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ABSTRACT 

 
Previous work introduced the idea of grouping alerts at a Hamming distance of 1 to achieve lossless alert 

aggregation; such aggregated meta-alerts were shown to increase alert interpretability. However, a mean 

of 84023 daily Snort alerts were reduced to a still formidable 14099 meta-alerts. In this work, we address 

this limitation by investigating several approaches that all contribute towards reducing the burden on the 

analyst and providing timely analysis. We explore minimizing the number of both alerts and data elements 

by aggregating at Hamming distances greater than 1. We show how increasing bin sizes can improve 

aggregation rates. And we provide a new aggregation algorithm that operates up to an order of magnitude 

faster at Hamming distance 1. Lastly, we demonstrate the broad applicability of this approach through 

empirical analysis of Windows security alerts, Snort alerts, netflow records, and DNS logs. The result is a 

reduction in the cognitive load on analysts by minimizing the overall number of alerts and the number of 

data elements that need to be reviewed in order for an analyst to evaluate the set of original alerts. 
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1. INTRODUCTION 
 

Human review of security logs is a difficult and labor-intensive process. This is especially true in 

the area of intrusion detection systems (IDSs) which often suffer from extremely high false posi-

tive rates (see, e.g. [1] [2] [3] [4], among others). This problem is exacerbated in signature-based 

systems such as Snort
1
 [5], where broadly-written rules may trigger repeatedly on innocuous 

packets. This large number of false positive results creates a significant workload for IDS ana-

lysts, who must sort through them in order to locate the relatively few true positives.  It is thus 

desirable to automate abstraction and correlation of the logs so as to enable analysts to make effi-

cient decisions.  

 

The work of [6] mitigated this problem by providing an algorithm to aggregate Snort intrusion 

detection alerts with discretely-valued fields by combining those that are at most Hamming dis-

tance 1 apart. This approach was shown effective in both reducing the number of resulting meta-

alerts that need to be reviewed by analysts and in increasing their interpretability (see [6] for ex-

                                                                 

1 Any mention of commercial products or reference to commercial organizations is for information only; it does not 

imply recommendation or endorsement by the U.S. government nor does it imply that the products mentioned are nec-

essarily the best available for the purpose. 
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ample meta-alerts). Related alerts were merged, reducing human analysis time and enabling more 

rapid identification of significant threats. Furthermore, the reduction of alerts to meta-alerts was 

lossless in that the original alerts could be reconstructed from the meta-alerts. This was important 

because it provided analysts all alert information when making relevancy decisions. The method 

achieved an average alert reduction of 83.2 % applying their method to 30 days of Snort alerts 

grouped by hour, with an execution complexity of O(n
2
) where n represents the number of alerts. 

 

While the reduction on Snort alerts using a Hamming distance of 1 was significant, the remaining 

number of meta-alerts was still considerable (although it should be understood that their data was 

taken from a large enterprise-scale production network). For example, a mean 24 hour time slice 

of 84023 alerts was reduced to a mean of 14099 meta-alerts by aggregating on hourly batches. 

Reviewing such a number of meta-alerts on a daily basis still represents a challenge despite the 

improvement.  

 

In this work, we address this limitation by investigating several approaches that all contribute 

towards reducing the cognitive load on the analyst, by both reducing the overal number of alerts 

and reducing the number of data elements that need to be reviewed in order for an analyst to 

evaluate the set of original alerts. We also investigate approaches that providing more timely 

analysis. In performing this exploration, we uncover several new aggregation capabilities not 

available in the original work. 

 

1) We explore how to decrease the number of meta-alerts alerts down to some user defined 

maximum by varying the Hamming distance used for aggregation (the original work operated 

only at a Hamming distance of 1). We find that increasing the Hamming distance monotonically 

decreases the number of meta-alerts, while at the same time increasing the level of abstraction of 

those alerts. Also, we empirically discover that there exists an operating point that presents a min-

imum number of overall data elements, consistently at low Hamming distances (universally be-

tween 1 and 4 in all of our data sets). This is important because the number of data elements re-

flects the amount of work that must be done by the analyst. 

2) We explore how increasing bin sizes reduces the number of meta-alerts (something not 

tested in [6]). For example, for Hamming distance 1 aggregation using the original algorithm, the 

aggregation rate for Snort alerts rises from a mean of 83.2 % for hourly bins to 96.1 % for daily 

bins. We can thus reduce the mean daily time slice of 14099 meta-alerts from [6] down to a mean 

of 3276 meta-alerts. This is a much more manageable workload for human review by a large en-

terprise. 

