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ABSTRACT 

This paper investigates the hybrid chaos synchronization of identical 4-D hyperchaotic Liu systems 

(2006), 4-D identical hyperchaotic Chen systems (2005) and hybrid synchronization of 4-D hyperchaotic 

Liu and hyperchaotic Chen systems. The hyperchaotic Liu system (Wang and Liu, 2005) and hyperchaotic 

Chen system (Li, Tang and Chen, 2006) are important models of new hyperchaotic systems. Hybrid 

synchronization of the 4-dimensional hyperchaotic systems addressed in this paper is achieved through 

complete synchronization of two pairs of states and anti-synchronization of the other two pairs of states 

of the underlying systems. Active nonlinear control is the method used for the hybrid synchronization of 

identical and different hyperchaotic Liu and hyperchaotic Chen and the stability results have been 

established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these 

calculations, the proposed nonlinear control method is effective and convenient to achieve hybrid 

synchronization of the hyperchaotic Liu and hyperchaotic Chen systems. Numerical simulations are 

shown to demonstrate the effectiveness of the proposed chaos synchronization schemes. 
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1. INTRODUCTION 

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1].  

Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic 

oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of 

the butterfly effect, which causes the exponential divergence of the trajectories of two identical 

chaotic systems started with nearly the same initial conditions, synchronizing two chaotic 

systems is seemingly a very challenging problem in the chaos literature [1-23]. 

In 1990, Pecora and Carroll [2] introduced a method to synchronize two identical chaotic 

systems and showed that it was possible for some chaotic systems to be completely 

synchronized. From then on, chaos synchronization has been widely explored in a variety of 

fields including physical systems [3], chemical systems [4], ecological systems [5], secure 

communications [6-7], etc. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

has been used. If a particular chaotic system is called the master or drive system and another 

chaotic system is called the slave or response system, then the idea of synchronization is to use 

the output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically.  
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Since the seminal work by Pecora and Carroll [2], a variety of impressive approaches have been 

proposed for the synchronization of chaotic systems such as the sampled-data feedback 

synchronization method [8], OGY method [9], time-delay feedback method [10], backstepping 

method [11], adaptive design method [12], sliding mode control method [13], etc.  

So far, many types of synchronization phenomenon have been presented such as complete 

synchronization [2], phase synchronization [5, 14], generalized synchronization [7, 15], anti-

synchronization [16, 17], projective synchronization [18], generalized projective 

synchronization [19, 20], etc. 

Complete synchronization (CS) is characterized by the equality of state variables evolving in 

time, while anti-synchronization (AS) is characterized by the disappearance of the sum of 

relevant variables evolving in time. Projective synchronization (PS) is characterized by the fact 

that the master and slave systems could be synchronized up to a scaling factor, whereas in 

generalized projective synchronization (GPS), the responses of the synchronized dynamical 

states synchronize up to a constant scaling matrix .α It is easy to see that the complete 

synchronization (CS) and anti-synchronization (AS) are special cases of the generalized 

projective synchronization (GPS) where the scaling matrix Iα = and ,Iα = −  respectively. 

In hybrid synchronization of chaotic systems [20], one part of the system is synchronized and 

the other part is anti-synchronized so that the complete synchronization (CS) and anti-

synchronization (AS) coexist in the system. The coexistence of CS and AS is highly useful in 

secure communication and chaotic encryptation schemes. 

This paper is organized as follows. In Section 2, we derive results for the hybrid 

synchronization of identical hyperchaotic Liu systems ([22], 2006). In Section 3, we derive 

results for the hybrid synchronization of identical hyperchaotic Chen systems ([23], 2005). In 

Section 4, we derive results for the hybrid synchronization of non-identical hyperchaotic Liu 

and hyperchaotic Chen systems. The nonlinear controllers are derived using Lyapunov stability 

theory for the hybrid synchronization of the two hyperchaotic systems. In Section 5, we 

summarize the main results obtained in this paper. 

2. HYBRID SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LIU 

SYSTEMS 

2.1 Theoretical Results 

In this section, we discuss the hybrid synchronization of identical hyperchaotic Liu systems 

(Wang and Liu, [22], 2006). The hyperchaotic Liu system [22] is one of the important models of  

recently discovered hyperchaotic systems. 

