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ABSTRACT 

 
A novel query in spatial databases is the K-Best Site Query (KBSQ for short). Given a set of objects O, a set 

of sites S, and a user-given value K, a KBSQ retrieves the K sites from S such that the total distance from 

each object to its closest site is minimized. The KBSQ is indeed an important type of spatial queries with 

many real applications. In this paper, we investigate how to efficiently process the KBSQ. We first propose 

a straightforward approach with a cost analysis, and then develop the K Best Site Query (KBSQ) algorithm 

combined with the existing spatial indexes to improve the performance of processing KBSQ. 

Comprehensive experiments are conducted to demonstrate the efficiency of the proposed methods. 
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1. INTRODUCTION 

 
With the fast advances of positioning techniques in mobile systems, spatial databases that aim at 

efficiently managing spatial objects are becoming more powerful and hence attract more attention 

than ever. Many applications, such as mobile communication systems, traffic control systems, 

and geographical information systems, can benefit from efficient processing of spatial queries [1-

7]. In this paper, we present a novel and important type of spatial query, namely the K-Best Site 

Query (KBSQ for short). Given a set of objects O, a set of sites S, and a user-given value K, a 

KBSQ retrieves the K sites s1, s2, ..., sK from S such that ∑
∈Oo

ji

i

sod ),(  is minimized, where d(oi, sj) 

refers to the distance between object oi and its closest site sj. We term the sites retrieved by 

executing the KBSQ the best sites (or bs for short). 

 

The KBSQ problem arises in many fields and application domains. As an example of real-world 

scenario, consider a set O of soldiers on the battlefields that is fighting the enemy. In order to 

immediately support the injured soldiers, we need to choose K sites from a set S of sites to build 

the emergicenters. Note that there are many soldiers fighting on the battlefields and many sites 

could be the emergicenters. To achieve the fastest response time, the sum of distances from each 

battlefield to its closest emergicenter should be minimized. Another real-world example is that 

the McDonald's Corporation may ask “what are the optimal locations in a city to open new 

McDonald's stores.” In this case, the KBSQ can be used to find out the K best sites among a set S 

of sites so that every customer in set O can rapidly reach his/her closest store. 
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Let us use an example in Figure 1 to illustrate the KBSQ problem, where six objects o1, o2, ..., o6 

and four sites s1, s2, ..., s4 are depicted as circles and rectangles, respectively. Assume that two 

best sites (i.e., 2bs) are to be found in this example. There are six combinations (s1, s2), (s1, s3), ..., 

(s3, s4), and one combination would be the result of KBSQ. As we can see, the sum of distances 

from objects o1, o2, o3 to their closest site s3 is equal to 9, and the sum of distances between 

objects o4, o5, o6 and site s1 is equal to 12. Because the combination (s1, s3) leads to the minimum 

total distance (i.e., 9 + 12 = 21), the two sites s1 and s3 are the 2bs. 
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Figure 1. An example of the KBSQ 

To process the KBSQ, the closest site for each object needs to be first determined and then the 

distance between object and its closest site is computed so as to find the best combination of K 

sites. When a database is large, it is crucial to avoid reading the entire dataset in identifying the K 

best sites. For saving CPU and I/O costs, we develop an efficient method combined with the 

existing spatial indexes to avoid unnecessary reading of the entire dataset. A preliminary version 

of this paper is [8], and the contributions of this paper are summarized as follows. 

 

• We present a novel query, namely the K Best Site Query, which is indeed an important 

type of spatial queries with many real applications. 

 

• We propose a straightforward approach to process the KBSQ and also analyze the 

processing cost required for this approach. 

 

• An efficient algorithm, namely the K Best Site Query (KBSQ) algorithm, operates by the 

support of R*-tree [9] and Voronoi diagram [10] to improve the performance of KBSQ. 

 

• A comprehensive set of experiments is conducted. The performance results manifest the 

efficiency of our proposed approaches. 

