Hamiltonian Mechanics unter besonderer Berücksichtigung der höheren Lehranstalten

Ivar Ekeland ${ }^{1}$, Roger Temam² Jeffrey Dean, David Grove, Craig Chambers, Kim B. Bruce, and Elsa Bertino
${ }^{1}$ Princeton University, Princeton NJ 08544, USA, I.Ekeland@princeton.edu,
WWW home page: http://users/~iekeland/web/welcome.html
${ }^{2}$ Université de Paris-Sud, Laboratoire d'Analyse Numérique, Bâtiment 425, F-91405 Orsay Cedex, France

Abstract

The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract.

Key words: high-level Petri nets, net components, dynamic software architecture, modeling, agents, software development approach

1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic solutions to Hamiltonian systems. All this will be done in the convex case; that is, we shall study the boundary-value problem

$$
\begin{aligned}
\dot{x} & =J H^{\prime}(t, x) \\
x(0) & =x(T)
\end{aligned}
$$

with $H(t, \cdot)$ a convex function of x, going to $+\infty$ when $\|x\| \rightarrow \infty$.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian $H(x)$ is autonomous. For the sake of simplicity, we shall also assume that it is C^{1}.

We shall first consider the question of nontriviality, within the general framework of $\left(A_{\infty}, B_{\infty}\right)$-subquadratic Hamiltonians. In the second subsection, we shall look into the special case when H is $\left(0, b_{\infty}\right)$-subquadratic, and we shall try to derive additional information.

The General Case: Nontriviality. We assume that H is $\left(A_{\infty}, B_{\infty}\right)$-subquadratic at infinity, for some constant symmetric matrices A_{∞} and B_{∞}, with $B_{\infty}-A_{\infty}$ positive definite. Set:

$$
\begin{align*}
& \gamma:=\text { smallest eigenvalue of } B_{\infty}-A_{\infty} \tag{1}\\
& \lambda:=\text { largest negative eigenvalue of } J \frac{d}{d t}+A_{\infty} \tag{2}
\end{align*}
$$

Theorem 1 tells us that if $\lambda+\gamma<0$, the boundary-value problem:

$$
\begin{align*}
\dot{x} & =J H^{\prime}(x) \\
x(0) & =x(T) \tag{3}
\end{align*}
$$

has at least one solution \bar{x}, which is found by minimizing the dual action functional:

$$
\begin{equation*}
\psi(u)=\int_{o}^{T}\left[\frac{1}{2}\left(\Lambda_{o}^{-1} u, u\right)+N^{*}(-u)\right] d t \tag{4}
\end{equation*}
$$

on the range of Λ, which is a subspace $R(\Lambda)_{L}^{2}$ with finite codimension. Here

$$
\begin{equation*}
N(x):=H(x)-\frac{1}{2}\left(A_{\infty} x, x\right) \tag{5}
\end{equation*}
$$

is a convex function, and

$$
\begin{equation*}
N(x) \leq \frac{1}{2}\left(\left(B_{\infty}-A_{\infty}\right) x, x\right)+c \quad \forall x \tag{6}
\end{equation*}
$$

Proposition 1. Assume $H^{\prime}(0)=0$ and $H(0)=0$. Set:

$$
\begin{equation*}
\delta:=\liminf _{x \rightarrow 0} 2 N(x)\|x\|^{-2} \tag{7}
\end{equation*}
$$

If $\gamma<-\lambda<\delta$, the solution \bar{u} is non-zero:

$$
\begin{equation*}
\bar{x}(t) \neq 0 \quad \forall t . \tag{8}
\end{equation*}
$$

Proof. Condition (7) means that, for every $\delta^{\prime}>\delta$, there is some $\varepsilon>0$ such that

$$
\begin{equation*}
\|x\| \leq \varepsilon \Rightarrow N(x) \leq \frac{\delta^{\prime}}{2}\|x\|^{2} \tag{9}
\end{equation*}
$$

It is an exercise in convex analysis, into which we shall not go, to show that this implies that there is an $\eta>0$ such that

$$
\begin{equation*}
f\|x\| \leq \eta \Rightarrow N^{*}(y) \leq \frac{1}{2 \delta^{\prime}}\|y\|^{2} \tag{10}
\end{equation*}
$$

Since u_{1} is a smooth function, we will have $\left\|h u_{1}\right\|_{\infty} \leq \eta$ for h small enough, and inequality (10) will hold, yielding thereby:

$$
\begin{equation*}
\psi\left(h u_{1}\right) \leq \frac{h^{2}}{2} \frac{1}{\lambda}\left\|u_{1}\right\|_{2}^{2}+\frac{h^{2}}{2} \frac{1}{\delta^{\prime}}\left\|u_{1}\right\|^{2} \tag{11}
\end{equation*}
$$

If we choose δ^{\prime} close enough to δ, the quantity $\left(\frac{1}{\lambda}+\frac{1}{\delta^{\prime}}\right)$ will be negative, and we end up with

$$
\begin{equation*}
\psi\left(h u_{1}\right)<0 \quad \text { for } h \neq 0 \text { small } . \tag{12}
\end{equation*}
$$

On the other hand, we check directly that $\psi(0)=0$. This shows that 0 cannot be a minimizer of ψ, not even a local one. So $\bar{u} \neq 0$ and $\bar{u} \neq \Lambda_{o}^{-1}(0)=0$.

