of a point is 161 bits (21 bytes).
Thus, the size of a ciphertext is 42 bytes. In contrast, the HMAC used output 160 bits (20 bytes)
and hence the total size of S-ECEG packet is 62 bytes.

• Discussion

The computation overhead at aggregator nodes is very important, and this is due to the
expensive operation of elliptic curve, namely the point decompression. By increasing the
number of cluster members, aggregator node (CH) needs to perform more and more point
decompression over ciphertexts and this leads to energy depletion and consequently, the
network lifetime is threatened. Also, the maximum packet size in TinyOS is 39 bytes and for
packet transmission in S-ECEG, each node must to send 62 bytes, the solution is to divide the
packet into 2 blocks and send each block separately to the aggregator, this solution incurs not
only an important overhead but also delay, because the aggregator must to wait the reception of
all blocks to perform the homomorphic operation. We can also modify the packet size in
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TinyOS and send a big packet, but in unreliable links such as in WSNs, this solution increases
the bit error rate and decreases the reliability of the network. To overcome the above problems,
we propose RSAED in order to reduce the overhead at aggregator nodes. In the proposed
scheme, each cluster contains two aggregators instead of one aggregator used in the previous
solution.

3. RSAED: ROBUST AND SECURE AGGREGATION OF ENCRYPTED DATA

3.1. Scheme details

Our scheme consists of four steps for efficiently and securely aggregates the encrypted data in
WSNs. In the following, we describe the scheme.

1-selection of aggregators

In this step, two nodes (aggJ1, aggJ2) in each cluster J are dynamically elected ’see figure 2’,
the election algorithm is based on the available energy of the node and higher energy
availability higher the probability to become an aggregator nodes, the two brother aggregators
elected must share an authentication key.

2-data transmission

Each sensor nodes SNi computes the ciphertext on the data captured using ECEG algorithm, and
sends the two parts (compressed points) of the ciphertext namely R and S to agg1 and agg2,
respectively, along with a tag produced by using the key shared with the corresponding
aggregator. For example for cluster J:

SNi aggJ1               IDSNi | Ri | HMAC (Ki,aggJ1 , Ri| Ni)
SNi aggJ2               IDSNi | Si | HMAC (Ki,aggJ2 , Si| Ni)

3-inter aggregators verification and aggregation

Once received, the encrypted data is verified by both aggregators and similarly to S-ECEG the
packet that failed to the check process will be dropped and the corresponding node id will be
maintained in a list. Thereafter, aggJ2 sends a verification message to aggJ1 containing the
number of legitimate packets (NLP) and the list of malicious nodes, aggJ1 then compares with
its check results and then sends the result to aggJ2, the result is the same packet as received
from aggJ2 if the comparison hold; otherwise aggJ1 sends its own check results. For example:

AggJ2 AggJ1 IDAggJ2| NLP | list | HMAC (KaggJ2,aggJ1 ,IDAggJ2 | NLP | list | NAggJ2-J1)
AggJ1 AggJ2 IDAggJ1| NLP | list | HMAC (KaggJ1,aggJ2 , IDAggJ1 | NLP |list | NAggJ1-J2)

After the verification process, the brother aggregators filter out all malicious packets and then
the addition operation over the parts of ciphertext can be done by first decompress the points
and then using points addition on elliptic curve. For example:

AggJ1: computes RaggJ1=R1 + … +Rn

AggJ2: computes SaggJ2=S1 + … +Sn

The aggregated points computed are then sent to the base station or the nearest aggregator of the
nearest cluster, ‘see figure 2’. For example:

AggJ1 BS   IDAggJ1| RaggJ1| HMAC (KaggJ1,bs , R| NAggJ1-BS)
AggJ2 BS IDAggJ2| SaggJ2| HMAC (KaggJ2,bs , S | NAggJ2-BS)

4-base station verification

Once the final encrypted aggregate received from aggregators, the base station first verifies the
packets integrity and authenticates the senders, and then invokes the decryption process
corresponding to ECEG algorithm.
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Figure 2. An example of RSAED aggregation model

3.2. Security analysis

Our scheme involves a second aggregator node in each cluster, and this aims to reduce the
overhead at aggregator nodes of the previous solution, this technique do not affect the security
of the scheme. In addition of security analysis of S-ECEG, in the following, we analyze the
security of RSAED.