 

The rest of this paper is organized as follows. In Section 2, we discuss some related works on 

processing spatial queries similar to the KBSQ, and point out their differences. In Section 3, the 

straightforward approach and its cost analysis is presented. Section 4 describes the KBSQ 

algorithm with the used indexes. Section 5 shows extensive experiments on the performance of 

our approaches. Finally, Section 6 concludes the paper with directions on future work. 
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2. RELATED WORK 

 
In recent years, some queries similar to the KBSQ are presented, including the Reverse Nearest 

Neighbor Query (RNNQ) [11], the Group Nearest Neighbor Query (GNNQ) [12], and the Min-

Dist Optimal-Location Query (MDOLQ) [13]. Several methods have been designed to efficiently 

process these similar queries. However, the query results obtained by executing these queries are 

quite different from that of the KBSQ. Also, the proposed methods cannot be directly used to 

answer the KBSQ. In the following, we investigate why the existing methods for processing the 

similar queries cannot be applied to the KBSQ separately. 

 

2.1. Methods For RNNQ 

Given a set of object O and a site s, a RNNQ can be used to retrieve a set S of  objects contained 

in O whose closest site is s. Each object o in S is termed a RNN of s. An intuitive way for finding 

the query result of KBSQ is to utilize the RNNQ to find the RNNs for each site. Then, the K sites 

having the maximum number of RNNs (meaning that they are closer to most of the objects) are 

chosen to be the K best sites. 

Taking Figure 2 as an example, the RNNs of site s1 can be determined by executing the RNNQ 

and its RNNs are objects o4 and o6. Similarly, the RNNs of sites s2, s3, and s4 are determined as o1 

and o2, o3, and o5, respectively. As sites s1 and s2 have the maximum number of RNNs, they can 

be the 2bs for the KBSQ. However, sites s1 and s2 lead to the total distance 24 (i.e., d(o4, s1) + 

d(o5, s1) + d(o6, s1) + d(o1, s2) + d(o2, s2) + d(o3, s2)), which is greater than the total distance 22 as 

sites s1 and s3 are chosen to be the 2bs. As a result, the intuition of using the RNNQ result to be 

the KBSQ result is infeasible. 
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Figure 2. An example of the RNNQ 

2.2. Methods For GNNQ 

A GNNQ retrieves a site s from a set of sites S such that the total distance from s to all objects is 

the minimum among all sites in S. Here, the result s of GNNQ is called a GNN. To find the K best 

sites, we can repeatedly evaluate the GNNQ K times so as to retrieve the first K GNNs. It means 

that the sum of distances between these K GNNs and all objects is minimum, and thus they can be 

the K bs. However, in some cases the result obtained by executing the GNNQ K times is still 

different from the exact result of KBSQ. 

Let us consider an example shown in Figure 3, where 2bs are required. As shown in Figure 3(a), 

the first and second GNNs are sites s3 and s1, respectively. As such, the 2bs are s3 and s1, and the 
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total distance d(o1, s1) + d(o2, s1) + d(o4, s1) + d(o3, s3) + d(o5, s3) + d(o6, s3) = 23. However, 

another combination (s2, s4) shown in Figure 3(b) can further reduce the total distance to 13. 

Therefore, using the way of executing GNNQ K times to find the K best sites could return 

incorrect result. 

(a) incorrect result
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Figure 3. An example of the GNNQ 

2.3. Methods For MDOLQ 

Given a set of objects O and a set of sites S, a MDOLQ  returns a location which, if  a new site s 

not in S is built there, minimizes∑
∈Oo

ji

i

sod ),(  where d(oi, sj) is the distance between object oi and 

its closest site }{sSs j U∈ . At first glance, the MDOLQ is more similar to the KBSQ than the 

other queries mentioned above. However, using the MDOLQ to obtain the K best sites may still 

lead to incorrect result. 

Consider an example of using MDOLQ to find the K best sites in Figure 4. As 2bs are to be found, 

we can evaluate the MDOLQ two times to obtain the result. In the first iteration (as shown in 

Figure 4(a)), the site s1 becomes the first bs because it has the minimum total distance to all 

objects. Then, the MDOLQ is executed again by taking into account the remaining sites s2, s3, and 

s4. As the site s2 can reduce more distance compared to the other two sites, it becomes the second 

bs (shown in Figure 4(b)). Finally, 2bs are s1 and s2 and the total distance is computed as d(o4, s1) 

+ d(o5, s1) + d(o6, s1) + d(o1, s2) + d(o2, s2) + d(o3, s2) = 20. However, the computed distance is not 
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minimum and can be further reduced. As we can see in Figure 4(c), if s2 and s4 are chosen to be 

the 2bs, the total distance can decrease to 16. 
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Figure 4. An example of the MDOLQ 