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field

Corollary 1. Assume H is C^{2} and $\left(a_{\infty}, b_{\infty}\right)$-subquadratic at infinity. Let ξ_{1}, \ldots, ξ_{N} be the equilibria, that is, the solutions of $H^{\prime}(\xi)=0$. Denote by ω_{k} the smallest eigenvalue of $H^{\prime \prime}\left(\xi_{k}\right)$, and set:

$$
\begin{equation*}
\omega:=\operatorname{Min}\left\{\omega_{1}, \ldots, \omega_{k}\right\} \tag{13}
\end{equation*}
$$

If:

$$
\begin{equation*}
\frac{T}{2 \pi} b_{\infty}<-E\left[-\frac{T}{2 \pi} a_{\infty}\right]<\frac{T}{2 \pi} \omega \tag{14}
\end{equation*}
$$

then minimization of ψ yields a non-constant T-periodic solution \bar{x}.
We recall once more that by the integer part $E[\alpha]$ of $\alpha \in \mathbb{R}$, we mean the $a \in \mathbb{Z}$ such that $a<\alpha \leq a+1$. For instance, if we take $a_{\infty}=0$, Corollary 2 tells us that \bar{x} exists and is non-constant provided that:

$$
\begin{equation*}
\frac{T}{2 \pi} b_{\infty}<1<\frac{T}{2 \pi} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
T \in\left(\frac{2 \pi}{\omega}, \frac{2 \pi}{b_{\infty}}\right) \tag{16}
\end{equation*}
$$

Proof. The spectrum of Λ is $\frac{2 \pi}{T} \mathbb{Z}+a_{\infty}$. The largest negative eigenvalue λ is given by $\frac{2 \pi}{T} k_{o}+a_{\infty}$, where

$$
\begin{equation*}
\frac{2 \pi}{T} k_{o}+a_{\infty}<0 \leq \frac{2 \pi}{T}\left(k_{o}+1\right)+a_{\infty} . \tag{17}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
k_{o}=E\left[-\frac{T}{2 \pi} a_{\infty}\right] . \tag{18}
\end{equation*}
$$

The condition $\gamma<-\lambda<\delta$ now becomes:

$$
\begin{equation*}
b_{\infty}-a_{\infty}<-\frac{2 \pi}{T} k_{o}-a_{\infty}<\omega-a_{\infty} \tag{19}
\end{equation*}
$$

which is precisely condition (14).
Lemma 1. Assume that H is C^{2} on $\mathbb{R}^{2 n} \backslash\{0\}$ and that $H^{\prime \prime}(x)$ is non-degenerate for any $x \neq 0$. Then any local minimizer \widetilde{x} of ψ has minimal period T.

Proof. We know that \widetilde{x}, or $\widetilde{x}+\xi$ for some constant $\xi \in \mathbb{R}^{2 n}$, is a T-periodic solution of the Hamiltonian system:

$$
\begin{equation*}
\dot{x}=J H^{\prime}(x) . \tag{20}
\end{equation*}
$$

There is no loss of generality in taking $\xi=0$. So $\psi(x) \geq \psi(\widetilde{x})$ for all \widetilde{x} in some neighbourhood of x in $W^{1,2}\left(\mathbb{R} / T \mathbb{Z} ; \mathbb{R}^{2 n}\right)$.

But this index is precisely the index $i_{T}(\widetilde{x})$ of the T-periodic solution \widetilde{x} over the interval $(0, T)$, as defined in Sect. 2.6. So

$$
\begin{equation*}
i_{T}(\widetilde{x})=0 \tag{21}
\end{equation*}
$$

Now if \widetilde{x} has a lower period, T / k say, we would have, by Corollary 31:

$$
\begin{equation*}
i_{T}(\widetilde{x})=i_{k T / k}(\widetilde{x}) \geq k i_{T / k}(\widetilde{x})+k-1 \geq k-1 \geq 1 \tag{22}
\end{equation*}
$$

This would contradict (21), and thus cannot happen.
Notes and Comments. The results in this section are a refined version of [1]; the minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16), one may think of a one-parameter family $x_{T}, T \in\left(2 \pi \omega^{-1}, 2 \pi b_{\infty}^{-1}\right)$ of periodic solutions, $x_{T}(0)=x_{T}(T)$, with x_{T} going away to infinity when $T \rightarrow 2 \pi \omega^{-1}$, which is the period of the linearized system at 0 .