3) Lastly, we present a new O(nlogn) hypergraph based aggregation algorithm that can run up 

to an order of magnitude faster at small Hamming distances, thus facilitating on-demand analysis 

of larger time slices. Furthermore, its construction allows for a streaming mode where alerts are 

analyzed upon arrival and aggregated meta-alerts dumped on demand, a capability that cannot be 

replicated using the intrinsically batch-oriented approach in [6]. The new algorithm provides 

slightly better aggregation (a 4.9 % improvement for daily bins of Snort alerts at a Hamming dis-

tance of 1).  

 

The original research also focused solely on a single Snort IDS data set. In this work, we demon-

strate more general applicability of the Hamming distance aggregation approach by applying it to 

three new data types: Windows security alerts, Cisco version 5 Netflow, and Domain Name Ser-

vice (DNS) request logs. We also reevaluate the Snort data set from [6] for comparative purposes. 

Lastly, we improve upon the original work by providing a Public domain Python 2.7.3 implemen-

tation for our new aggregation algorithm (available at [7]).  

 

 

 

In summary, the primary contributions of this paper are: 
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─ An analysis of how increasing Hamming distance decreases the number of meta-alerts. Also 

we empirically discover that there exist operating points that that yield a minimum number of 

overall data elements at consistently low Hamming distances (typically on the order of √� 

where m is the number of columns in the data). 

─ The discovery that increased bin sizes reduces the number of meta-alerts.  

─ Provision of a new O(nlogn) hypergraph based aggregation algorithm that has streaming mode 

capabilities, better aggregation, and up to an order of magnitude improvement in runtime at 

small Hamming distances. 

─ Evidence of the applicability of Hamming distance aggregation to four data sets: Snort, Win-

dows security events, Netflow, and DNS. 

─ Provision of public domain Python 2.7.3 code for our new aggregation algorithm. 

 

The impact of these results is as follows. The results that minimize the number of alerts to review 

reduce the context switching that an analyst must perform between reading distinct alerts. The 

results that minimize the number of data elements to review reduce the overall amount of data 

that an analyst must ingest to understand the set of original alerts (and a certain view of their 

relationships). The results that increase the speed of analysis (and offer a streaming mode 

operation) reduce the latency in which an analyst receives the data to review. The provision of 

working code enables immediate testing and use by operational groups. 

 

The development of the work is as follows. In section 2, we discuss related work. In section 3, we 

provide a definition and an example of Hamming distance aggregation. In section 4 we present a 

new Hamming distance aggregation algorithm and section 5 discusses our expansion to the 

previously published algorithm. In section 6 we describe the input data sets and our experiment; 

section 7 provides the results. Although covered in [6], section 8 reviews the intuition behind the 

Hamming Distance aggregation approach. We also provide our experience with its use and feed-

back from operational analysts. Section 9 summarizes our conclusions. 

 

2. RELATED WORK 
 

The problem of alert aggregation has been addressed from a variety of perspectives.  A more gen-

eral overview is presented in [6], however in brief, alert aggregation approaches fall into two 

broad categories.  

 

The first category involves expert knowledge used to construct a system for classifying, 

correlating, and ranking alerts based on external knowedge of existing attacks  [3] [8] [9] [10] 

[11] [12], network vulnerabilities [3] [9], or both [10]. Rules may also be aggregated using user-

defined similarity metrics based on expert knowledge [3], and some alerts may be completely 

ignored outright if prior knowledge suggests that they are irrelevant [13]. 

 

The second category encompasses probabilistic and data mining approaches, which are used to 

group and aggregate alerts without requiring the construction and maintenance of external data 

stores or schema. IDS alerts are often discrete in nature, however, which often poses a challenge 

to such methods [14]. Nevertheless, a variety of approaches [1] [15] [16] have been developed in 

this area that have been empirically demonstrated to be effective, even when they rely on 

assumptions (such as a Gaussian distribution of continuous features) that while functional in 

practice are clearly not accurate in a theoretical sense. 

 

Recent work somewhat related is found in [17]. They identify frequent patterns in alert logs by 

use of the Frequent Pattern Outlier Factor (as developed by [18]), classifying variable-length 

alerts by identical subsequences of values and ranking them by the frequency of the subsequences 
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in the data. The top arbitrary quantile of alerts with the least common patterns are presented as 

‘candidate true alerts’ and the rest discarded. While our work also classifies on identical subse-

quences, our goal is aggregation of similar alerts into a reduced set of meta-alerts without discard-

ing any data. 