3. STRAIGHTFORWARD APPROACH 

 
In this section, we first propose a straightforward approach to solve the KBSQ problem, and then 

analyze the processing cost required for this approach. Assume that there are n objects and m 

sites, and the K bs would be chosen from the m sites. The straightforward approach consists of 

three steps. The first step is to compute the distance d(oi, sj) from each object oi (1 ≤ i ≤ n) to each 

site sj (1 ≤ j ≤ m). As the K best sites are needed to be retrieved, there are totally Cm
K possible 

combinations and each of the combinations comprises K sites. The second step is to consider all 

of the combinations. For each combination, the distance from each object to its closest site is 

determined so as to compute the total distance. In the last step, the combination of K sites having 

the minimum total distance is chosen to be the query result of KBSQ. 

 

Figure 5 illustrates the three steps of the straightforward approach. As shown in Figure 5(a), the 

distances between objects and sites are computed and stored in a table, in which a tuple represents 

the distance from an object to all sites. Then, the C
m

K combinations of K sites are considered so 

that Cm
K tables are generated (shown in Figure 5(b)). For each table, the minimum attribute value 

of each tuple (depicted as gray box) refers to the distance between an object and its closest site. 

As such, the total distance for each combination can be computed by summing up the minimum 

attribute value of each tuple. Finally, in Figure 5(c) the combination 1 of K sites can be the K bs 

because its total distance is minimum among all combinations. 
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Figure 5. Straightforward approach 

Since the straightforward approach includes three steps, we consider the three steps individually 

to analyze the processing cost. Let m and n be the numbers of sites and objects, respectively. 

Then, the time complexity of the first step is m*n because the distances between all objects and 

sites have to be computed. In the second step, C
m

K combinations are considered and thus the 

complexity is Cm
K *n*K. Finally, the combination having the minimum total distance is 

determined among all combinations so that the complexity of the last step is C
m

K. The processing 

cost of the straightforward approach is represented as k
m

k
m CKnCnm ++ *** . 

4. KBSQ ALGORITHM 

The above approach is performed without any index support, which is a major weakness in 

dealing with large datasets. In this section, we propose the KBSQ algorithm combined with the 

existing indexes R*-tree and Voronoi diagram to efficiently process the KBSQ. 

Recall that, to process the KBSQ, we need to find the closest site s for each object o (that is, 

finding the RNN o of site s). As the Voronoi diagram can be used to effectively determine the 

RNN of each site [14], we divide the data space so that each site has its own Voronoi cell. For 

example, in Figure 6(b), the four sites s1, s2, s3, and s4 have their corresponding Voronoi cells V1, 
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V2, V3, and V4, respectively. Taking the cell V1 as an example, if object o lies in V1, then o must be 

the RNN of site s1. Based on this characteristic, object o needs not be considered in finding the 

RNNs for the other sites. Then, we use the R*-tree, which is a height-balanced indexing structure, 

to index the objects. In a R*-tree, objects are recursively grouped in a bottom-up manner 

according to their locations. For instance, in Figure 6(a), eight objects o1, o2, ..., o8 are grouped 

into four leaf nodes E4 to E7 (i.e., the minimum bounding rectangle MBR enclosing the objects). 

Then, nodes E4 to E7 are recursively grouped into nodes E2 and E3, that become the entries of the 

root node E1. 

(a) R-tree
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Figure 6. Spatial indexes 

Combined with the R*-tree and Voronoi diagram, we design the following pruning criteria to 

greatly reduce the number of objects considered in query processing. 

• Pruning objects: given an object o and the K sites s1, s2, ..., sK, if o lies in the Voronoi 

cell Vi of one site si contained in {s1, s2, ..., sK}, then the distances between object o and 

the other K-1 sites need not be computed so as to reduce the processing cost. 

 

• Pruning MBRs: given a MBR E enclosing a number of objects and the K sites s1, s2, ..., 

sK, if E is fully contained in the cell Vi of one site si contained in {s1, s2, ..., sK}, then the 

distances from all objects enclosed in E to the other K-1 sites would not be computed. 

 

To find the K bs for the KBSQ, we need to consider Cm
K combinations of K sites. For each 

combination of K sites s1, s2, ..., sK with their corresponding Voronoi cells V1, V2, ..., VK, the 

processing procedure begins with the R*-tree root node and proceeds down the tree. When an 

internal node E (i.e., MBR E) of the R*-tree is visited, the pruning criterion 2 is utilized to 

determine which site is the closest site of the objects enclosed in E. If the MBR E is not fully 

contained in any of the K Voronoi cells, then the child nodes of E need to be further visited. 