Thus, we consider the master system as the hyperchaotic Liu dynamics described by 

                     

1 2 1

2 1 1 3 4

2

3 3 1

4 1

( )x a x x

x bx kx x x

x cx hx

x dx

= −

= − +

= − +

= −

&

&

&

&

                                                                                 (1) 

where  ( 1, 2,3, 4)ix i = are the state variables and , , , , ,a b c d h k are positive constants.  
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The system (1) is hyperchaotic when the parameter values are taken as 

      10,   40,   2.5,   10.6,   4a b c d h= = = = =  and  1.k =  

The hyperchaotic portrait of the system (1) is illustrated in Figure 1. 

 

Figure 1. State Orbits of the Hyperchaotic Liu System 

We consider the hyperchaotic Liu dynamics also as the slave system, which is described by   

                

1 2 1 1

2 1 1 3 4 2

2

3 3 1 3

4 1 4

( )y a y y u

y by ky y y u

y cy hy u

y dy u

= − +

= − + +

= − + +

= − +

&

&

&

&

                                                                      (2) 

where  ( 1, 2,3, 4)iy i = are the state variables and  ( 1, 2,3, 4)iu i = are the active controls. 

For the hybrid synchronization of the identical hyperchaotic Liu systems (1) and (2), the 

synchronization errors are defined as  

                  

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −

= +

= −

= +

                                                                                                     (3) 
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From the error equations (3), it is clear that one part of the two hyperchaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized  (second and fourth states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization process of the two hyperchaotic systems (1) 

and (2). 

A simple calculation yields the error dynamics as 

        

1 2 1 2 1

2 1 4 1 1 3 1 3 2

2 2

3 3 1 1 3

4 1 1 4

( ) 2

2 ( )

( )

2

e a e e ax u

e be e bx k y y x x u

e ce h y x u

e de dx u

= − − +

= + + − + +

= − + − +

= − − +

&

&

&

&

                                                                  (4) 

We consider the nonlinear controller defined by 

        

1 2 2

2 1 2 4 1 1 3 1 3

2 2

3 1 1

4 1 4 1

2

2 ( )

( )

2

u ae ax

u be e e bx k y y x x

u h y x

u de e dx

= − +

= − − − − + +

= − −

= − +

                                                                (5) 

Substitution of (5) into (4) yields the linear error dynamics 

         

1 1

2 2

3 3

4 4

e ae

e e

e ce

e e

= −

= −

= −

= −

&

&

&

&

                                                                                                                (6) 

We consider the candidate Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                                                                           (7) 

which is a positive definite function on 
4.R  

Differentiating (7) along the trajectories of the system (6), we get 

       
2 2 2 2

1 2 3 4( ) ,V e ae e ce e= − − − −&  

which is a negative definite function on 
4

R since a and c are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (6) is globally exponentially stable. 

Hence, we obtain the following result. 

Theorem 1. The identical hyperchaotic Liu systems (1) and (2) are globally and exponentially 

hybrid synchronized for all initial conditions 
4(0), (0)x y R∈ with the active nonlinear 

controller (5).    � 
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2.2 Numerical Results 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two 

systems of differential equations (1) and (2) with the nonlinear controller (5). 

The parameters of the identical hyperchaotic Liu systems (1) and (2) are selected as 

           10,   40,   2.5,   10.6,   4,   1a b c d h k= = = = = =  

so that the systems (1) and (2) exhibit hyperchaotic behaviour. 

The initial values of the master system (1) are taken as 

       1 2 3 4(0) 20,   (0) 12,   (0) 6,   (0) 32x x x x= = = =  

The initial values of the slave system (2) are taken as 

      1 2 3 4(0) 40,   (0) 15,   (0) 20,   (0) 18y y y y= = = =  

Figure 2 exhibits the hybrid synchronization of the hyperchaotic systems (1) and (2).   

 

Figure 2. Hybrid Synchronization of the Identical Hyperchaotic Liu Systems 
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3. HYBRID SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC CHEN 

SYSTEMS 

3.1 Theoretical Results 

In this section, we discuss the hybrid synchronization of identical hyperchaotic Chen systems 

(Li, Tang and Chen, [23], 2005). The hyperchaotic Chen system [23] is one of the important 

models of recently discovered hyperchaotic systems. 

Thus, we consider the master system as the hyperchaotic Chen dynamics described by 

                

1 2 1 4

2 1 1 3 2

3 1 2 3

4 2 3 4

( )x x x x

x x x x x

x x x x

x x x rx

α

δ γ

β

= − +

= − +

= −

= +

&

&

&

&

                                                                                       (8) 

where  ( 1, 2,3, 4)ix i = are the state variables and , , , , rα β γ δ are positive constants.  