• Malicious sensor nodes

In our scheme, there are the two aggregators that perform the role of aggregation over encrypted
data, which compute an aggregation result part each, and report it to the base station or the
nearest aggregator. The simple way of an attacker to modify the aggregation result and
consequently deceive the base station by accepting a forged packet, is to put some malicious
nodes into the network and try to inject erroneous packets or even replay previous packets
through these nodes. This attack can succeed if the ECEG algorithm is used alone because the
scheme is malleable, and only one compromised node is able to modify the correct result. Our
scheme allows hop-by-hop verification and since these malicious nodes do not possess the
MAC key, they can’t disturb the network, and the forged packets are detected and dropped at
aggregator nodes. Also, during verification in the third step, the brother aggregators agree on a
specific list which contain the same malicious nodes and aggregate the parts (points) which
come from the same legitimate nodes.

• Compromised aggregator nodes

Usually, the data aggregated by these nodes concerns several nodes of the network, so it is more
interesting for an attacker to compromise this kind of sensor instead of a simple leaf sensor
measure. Our scheme uses homomorphic encryption and consequently, anything is revealed to
the aggregators about the plaintexts. Furthermore, we use hop-by-hop verification that prevents
packet forgery and improves the robustness of WSN, for example, if one of the aggregators of a
cluster is compromised, and then, detected by the upper level, the corresponding packet is
dropped and during the inter aggregators verification of the upper level, the packet received
from the brother of compromised node will be also dropped, and hence, transmitting packets
which come only from legitimate nodes.
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• Node failure

In RSAED, the hop-by-hop verification is adopted and can tolerate the node failure. The
legitimate packets are available and can reach the base station even with the presence of
malfunctioning nodes in the network, and this is done by just skipping the point of failure, and
consequently, the robustness of WSN is improved.

3.2. Performance evaluation

Our scheme aims to reduce the overhead at aggregator nodes by involving two aggregators in
each cluster and splitting the homomorphic operation between them. In the following, we
evaluate our scheme in terms of computation and communication overhead.

• Computation overhead

An aggregator node in RSAED computes a tag for each received packet and then sends a
verification packet to its brother, executes the point decompression and finally the point
addition over elliptic curve is performed. The homomorphic operation is calculated in a
distributed manner and this decreases the end-to-end delay compared to S-ECEG. The
homomorphic operation function of the previous TinyOS application is modified into a
lightweight function that takes in input the compressed points and gives in output the addition
result of these points. The time taken by this function is about 0.796s and consumes 19.104mj
for two points (two parts). Figure 4 shows the effect of increasing the number of sensor nodes
on the energy consumption (computation overhead) at aggregator nodes in both RSAED and S-
ECEG. It is clear that by using two aggregators reduces significantly the computation overhead
at aggregator nodes and hence the network lifetime is improved. Figure 5 illustrates the benefits
of using a distributed computing on the end-to-end delay (we assume that the aggregator nodes
communicate directly with the base station). For example for 20 sensor nodes, the base station
must to wait approximately 19 seconds to receive the aggregated encrypted data by using S-
ECEG, while it must wait just 9.5 seconds with RSAED. Furthermore, the lightweight function
saves 140 bytes of memory, compared to that used in S-ECEG.