When a leaf node of the R*-tree is checked, the pruning criterion 1 is imposed on the entries (i.e., 

objects) of this leaf node. After the traversal of the R*-tree, the total distance for the combination 

of K sites s1, s2, ..., sK can be computed. By taking into account the total combinations, the 

combination of K sites whose total distance is minimum would be the query result of the KBSQ. 

Figure 7 continues the previous example in Figure 6 to illustrate the processing procedure, where 

there are eight objects o1 to o8 and four sites s1 to s4 in data space. Assume that the combination 

(s2, s3) is considered and the Voronoi cells of sites s2 and s3 are shown in Figure 7(a). As the MBR 

E2 is not fully contained in the Voronoi cell V2 of site s2, the MBRs E4 and E5 still need to be 

visited. When the MBR E4 is checked, based on the pruning criterion 2 the distances from objects 

o1 and o2 to site s3 would not be computed because their closest site is s2. Similarly, the closest 
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site of the objects o7 and o8 enclosed in MBR E7 is determined as site s3. As for objects o3 to o6, 

their closest sites can be found based on the pruning criterion 1. Having determined the closest 

site of each object, the total distance for combination (s2, s3) is obtained. Consider another 

combination (s2, s4) shown in Figure 7(b). The closest site s2 of four objects o1 to o4 enclosed in 

MBR E2 can be found when E2 is visited. Also, we can compute the total distance for the 

combination (s2, s4) after finding the closest sites for objects o5 to o8. By comparing the distances 

for all combinations, the 2bs are retrieved. 

s1

s2

s3

o1

o2
o5

o3

o4

o6

o7

o8

E4

E5

E6

E7

s4

(a) combination ( , )s s2 3

s1

s2

s3

o1

o2
o5

o3

o4

o6

o7

o8

E4

E5

E6

E7

s4

(b) combination ( , )s s2 4

E2 E2

E3 E3

 

Figure 7. Processing KBSQ with indexes 

5. PERFORMANCE EVALUATION 

We conduct four experiments for the straightforward approach and the proposed KBSQ algorithm 

in this section. The first three experiments are evaluated to study the performance of the proposed 

methods by measuring the CPU time for processing a KBSQ. The last experiment demonstrates 

the usefulness of the KBSQ algorithm by comparing the precision of query result against its 

competitors. 

 

5.1. Experimental Setting 

All experiments are performed on a PC with Intel 2.83 GHz CPU and 4 GB RAM. The 

algorithms are implemented in Java. One synthetic dataset is used in our simulation. The 

synthetic dataset consists of 1000 objects whose locations are uniformly spread over a region of 

100000 * 100000 meters. In the experimental space, we also generate 30 query datasets, each of 

which contains 25 sites whose locations are in the same range as those of the objects mentioned 

above. For each query dataset, we perform a KBSQ to find the K best sites, where the default 

value of K is set to 5. The performance is measured by the average CPU time in performing 

workload of the 30 queries. Table 1 summarizes the parameters under investigation, along with 

their default values and ranges. We compare the proposed KBSQ algorithm with the 

straightforward approach to investigate the performance of processing a KBSQ. Also, we compare 

the precision of the KBSQ algorithm against its competitors, including the RNNQ, the GNNQ, and 

the MDOLQ methods. 

Table 1. System parameters. 

Parameter Default Range 

Number of objects (O) 1000 500, 1000, 5000, 10000 

Number of sites (S) 25 20, 25, 30, 35 

K 5 1, 5, 10, 20 

 



International Journal of Database Management Systems ( IJDMS ) Vol.5, No.5, October 2013 

25 

5.2. Efficiency Of KBSQ Algorithm 

In this subsection, we compare the KBSQ algorithm with the straightforward approach in terms of 

the CPU time. Three experiments are conducted to investigate the effects of three important 

factors on the performance of processing KBSQ. These important factors are the number of 

objects O, the number of sites S, and the value of K. 