 

3. OVERVIEW OF HAMMING DISTANCE AGGREGATION 
 

Hamming distance aggregation at an aggregation distance of d may merge a group of alerts into a 

meta-alert if the alerts have at most d fields that do not match. An alert may be merged only with 

itself to create a meta-alert that covers only that single alert. We define an optimal Hamming dis-

tance aggregation as the smallest possible set of meta-alerts that cover all original alerts at some 

maximum Hamming distance d. 

 

As an example, consider the alerts in Table 1. Alerts 4 and 5 may be aggregated at Hamming dis-

tance 1 into meta alert (B,F,*), where * is equal to the set (J,K), because they disagree only on 

one column, 3. Alert 1 cannot be aggregated because it has two columns, 2 and 3, whose values 

do not match any other alerts. In this way, alerts 2 and 3 also may not be aggregated with any 

other alerts because each disagrees with all other alerts on 2 columns.  

 
Table 1. Example set of alerts to be aggregated 

 

Alert  

Number 

Column 

1 

Column 

2 

Column 3 

1 A C G 

2 A D H 

3 A E I 

4 B F J 

5 B F K 

 

4. HYPERGRAPH-BASED ALGORITHM 
 

This section provides a new hypergraph based Hamming distance aggregation algorithm that op-

erates in O(nlogn) through leveraging a set cover approximation algorithm. 

 

4.1 Leveraging Set Cover 
 

In the set cover problem as described in [19] we are provided “a finite set X and a family F of 

subsets of X, such that every element of X belongs to at least one subset in F.” The problem is to 

find the minimal subset, S, of F such that S includes all elements of X. Thus, the union of the sub-

sets in S must be equal to X. More formally, given X and F as described above where �� �
�, �	 � 
: � � 	, we wish to find a minimal �  
:���� � � �.  The set cover problem is known 

to be NP-complete [20] and is thus not currently tractable in polynomial time. 

 

It can be proven that Hamming distance aggregation can be reduced to an instance of the set cov-

er problem (proof omitted for space). Conceptually, each alert is encoded as an element of X. 

Each possible grouping of alerts separated by a Hamming distance of at most d is encoded as an 

element of F. Identification of all such possible groups can be done in O(n) time where n is the 

number of alerts, as described later in this paper. Through this, any Hamming distance aggrega-

tion problem can be reduced to a set cover problem in polynomial time.  It therefore follows that 

any algorithm that can solve the set cover problem may be adapted to solve the Hamming dis-

tance problem. There exists a widely cited greedy approximation algorithm for set cover [21], and 
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in this paper we propose to use this approach to approximate optimal Hamming distance aggrega-

tion. 

The greedy approximation algorithm for set cover is as follows [19]: 

 

Set Cover Approximation (X,F) 

 
1. Remaining=X 

2. Soln_set= None 

3. While Remaining is not None 

a. Select an element, S, of F that maximally covers the elements in Remaining 

b. Remove from Remaining the elements in S 

c. Add to Soln_set the subset S 

4. Return Soln_set 

 

As analyzed in [19] there exists an implementation that has time complexity O(∑ |�|��� ); with 

Hamming distance aggregation the size of S may be equal to n, the number of alerts. Furthermore, 

the number of elements in F is always greater than or equal to n since in the worst case each alert 

may be merged only with itself to form a meta-alert. Using this analysis, the greedy set cover 

approximation algorithm has a time complexity of O(n
2
) when applied to Hamming distance ag-

gregation. A major contribution of our work is to use unique characteristics of Hamming distance 

aggregation to reduce this time complexity to O(nlogn). 

 

4.2 Algorithm Description 
 

In this section, we describe a high level approach using hypergraphs to aggregate alerts at varying 
Hamming distances. We then prove that the algorithm always extracts a meta-alert representing 
the largest available grouping of unaggregated alerts during each iteration, thus implementing the 
greedy approximation to the set cover problem. In the next section, we provide an efficient im-
plementation and evaluate the algorithmic complexity. 

In order to reliably extract all meta-alerts using a Hamming distance of d, we construct a hyper-
graph over the space of alerts, where each alert represents a node in the hypergraph, and each 
edge connects all nodes that are at most Hamming distance d from each other. If our alert set to be 
aggregated has n alerts with m, columns, we thus construct a hypergraph with n nodes, each node 
having mCd edges connecting it with other nodes in the graph (where mCd  is the binomial coef-
ficient). Each hyperedge thus represents a potential meta-alert and is labeled with the value of the 
meta-alert. Note that the field(s) that differ between the alerts covered by a hyperedge is denoted 
in a meta-alert by the wildcard ‘*’ character. The hyperedge label then represents all alerts cov-
ered by it.  