The system (8) is hyperchaotic when the parameter values are taken as 

      35,   3,   12,  7α β γ δ= = = =  and  0.5r =  

The hyperchaotic portrait of the system (8) is illustrated in Figure 3. 

 

Figure 3. State Orbits of the Hyperchaotic Chen System 
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We consider the hyperchaotic Chen dynamics also as the slave system, which is described by   

                

1 2 1 4 1

2 1 1 3 2 2

3 1 2 3 3

4 2 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y ry u

α

δ γ

β

= − + +

= − + +

= − +

= + +

&

&

&

&

                                                                          (9) 

where  ( 1, 2,3,4)iy i = are the state variables and  ( 1, 2,3,4)iu i = are the active controls. 

For the hybrid synchronization of the identical hyperchaotic Chen systems (8) and (9), the 

synchronization errors are defined as  

                  

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −

= +

= −

= +

                                                                                                 (10) 

From the error equations (10), it is clear that one part of the two hyperchaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized  (second and fourth states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization process of the two hyperchaotic systems (8) 

and (9). 

A simple calculation yields the error dynamics as 

        

1 2 1 4 2 4 1

2 1 2 1 1 3 1 3 2

3 3 1 2 1 2 3

4 4 2 3 2 3 4

( ) 2 2

2

e e e e x x u

e e e x y y x x u

e e y y x x u

e re y y x x u

α α

δ γ δ

β

= − + − − +

= + + − − +

= − + − +

= + + +

&

&

&

&

                                                                (11) 

We consider the nonlinear controller defined by 

        

1 2 4 2 4

2 1 2 1 1 3 1 3

3 1 2 1 2

4 4 2 3 2 3

2 2

( 1) 2

( 1)

u e e x x

u e e x y y x x

u y y x x

u r e y y x x

α α

δ γ δ

= − − + +

= − − + − + +

= − +

= − + − −

                                                              (12) 

Substitution of (12) into (11) yields the linear error dynamics 

         

1 1

2 2

3 3

4 4

e e

e e

e e

e e

α

β

= −

= −

= −

= −

&

&

&

&

                                                                                                              (13) 
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We consider the candidate Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                                                                     (14) 

which is a positive definite function on 4.R  

Differentiating (14) along the trajectories of the system (13), we get 

       2 2 2 2

1 2 3 4( ) ,V e e e e eα β= − − − −&  

which is a negative definite function on 4
R since  α and  β  are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (13) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 2. The identical hyperchaotic Chen systems (8) and (9) are globally and 

exponentially hybrid synchronized for all initial conditions 4(0), (0)x y R∈ with the 

active nonlinear controller (12).    � 

3.2 Numerical Results 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (8) and (9) with the nonlinear controller (12). 

The parameters of the identical hyperchaotic Chen systems (8) and (8) are selected as 

            35,   3,   12,  7,   0.5rα β γ δ= = = = =  

so that the systems (8) and (9) exhibit hyperchaotic behaviour. 

The initial values of the master system (8) are taken as 

       1 2 3 4(0) 5,   (0) 18,   (0) 26,   (0) 14x x x x= = = =  

The initial values of the slave system (9) are taken as 

      
1 2 3 4(0) 20,   (0) 35,   (0) 10,   (0) 22y y y y= = = =  

Figure 4 exhibits the hybrid synchronization of the hyperchaotic Chen systems (8) and (9).   
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Figure 4 Hybrid Synchronization of the Identical Hyperchaotic Chen Systems  

4. HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND 

HYPERCHAOTIC CHEN SYSTEMS  

4.1 Theoretical Results 

In this section, we discuss the hybrid chaos synchronization of non-identical hyperchaotic Liu 

system  (Wang and Liu, [22], 2006) and hyperchaotic Chen system (Li, Tang and Chen, [23], 

2005). Hyperchaotic Liu and hyperchaotic Chen systems are important models of recently 

discovered hyperchaotic systems. 

Here, we consider the master system as the hyperchaotic Liu dynamics described by 

                     

1 2 1

2 1 1 3 4

2

3 3 1

4 1

( )x a x x

x bx kx x x

x cx hx

x dx

= −

= − +

= − +

= −

&

&

&

&

                                                                                 (15) 

where  ( 1, 2,3, 4)ix i = are the state variables and , , , , ,a b c d h k are positive constants.  