 

Figure 8 illustrates the performance of the KBSQ algorithm and the straightforward approach as a 

function of the number of objects (ranging from 500 to 10000). Note that hereafter all figures use 

a logarithmic scale for the y-axis. As we can see from the experimental result, the KBSQ 

algorithm significantly outperforms the straightforward approach in the CPU time, even for a 

smaller number of objects (e.g., 500). This is mainly because for the straightforward approach the 

distances of all objects have to be computed which incurs high computation cost. Moreover, the 

performance gap between the KBSQ algorithm and the straightforward approach increases with 

the increasing number of objects. The reason is that most distance computations of objects can be 

avoided by using the KBSQ algorithm with the support of R*-tree, but these distance 

computations are necessary for the straightforward approach. 

 

 

Figure 8. Effect of number of objects. 

Figure 9 demonstrates the effect of various numbers of sites (i.e., varying S from 20 to 35) on the 

performance of the KBSQ algorithm and the straightforward approach. When the number of sites 

increases, the CPU overhead for both algorithms grows. The reason is that as the number of sites 

becomes greater, the number of combinations to be considered increases so that more distance 

computations between objects and sites are required. The experimental result shows that the 

KBSQ algorithm outperforms its competitor significantly in all cases, which confirms again that 

applying the KBSQ algorithm with R*-tree and Voronoi diagram can greatly improve the 

performance of processing a KBSQ. 
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Figure 9. Effect of number of sites 

Finally in this subsection, we study how the value of K affects the performance of the KBSQ 

algorithm and the straightforward approach, by varying K from 1 to 20. Similar to the previous 

experimental results, the KBSQ algorithm achieves significantly better performance than the 

straightforward approach (as shown in Figure 10). The KBSQ algorithm outperforms the 

straightforward approach by a factor of 70 to 240 in terms of the CPU cost. In addition, an 

interesting observation from Figure 10 is that a smaller K (e.g., 1) or a larger K (e.g., 20) results in 

a lower CPU time for the KBSQ algorithm and the straightforward approach. This is because for a 

smaller (or larger) value of K, less number of combinations needs to be considered in processing a 

KBSQ so that the required CPU time can be reduced. 

 

 

Figure 10. Effect of K 
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5.3. Precision Of KBSQ Algorithm 

The following experiment demonstrates the precision of the KBSQ algorithm and its competitors 

(including the RNNQ, the GNNQ, the MDOLQ methods) under various values of K, where the 

precision is represented as follows: 

%100
#

)(#
×=

real

realresult

bs

bsbs
precision

I
 

In the above equation, bsresult refers to the set of K best sites retrieved by executing the KBSQ 

algorithm, the RNNQ method, the GNNQ method, or the MDOLQ method. As for bsreal, it is the 

set of the real K best sites. In Figure 11, we vary K form 1 to 20 to investigate the precision of the 

KBSQ algorithm, the RNNQ method, the GNNQ method, and the MDOLQ method. As we can see, 

as the real K best sites can be precisely determined by executing the KBSQ algorithm, the 

precision of the KBSQ algorithm is always equal to 100% under different values of K. However, 

if the RNNQ, the GNNQ, and the MDOLQ methods are adopted to answer a KBSQ, some of the 

real K best sites are missed. As shown in the experimental result, the precision for the MDOLQ 

method can only reach 60% to 85%. Even worse, the precision for the RNNQ and the GNNQ 

methods is below 60% for a smaller value of K, which means that most of the retrieved best sites 

are incorrect. 

 

 

Figure 11. Precision for different K 

6. CONCLUSIONS 

In this paper, we focused on processing the K Best Site Query (KBSQ) which is a novel and 

important type of spatial queries. We highlighted the limitations of the previous approaches for 

the queries similar to the KBSQ, including the RNNQ, the GNNQ, and the MDOLQ. To solve the 

KBSQ problem, we first proposed a straightforward approach and then analyzed its processing 

cost. In order to improve the performance of processing the KBSQ, we further proposed a KBSQ 

algorithm combined with R*-tree and Voronoi diagram to greatly reduce the CPU and I/O costs. 

Comprehensive set of experiments demonstrated the efficiency and the precision of the proposed 

approaches. 
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Our next step is to discuss the space requirement of the proposed methods and design a novel 

index structure for answering the KBSQ. Then, we will focus on processing the KBSQ for moving 

objects with fixed or uncertain velocity. More complicated issues will be introduced because of 

the movement of objects. Finally, we would like to extend the proposed approach to process the 

KBSQ in road network. 
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