Using the example of the previously discussed Table 1 for illustrative purposes with a Ham-
ming distance of 1, alert 1 would be entered as a node labeled with the tuple (A,C,G), and be cov-
ered by three hyperedges: (*,C,G), (A,*,G), and (A,C,*). Similarly, alert 5 in Table 1 would be 
entered as a node labeled (B,F,K) and be covered by hyperedges (*,F,K), (B,*,K), and (B,F,*). 
Note that alert 4 in Table 1 with label (B,F,J) would also be covered by hyperedge (B,F,*), indi-
cating that both nodes covered by that hyperedge could be aggregated into a single meta-alert. 
Hyperedge (B,F,*) is the only hyperedge covering more than one node. The complete Hamming 
distance 1 aggregation hypergraph for the alerts is provided in  

Figure 1. 

 

The power of this construction is that the largest meta-alert at some Hamming distance d can be 
easily determined by finding the largest hyperedge and examining the covered nodes. 
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Figure 1. Hypergraph for Alert Aggregation Example
 

We now present our high level algorithm for Hamming distance 1 aggregation 

the greedy set cover approximation algorithm:

 

1. In the initial collection step, we assemble the alerts into a hypergraph.

2. To extract the meta-alert covering the most available alerts, we identify the hyperedge with 

the largest incident node count; this edge and all nodes incident upon this edge are removed 

from the graph and processed into a meta

date meta-alert. This handling of ties is consistent with published implementations of the 

greedy set cover approximation algorithm

3. The statistics of the hypergraph are updated to reflect the removed nodes.  In particular, the 

incident node count for each hyperedge must be updated to reflect the removal of the nod

associated with the meta-alerts.

4. Proceed from step 2 in the updated hypergraph.

 

This algorithm is straightforward

the remaining data for each iteration. However, its performance is signi

search for the next hyperedge to convert to a meta

hypergraph after the removal of the largest meta

to our algorithm to address these com

 

4.3  Implementation Details
 

Assume that there are n alerts with 

tance d. Our implementation of the high level algorithm is given below.

 

Step 1: Hypergraph Construction
 
The hypergraph is constructed by iterating through each alert (e.g., (A,C,G)) and generating every 

possible hyperedge label (e.g. for 

hyperedge label is used as a key 

hdict keys represent the hyperedges and the values

representing the nodes covered by the respective hyperedge. Thus, the total complexity of hype

graph construction is O(n×(mCd)

 

 

 

 

 

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 

 

 

. Hypergraph for Alert Aggregation Example 

We now present our high level algorithm for Hamming distance 1 aggregation that implements 

the greedy set cover approximation algorithm: 

In the initial collection step, we assemble the alerts into a hypergraph. 

alert covering the most available alerts, we identify the hyperedge with 

count; this edge and all nodes incident upon this edge are removed 

from the graph and processed into a meta-alert. In case of a tie, we arbitrarily choose a cand

. This handling of ties is consistent with published implementations of the 

edy set cover approximation algorithm [19]. 

The statistics of the hypergraph are updated to reflect the removed nodes.  In particular, the 

incident node count for each hyperedge must be updated to reflect the removal of the nod

alerts. 

Proceed from step 2 in the updated hypergraph. 

is algorithm is straightforward and will always produce the single largest meta-alert possible in 

the remaining data for each iteration. However, its performance is significantly impacted by the 

search for the next hyperedge to convert to a meta-alert as well as the process of updating the 

hypergraph after the removal of the largest meta-alert.  The next section discusses optimizations 

to our algorithm to address these computational challenges and presents time complexity results.

Implementation Details 

alerts with m data fields per alert being aggregated at a Hamming di

Our implementation of the high level algorithm is given below. 

1: Hypergraph Construction 

The hypergraph is constructed by iterating through each alert (e.g., (A,C,G)) and generating every 

for d=1, (*,C,G), (A,*,G), and (A,C,*)) in O(n×(mCd

 for inserting the alert into a hash table referred to as ‘hdict’

keys represent the hyperedges and the values are themselves smaller hash tables

the nodes covered by the respective hyperedge. Thus, the total complexity of hype

)). 
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that implements 

alert covering the most available alerts, we identify the hyperedge with 

count; this edge and all nodes incident upon this edge are removed 

alert. In case of a tie, we arbitrarily choose a candi-

. This handling of ties is consistent with published implementations of the 

The statistics of the hypergraph are updated to reflect the removed nodes.  In particular, the 

incident node count for each hyperedge must be updated to reflect the removal of the nodes 

alert possible in 

ficantly impacted by the 

alert as well as the process of updating the 

alert.  The next section discusses optimizations 

putational challenges and presents time complexity results. 

being aggregated at a Hamming dis-

The hypergraph is constructed by iterating through each alert (e.g., (A,C,G)) and generating every 

d)) time. Each 

referred to as ‘hdict’. The 

themselves smaller hash tables 

the nodes covered by the respective hyperedge. Thus, the total complexity of hyper-
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Step 2: Singleton Removal  
 
This step extracts as meta-alerts all alerts (or groups of identical alerts) that cannot be aggregated 

with any other alerts because no hyperedge connects them to another distinct alert. This can be 

done in O(n×(mCd)) time. 