The system (15) is hyperchaotic when the parameter values are taken as 

      10,   40,   2.5,   10.6,   4a b c d h= = = = =  and  1.k =  
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 We consider the hyperchaotic Chen dynamics as the slave system, which is described by   

           

1 2 1 4 1

2 1 1 3 2 2

3 1 2 3 3

4 2 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y ry u

α

δ γ

β

= − + +

= − + +

= − +

= + +

&

&

&

&

                                                                                  (16) 

where  ( 1, 2,3, 4)iy i = are the state variables, , , , , rα β γ δ are positive constants and 

 ( 1, 2,3,4)iu i = are the active controls. 

The system (16) is hyperchaotic when the parameter values are taken as 

      35,   3,   12,  7α β γ δ= = = =  and  0.5r =  

For the hybrid synchronization of the non-identical hyperchaotic systems (15) and (16), the 

synchronization errors are defined as  

                  

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −

= +

= −

= +

                                                                                                     (17) 

From the error equations (17), it is clear that one part of the two hyperchaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized  (second and fourth states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization process of the two hyperchaotic systems 

(15) and (16). 

A simple calculation yields the error dynamics as 

             

1 2 1 4 1 2 4 1

2 1 2 1 2 4 1 3 1 3 2

2

3 3 3 1 2 1 3

4 4 1 4 2 3 4

( ) ( ) ( )

( )

( )

e e e e a x a x x u

e e e b x x x y y kx x u

e e c x y y hx u

e re dx rx y y u

α α α

δ γ δ γ

β β

= − + + − − + − +

= + + + − + − − +

= − + − + − +

= − − + +

&

&

&

&

                                    (18) 

We consider the nonlinear controller defined by 

             

1 2 4 1 2 4

2 1 2 1 2 4 1 3 1 3

2

3 3 1 2 1

4 4 1 4 2 3

( ) ( )

( 1) ( )

( )

( 1)

u e e a x a x x

u e e b x x x y y kx x

u c x y y hx

u r e dx rx y y

α α α

δ γ δ γ

β

= − − − − + + +

= − − + − + + − + +

= − − − +

= − + + + −

                                (19) 
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Substitution of (19) into (18) yields the linear error dynamics 

             

1 1

2 2

3 3

4 4

e e

e e

e e

e e

α

β

= −

= −

= −

= −

&

&

&

&

                                                                                                            (20) 

We consider the candidate Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                                                                           (21) 

which is a positive definite function on 
4.R  

Differentiating (21) along the trajectories of the system (20), we get 

       
2 2 2 2

1 2 3 4( ) ,V e e e e eα β= − − − −&  

which is a negative definite function on 
4

R since  α and β  are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (20) is globally exponentially 

stable. Hence, we obtain the following result. 

Theorem 3. The non-identical hyperchaotic Liu system (15) and hyperchaotic Chen system (16) 

are globally and exponentially hybrid synchronized for all initial conditions 
4(0), (0)x y R∈ with the active nonlinear controller (19).    � 

4.2 Numerical Results 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two 

systems of differential equations (15) and (16) with the nonlinear controller (19). 

The parameters of the hyperchaotic Liu system (15) are selected as 

           10,   40,   2.5,   10.6,   4,   1a b c d h k= = = = = =  

The parameters of the hyperchaotic Chen system (16) are selected as 

            35,   3,   12,  7,α β γ δ= = = =   0.5r =  

The initial values of the master system (15) are taken as 

       1 2 3 4(0) 14,   (0) 36,   (0) 15,   (0) 12x x x x= = = =  

The initial values of the slave system (16) are taken as 

      1 2 3 4(0) 30,   (0) 18,   (0) 22,   (0) 10y y y y= = = =  
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Figure 5 exhibits the hybrid synchronization of the hyperchaotic systems (15) and (16).   

 

Figure 5. Hybrid Synchronization of Hyperchaotic Liu and Hyperchaotic Chen Systems 

5. CONCLUSIONS 

In this paper, active nonlinear control method has been deployed to achieve global chaos hybrid 

synchronization of the following hyperchaotic systems: 

(A) Identical hyperchaotic Liu systems (2006) 

(B) Identical hyperchaotic Chen systems (2005) 

(C) Non-identical hyperchaotic Liu and hyperchaotic Chen systems. 

The stability results for the hybrid chaos synchronization of the above hyperchaotic systems 

were established using Lyapunov stability theory.  Since Lyapunov exponents are not required 

for these calculations, the nonlinear control method is effective and convenient to achieve 

hybrid synchronization of the identical and non-identical hyperchaotic Liu and hyperchaotic 

Chen systems. Numerical simulations have been shown to demonstrate the effectiveness of the 

hybrid synchronization schemes derived in this paper. 
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