Table 1. This is the example table taken out of The $T_{E} X b o o k$, p. 246

Year	World population
8000 B.C.	$5,000,000$
50 A.D.	$200,000,000$
1650 A.D.	$500,000,000$
1945 A.D.	$2,300,000,000$
1980 A.D.	$4,400,000,000$

Theorem 1 (Ghoussoub-Preiss). Assume $H(t, x)$ is $(0, \varepsilon)$-subquadratic at infinity for all $\varepsilon>0$, and T-periodic in t

$$
\begin{gather*}
H(t, \cdot) \quad \text { is convex } \forall t \tag{23}\\
H(\cdot, x) \quad \text { is } T \text {-periodic } \forall x \tag{24}\\
H(t, x) \geq n(\|x\|) \quad \text { with } n(s) s^{-1} \rightarrow \infty \quad \text { as } s \rightarrow \infty \tag{25}\\
\forall \varepsilon>0, \quad \exists c: H(t, x) \leq \frac{\varepsilon}{2}\|x\|^{2}+c . \tag{26}
\end{gather*}
$$

Assume also that H is C^{2}, and $H^{\prime \prime}(t, x)$ is positive definite everywhere. Then there is a sequence $x_{k}, k \in \mathbb{N}$, of $k T$-periodic solutions of the system

$$
\begin{equation*}
\dot{x}=J H^{\prime}(t, x) \tag{27}
\end{equation*}
$$

such that, for every $k \in \mathbb{N}$, there is some $p_{o} \in \mathbb{N}$ with:

$$
\begin{equation*}
p \geq p_{o} \Rightarrow x_{p k} \neq x_{k} . \tag{28}
\end{equation*}
$$

Example 1 (External forcing). Consider the system:

$$
\begin{equation*}
\dot{x}=J H^{\prime}(x)+f(t) \tag{29}
\end{equation*}
$$

where the Hamiltonian H is $\left(0, b_{\infty}\right)$-subquadratic, and the forcing term is a distribution on the circle:

$$
\begin{equation*}
f=\frac{d}{d t} F+f_{o} \quad \text { with } \quad F \in L^{2}\left(\mathbb{R} / T \mathbb{Z} ; \mathbb{R}^{2 n}\right) \tag{30}
\end{equation*}
$$

where $f_{o}:=T^{-1} \int_{o}^{T} f(t) d t$. For instance,

$$
\begin{equation*}
f(t)=\sum_{k \in \mathbb{N}} \delta_{k} \xi, \tag{31}
\end{equation*}
$$

where δ_{k} is the Dirac mass at $t=k$ and $\xi \in \mathbb{R}^{2 n}$ is a constant, fits the prescription. This means that the system $\dot{x}=J H^{\prime}(x)$ is being excited by a series of identical shocks at interval T.

Definition 1. Let $A_{\infty}(t)$ and $B_{\infty}(t)$ be symmetric operators in $\mathbb{R}^{2 n}$, depending continuously on $t \in[0, T]$, such that $A_{\infty}(t) \leq B_{\infty}(t)$ for all t.

A Borelian function $H:[0, T] \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ is called $\left(A_{\infty}, B_{\infty}\right)$-subquadratic at infinity if there exists a function $N(t, x)$ such that:

$$
\begin{equation*}
H(t, x)=\frac{1}{2}\left(A_{\infty}(t) x, x\right)+N(t, x) \tag{32}
\end{equation*}
$$

$\forall t, \quad N(t, x) \quad$ is convex with respect to x

$$
\begin{equation*}
N(t, x) \geq n(\|x\|) \quad \text { with } n(s) s^{-1} \rightarrow+\infty \quad \text { as } \quad s \rightarrow+\infty \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\exists c \in \mathbb{R}: \quad H(t, x) \leq \frac{1}{2}\left(B_{\infty}(t) x, x\right)+c \quad \forall x . \tag{34}
\end{equation*}
$$

If $A_{\infty}(t)=a_{\infty} I$ and $B_{\infty}(t)=b_{\infty} I$, with $a_{\infty} \leq b_{\infty} \in \mathbb{R}$, we shall say that H is $\left(a_{\infty}, b_{\infty}\right)$-subquadratic at infinity. As an example, the function $\|x\|^{\alpha}$, with $1 \leq \alpha<2$, is $(0, \varepsilon)$-subquadratic at infinity for every $\varepsilon>0$. Similarly, the Hamiltonian

$$
\begin{equation*}
H(t, x)=\frac{1}{2} k\|k\|^{2}+\|x\|^{\alpha} \tag{36}
\end{equation*}
$$

is $(k, k+\varepsilon)$-subquadratic for every $\varepsilon>0$. Note that, if $k<0$, it is not convex.

Notes and Comments. The first results on subharmonics were obtained by Foster and Kesselman in [3], who showed the existence of infinitely many subharmonics both in the subquadratic and superquadratic case, with suitable growth conditions on H^{\prime}. Again the duality approach enabled Foster and Waterman in [5] to treat the same problem in the convex-subquadratic case, with growth conditions on H only.

Recently, Smith and Waterman (see [1] and May et al. [2]) have obtained lower bound on the number of subharmonics of period $k T$, based on symmetry considerations and on pinching estimates, as in Sect. 5.2 of this article.

References

1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195-197 (1981)
2. May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148-1158. Springer, Heidelberg (2006)
3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)
4. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181-184. IEEE Press, New York (2001)
5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Technical report, Global Grid Forum (2002)
6. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