 

Step 3: Sorted Hyperedge Tree 
 
Next we create a red-black tree to sort the hyperedges by size. For all keys in the hdict, we look 

up the number of alerts covered by each hyperedge in O(n×(mCd)). This creates all key-value 

pairs of the form (hyperedge label, number of covered alerts). Each key-value pair is inserted into 

the tree sorted by the number of covered alerts in O(n×(mCd)×log(n×(mCd))). 

 

Step 4: Extract Meta-Alerts 

 
We now iteratively identify the largest hyperedge, create an associated meta-alert, and call step 5 

to update the data structures to reflect removal of the hyperedge and all covered alerts. This can 

be done in O(n×log(n×(mCd))). In each meta-alert we store the hyperedge label and the values 

corresponding to the ‘*’ fields (we don’t store each alert separately), unless all alerts in the hyper-

edge are identical in which case we simply store a single copy of the alert along with the number 

of times it is repeated. 

 

Step 5: Data Structure Update 
 
For each meta-alert extracted in step 4, this step must update the data structures to make them 

ready for identification and removal of the next largest hyperedge. Doing this involves three 

parts: 1) removing the chosen hyperedge from the tree, 2) removing the chosen hyperedge from 

hdict, and 3) removing the covered alerts from all other hyperedge entries in hdict and then updat-

ing the hyperedge sizes in the tree. An amortized analysis yields O(n×(mCd)×log(n×(mCd))). 

 

All five steps together then produce a time complexity for the entire algorithm of 

O(n×(mCd)×log(n×(mCd))). We treat m as a constant since for a particular data set, the number of 

fields will be fixed. For d=1 then, we get O(nlogn) which empirically gives us up to an order of 

magnitude improvement over the O(n2) Hamming distance 1 aggregation in [6]. 

 

Note that, in contrast to the aggregation process described in [6], which evaluates a single column 

at a time across all alerts, the present method can operate in an incremental method.  At any point 

in the collection process, the construction of the hypergraph in step 1 may be briefly suspended 

and an arbitrary number of meta-alerts may be extracted, at each stage updating the hypergraph to 

account for the removal of the alerts covered by the meta-alert (a single iteration of step 3, fol-

lowed by alternating 4 and 5 for as many meta-alerts as desired). The updated hypergraph may 

then immediately begin accepting additional alerts. 

 

To limit the mCd growth from overwhelming the execution time, we have coded in a threshold 

value. If mCd exceeds the threshold then we permanently wildcard the field with the greatest en-

tropy and then try to run the algorithm again with (m-1)C(d-1). If this value still exceeds the thre-

shold then we repeat the process iteratively, walking down the mCd curve until we fall below the 

threshold. This thresholding mechanism is crucial for enabling fast operation at mid-range Ham-

ming distances. 
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5. COLUMN-BASED ALGORITHM 
 

The prior approach presented in [6] was designed to work only at a Hamming distance of 1. Like 

our algorithm, it iteratively attempts to extract the largest available meta-alert until no alerts are 

left. It identifies the largest available meta-alert through iteratively identifying columns having 

maximal sets of alerts with the same value in order to identify meta-alerts. More specifically, it 

finds the alert column with the maximum number of identical values and creates a subset of the 

alert database based on alerts with that value in that column. This procedure is done repeatedly 

and the set of alerts to be aggregated into a particular meta-alert narrows with each iteration. 

When one final column is left, unique values have been identified for all other columns. The algo-

rithm has now identified a meta-alert with an alert Hamming distance of 1. 

 

For our work, we expand this algorithm to aggregate over variable Hamming distances. We do 

this by stopping the column identification and subset operation once m-d columns have been cho-

sen and the values “fixed” for those fields to create the next meta-alert. Unfortunately, this algo-

rithm will not always extract the largest grouping from the set of available alerts as proven in 

Theorem 1 below. Thus, it does not implement its greedy set cover approach perfectly and the 

size of the successively extracted meta-alerts is may not be monotonically decreasing. In our em-

pirical studies, the size was never monotonically decreasing and thus non-optimal with respect to 

following the set cover approximation algorithm. 

 

Theorem 1: The column-based algorithm may not choose the largest available alert grouping. 