• Communication overhead

In RSAED, each sensor produces a ciphertext and sends the two parts to its corresponding
aggregators by using the following packet format:

Figure 3: packet format

For HMAC, the output is truncated and only 10 bytes are used. Each sensor nodes uses the
above data packet format, which results in 37 bytes. And hence, our scheme avoids the
problems of dividing into blocks which incurs delay and using big packets which decreases the
reliability of WSN. If we assume that each cluster consist of N sensor nodes including the two
aggregators, the number of packets received by aggregator nodes in our scheme is N-1, N-2
packets from sensor nodes and one packet from its brother for verification purpose. In figure 6,
we compare with S-ECEG where each sensor divides the ciphertext into blocks and sends each
block separately.
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Figure 4 Computation overhead vs. Number of sensor nodes

Figure 5 End-to-end delay vs. Number of sensor nodes
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Figure 6 Number of received packets vs. Number of nodes

5. RELATED WORKS VS RSAED
In the area of WSN, several approaches have been proposed to secure data aggregation.

The protocol proposed in [21] provides data integrity by using delayed aggregation and delayed
authentication i.e. the data aggregation is performed at grandparent nodes instead of parent
nodes and the authentication is verified once the shared key is revealed by the base station. Even
if the proposed scheme provides integrity, data secrecy is not provided because the data is sent
in plaintext format. In our scheme, we use an additive homomorphic encryption scheme that
provides the end-to-end confidentiality, where the encryption is performed at sensor node and
the decryption is performed only at the base station.

The authors of [22] proposed the first secure data aggregation based on elliptic curve
cryptography, in their scheme the data is encrypted hop-by-hop, and once received the CH
computes the average and sends the results to its members, each sensor then compares the result
with its own value and if the difference goes beyond threshold, partial signature on average is
performed and sent to CH, the CH then combines all signatures in one full signature and
forwards the result to the base station. Their scheme incurs high communication costs to
validate the data, and can only support the average aggregation function. Our scheme reduces
significantly the energy consumption due to the reduced number of messages sent to validate
the data, and can support all aggregation function that can support an additive homomorphic
encryption described in [5].

In [23], the authors proposed a symmetric homomorphic encryption in which an addition of
plaintext to the current key shared with the base station modulo the length of key space is
performed for encryption, and for decryption, the base station needs exactly the same keys used
for encryption to obtain the plaintext. Their scheme provides end-to-end confidentiality, but
data integrity is not addressed, furthermore, there is a problem of sensor identities because the
base station must know exactly which sensor is part of aggregate to subtract the corresponding
key. In our scheme we provide both data confidentiality and data integrity, and due to the use of
public key encryption our scheme haven’t id’s problem of symmetric encryption.

The work in [24] provides both the end-to-end confidentiality and the end-to-end integrity, for
the former the authors used ECEG and for integrity purpose they used aggregate signature based
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on bilinear maps [25], the features of an aggregate signature scheme are that the final verifier
has to know not only the individual data but also the public key used for signature in order to
verify the final aggregate signature, for this purpose the authors employ an encoding function
that allows the base station to extract individual data, the problem in this function is that if the
number of node  increases the packet size increases. In our scheme the verification is performed
hop-by-hop using HMAC which leads to lesser computation overhead comparing with their
scheme, and also the packet size is always the same in RSAED.

In [26], the authors proposed the end-to-end integrity with aggregate signature by using a
signature scheme without hash function to allow addition operation. Their scheme leads to an
important computation and communication overhead because the packet includes ciphertext,
signature, and public key. Also, their scheme can only verify the final aggregate, so if the
verification fail, then an important number of legitimate packets is lost which leads to a
significant waste of valuable network resources. In our scheme, the hop-by-hop verification
saves bandwidth and computation capabilities, and allows verifier to drop forge packets,
therefore, the legitimate packets can reach the base station and the robustness of WSN is
improved.

6. CONCLUSION

We have presented RSAED to secure data aggregation in WSN. The proposed scheme is based
on an additive homomorphic encryption algorithm that allows aggregation on encrypted data. In
addition, our scheme provides data integrity and improves the robustness of the network.
Implementation results show RSAED‘s applicability to WSN. In future work, we aim to
improve the performance of the most expensive elliptic curve operations of our scheme namely
the scalar point multiplication and the point decompression and also, provide further
simulations.
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