 

Proof by counterexample: Assume that the algorithm will always select the largest available alert 

grouping at Hamming distance 1 and consider the data shown previously in Table 1. It will first 

pick column 1 because it has three “A” values and it will subset alerts 1, 2, and 3 because they 

have that value. It will then look at columns 2 and 3 for those alerts and will be unable to identify 

any alerts to aggregate because they are all at Hamming distance 2. The resulting meta-alert for 

this iteration will contain only a single alert (a random choice of alert 1, 2, or 3) in order to meet 

the Hamming distance 1 constraint. However, this is a contradiction to our assumption that the 

greedy algorithm always extracts the largest set of alerts first because the actual largest grouping 

with a Hamming distance of 1 is a grouping with alerts 4 and 5. Q.E.D 

 

6. EXPERIMENTAL DESIGN 
 

We apply variable Hamming aggregation to four distinct sets of data. To show general applicabil-

ity of the approach, we evaluate DNS request logs, Cisco v5 Netflow data, and Microsoft Win-

dows security logs. For comparative purposes, we evaluate the Snort IDS dataset from [6].  

 

The Windows logs were Event Viewer security logs (.EVTX) monitoring the file system accesses 

of 11 workstations over a period of 6 months in 2013. We performed extensive tests on aggregat-

ing other Windows security event types but omit the results due to space limitations (the results 

are similar except for variance in the optimal Hamming distance required to minimize the number 

of data elements). We chose file system access events for this work as an example Windows alert 

type with both a large number of instances in the data set as well as a large number of data fields.  
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Table 2.  Experiment Data Sources 

 

Data source Number of 

fields 

Number of 

records 

Snort alerts 11 2300000 

DNS request 

logs 

7 6310856 

Cisco Netflow 

records* 

13 14066423 

Windows file 

system events 

24 78485 

 

*Typical Cisco v5 Netflow records contain 22 fields; 9 of which (2 mask fields, 2 padding fields, 

2 ASN-related fields, 2 interface-related fields, and the nexthop field)  could not be populated due 

to hardware limitations. 

 

Our experiment compares our hypergraph aggregation algorithm against the column-based algo-

rithm in [6] (that, as discussed previously, we modified to enable aggregation across variable 

Hamming distances). We focus on varying the Hamming distance and batch sizes in order to see 

the effect on the number of meta-alerts and data fields presented to the analysts while recording 

execution times.  

 

All experiments were performed on commodity computers using 3GHz quad-core Intel proces-

sors and 8GB of RAM running Python version 2.7.2. 

 

7. EXPERIMENTAL RESULTS 
 

The hypergraph approach of the present work, even when threshold values are used, reliably pro-

duces aggregation results that are as good as or better than the work of [6]. This is in respect to 

both the number of meta-alerts created, as well as the total reduction in data elements. We also 

find that increasing batch sizes results in a significant reduction in the number of meta-alerts and 

a lesser reduction in the number of data elements provided to the analysts (for both algorithms). 

Universally across our 4 data sets, the optimal Hamming distance for reduction of data elements 

was small, varying from 1 to 4. With respect to execution time, our hypergraph based algorithm 

can be orders of magnitude faster at lower Hamming distances. It is these Hamming distances that 

should be most useful as the alerts are abstracted the least and the number of data fields is minim-

al. In some low Hamming distance cases, the column based approach was incomputable, making 

use of the hypergraph algorithm necessary. Additionally, the preference towards larger batch sizes 

further supports use of our O(nlogn) hypergraph approach over the O(n
2
) column based algo-

rithm. We now discuss the empirical results supporting these findings. 

 

7.1  Reduction in Number of Meta Alerts Through Increasing Hamming Distance 
 

As the Hamming distance of aggregation increases, the total number of meta-alerts drops in a 

non-increasing fashion, to the trivial minimum of 1 when the Hamming distance is equal to the 

number of columns (since in a data set with m columns, the maximum possible Hamming dis-

tance between two items is m, and hence all items may be collected within a single meta-alert).  

Results for Snort, DNS, and Flow data are provided in Figure 2, below.  Note that in each case, 

there is a Hamming distance at which the number of meta-alerts drops dramatically; in all cases 

that we examined, this distance corresponds to the optimal Hamming distance with respect to 

total number of data elements presented (see the following section). 
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Figure 2. Reduction in number of meta
 

7.2 Reduction in Number of Data Elements Through 
 

We empirically discovered that, for each data type, there exists a Hamming distance that min

mizes the number of data elements presented to the user. Furthermore, these global optimal 

Hamming distances are small (between 1 and 4

though the number of fields varies between 7 and 24. This is important because these Hamming 

distances are those for where the meta

rationally useful. Note the correlation in 

number of fields. 
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Figure 3. Data element reduction for Snort alerts using a batch size of 10000.  

thresholded at 250 hyperedges per node.
 

Figure 4. Data element reduction for DNS requests using a batch size of 10000.  Hypergraph aggregation 

thresholded at 250 hyperedges per node.
 

Figure 5. Data element reduction for flow data using a batch size of 10000.  Hypergraph aggregation thr

sholded at 250 hyperedges per node.
 

7.3 Reduction in Number of Meta Alerts Through Increasing
 

The reduction in number of meta

for aggregation.  As additional alerts are added to the set available for aggregation, the likelihood 

that two alerts will fall within the minimum required Hamming distance of each other increases, 

and so the average number of meta

the inherent redundancy of the data.  

Netflow logs, each aggregated under their respective optimal Hamming distances, using a thr

shold of 250; comparisons with the column

running times.  Note that at a batch size of 1000 alerts the algorithm is still capable of substantial 
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Hypergraph aggregation 

. Data element reduction for DNS requests using a batch size of 10000.  Hypergraph aggregation 

. Data element reduction for flow data using a batch size of 10000.  Hypergraph aggregation thre-
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reduction of alerts; however as more alerts are added to the collection the number of meta

remaining relative to the original number of alerts decreases sharply for both the Snort alert and 

the Netflow data sets, and a slight but measurable amount for the DNS request record data set.
  

Figure 6. Ratio of meta-alerts to alerts
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time complexity of the hypergraph algorithm allows much greater flexibility in the selection of 

the batch size to aggregate, thus enabling further gains in aggregation.
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empirically to change with variations in 
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aggregation can also have a significant impact. Figure 7 shows the impact of batch size on the 
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Figure 8. Data Element Reduction for Snort alerts (Hamming distance 2) with 

graph 

7.5 Execution Time Comparison
 

We compared the execution time of the column
algorithm using all four data sets. We focused on both varying the number of alerts processed as 
well as the Hamming distance used. In 

Figure 9, we show the execution time of both algorithms 

We chose a Hamming distance of 2 because that 

number of data fields presented to analysis (

increasingly more time, as was expected given its O(

hypergraph approach.  

 

Figure 9. Aggregation of Snort Alerts at Hamming distance 2

 

The difference between the algorithms is even more pronounced at Hamming distance 1. Revisi

ing the analysis of [6], at Hamming distance of 1 (not sho

an order of magnitude slower for daily alert bins (containing a mean of 84023 alerts). 

 

In Figure 10 we explore this variance in

the EVTX data. The column-based approach performs extremely well at higher Hamming di

tances but the execution time increases dramatically at low Hamming distances. It fails even to 

complete at Hamming distances less than 3

among our data sets. The column

other data sets, but can be over an order of magnitude slower. The hypergraph algorithm performs 

very fast at low Hamming distances but slows down in the mid

for some data sets due to the combinatorial term in the com

used. Using thresholding, the hypergraph algorithm 
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Execution Time Comparison 

We compared the execution time of the column-based approach of [6] against our hypergraph 
algorithm using all four data sets. We focused on both varying the number of alerts processed as 
well as the Hamming distance used. In  

, we show the execution time of both algorithms on an increasing number of Snort alerts. 

We chose a Hamming distance of 2 because that was empirically discovered to optimize the 

number of data fields presented to analysis (discussed earlier). The column-based approach takes 

as was expected given its O(n2) complexity, compared to the O

 

 

. Aggregation of Snort Alerts at Hamming distance 2 

The difference between the algorithms is even more pronounced at Hamming distance 1. Revisi

, at Hamming distance of 1 (not shown) the column-based algorithm is over 

an order of magnitude slower for daily alert bins (containing a mean of 84023 alerts). 

explore this variance in execution time relative to the Hamming distance

based approach performs extremely well at higher Hamming di

n time increases dramatically at low Hamming distances. It fails even to 

at Hamming distances less than 3 due to the EVTX data having 24 columns, 

. The column-based approach does complete at all Hamming distances for

other data sets, but can be over an order of magnitude slower. The hypergraph algorithm performs 

very fast at low Hamming distances but slows down in the mid-ranges, preventing its completion

due to the combinatorial term in the complexity analysis unless thresholding is 

the hypergraph algorithm can execute fast for all data sets and Ha
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an increasing number of Snort alerts. 
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columns, the largest 

at all Hamming distances for the 
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ming distances. Note how thresholding causes spikes in the execution time as the combinatorial 

term is decreased to values below the threshold. At the minimum threshold value of 1, the execu-

tion time becomes so small as to overlap the x-axis in Figure 10.  

 

The lower Hamming distances are ideal candidates for operational use. At these distances, the 

alerts are abstracted the least and thus directly provide details to aid human analysis. Given the 

inability of the column approach to process certain scenarios (especially those most likely to be 

operationally useful), we claim that the hypergraph algorithm is necessary for variable Hamming 

distance alert aggregation and not just an incremental improvement over our expanded version of 

the column based approach. 

 

 

Figure 10. Mean Execution Time to Aggregate EVTX Alerts 
 

8. INTUITIVE UNDERSTANDING AND OPERATIONAL USE 
 

While explained in [6], we review here the intuition behind the usefulness of the Hamming Dis-

tance aggregation approach in reducing the cognitive burden to the analysts. We also discuss our 

experience with the approach and qualitative results from operational use. 

 

In enterprises with well-funded security teams, there may exist a requirement to review every 

alert produced from a certain set of sensors. The example set of operational alerts from [6] meas-

ured 2.3 million Snort alerts a month. For each alert, an analyst would have to review the corres-

ponding set of values in the data fields. To evaluate the next alert, the analyst would have to re-

peat this procedure. The alerts are thus evaluated independently and there is a mental context 

switch between alerts. Related alerts are often scattered throughout the data set, requiring explicit 

searching by the analyst to find them. 

 

Hamming distance aggregation groups together related alerts into meta-alerts (it doesn’t delete 

any alerts or data). A grouping of alerts share many data fields in common. An analyst only has to 

read and absorb each common data field once for the entire group. In analyzing each individual 

alert, only the unique field values need to be perused. In some cases, the analyst can discount an 

entire group based on the common values and avoid even read the unique values. This can hap-

pen, for example, in a horizontal attack scenario where the unique values are the individual ad-

dresses attacked. Based on the common values, the analysts can evaluate the group of alerts. 

Without Hamming Distance aggregation, such related alerts would be scattered and hidden 

among many other alerts. 

 

Analysts often find that Hamming Distance aggregation creates large groupings out of the many 

‘trash’ alerts that can be discarded after an evaluation of the common fields. Related attacks may 

end up in small groups. Unusual attacks tend not to be grouped and stand out to analysts because 

of the small group size. This said, Hamming Distance aggregation does not guarantee to put 
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‘trash’ in large groups and interesting alerts in small groups. A more significant benefit is in 

bringing together duplicate but scattered data fields values so that each value can be read only 

once by the analyst (as opposed to being re-read every time an instance of the duplicated value is 

encountered). Such benefits enhance the ability of large security teams to review, for example, the 

2.3 million alerts per month cited in [6]. 

To validate our results empirically (though qualitatively), our Hamming Distance aggregation 

code was provided to operational analysts who used it on actual security logs taken from a large 

enterprise network. Their feedback supports the usefulness of the approach through informal 

evaluation. Qualitative feedback indicates that Hamming distance based alert reduction at low 

Hamming distances both reduces analysis time and enhances interpretation of the alerts. Quantifi-

cation of these observations require a formal human study, were outside the scope of our experi-

ments, and so must be addressed in future work. 

 

9. CONCLUSIONS 
 

Variable Hamming Distance alert aggregation can reduce the cognitive load on the analysts with 

respect to minimizing the number of alerts and data elements. Our aggregation algorithms enable 

efficient human review of large sets of original alerts without removing or abstracting away any 

data. While the algorithm in [6] successfully reduced the number of data elements, it only consi-

dered a Hamming distance of 1, limiting its ability to effectively aggregate some data without 

manual adjustments. In addition, its limited scaling with respect to the number of data points as 

well as the dimensionality of that data restrict its applicability to large data sets, which we dem-

onstrate further reduces its ability to effectively aggregate them. We present an algorithm with 

improved worst-case time complexity capable of handling arbitrary Hamming distance aggrega-

tion, as well as an approximate implementation that can significantly reduce the constant terms in 

the time and memory complexity to no greater than a specified maximum value. We demonstrate 

that even the approximate version of the algorithm has performance with respect to aggregation at 

least equal to that of the original algorithm in [6] while improving time requirements for optimal 

hamming distances, particularly when using large batch sizes. This improvement in time com-

plexity allows for aggregation of larger batches of data, thus further improving the effectiveness 

of aggregation in practice. Our algorithm has further benefits in its ability to handle on-line or 

streaming data, which we propose to examine further in future work. Future work will also ex-

amine the relationship between processing time, assessment accuracy, and perceived effort on the 

part of analysts under different levels of alert aggregation and data element reduction. 
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