
International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

DOI : 10.5121/ijdms.2013.5503 17

A FRAMEWORK FOR PROCESSING K-BEST SITE

QUERY

Yuan-Ko Huang

*
 and Lien-Fa Lin

Department of Information Communication Kao-Yuan University;

Kaohsiung Country, Taiwan R.O.C.

ABSTRACT

A novel query in spatial databases is the K-Best Site Query (KBSQ for short). Given a set of objects O, a set

of sites S, and a user-given value K, a KBSQ retrieves the K sites from S such that the total distance from

each object to its closest site is minimized. The KBSQ is indeed an important type of spatial queries with

many real applications. In this paper, we investigate how to efficiently process the KBSQ. We first propose

a straightforward approach with a cost analysis, and then develop the K Best Site Query (KBSQ) algorithm

combined with the existing spatial indexes to improve the performance of processing KBSQ.

Comprehensive experiments are conducted to demonstrate the efficiency of the proposed methods.

KEYWORDS

spatial databases; K-Best Site Query; spatial indexes

1. INTRODUCTION

With the fast advances of positioning techniques in mobile systems, spatial databases that aim at

efficiently managing spatial objects are becoming more powerful and hence attract more attention

than ever. Many applications, such as mobile communication systems, traffic control systems,

and geographical information systems, can benefit from efficient processing of spatial queries [1-

7]. In this paper, we present a novel and important type of spatial query, namely the K-Best Site

Query (KBSQ for short). Given a set of objects O, a set of sites S, and a user-given value K, a

KBSQ retrieves the K sites s1, s2, ..., sK from S such that ∑
∈Oo

ji

i

sod),(is minimized, where d(oi, sj)

refers to the distance between object oi and its closest site sj. We term the sites retrieved by

executing the KBSQ the best sites (or bs for short).

The KBSQ problem arises in many fields and application domains. As an example of real-world

scenario, consider a set O of soldiers on the battlefields that is fighting the enemy. In order to

immediately support the injured soldiers, we need to choose K sites from a set S of sites to build

the emergicenters. Note that there are many soldiers fighting on the battlefields and many sites

could be the emergicenters. To achieve the fastest response time, the sum of distances from each

battlefield to its closest emergicenter should be minimized. Another real-world example is that

the McDonald's Corporation may ask “what are the optimal locations in a city to open new

McDonald's stores.” In this case, the KBSQ can be used to find out the K best sites among a set S

of sites so that every customer in set O can rapidly reach his/her closest store.

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

18

Let us use an example in Figure 1 to illustrate the KBSQ problem, where six objects o1, o2, ..., o6

and four sites s1, s2, ..., s4 are depicted as circles and rectangles, respectively. Assume that two

best sites (i.e., 2bs) are to be found in this example. There are six combinations (s1, s2), (s1, s3), ...,

(s3, s4), and one combination would be the result of KBSQ. As we can see, the sum of distances

from objects o1, o2, o3 to their closest site s3 is equal to 9, and the sum of distances between

objects o4, o5, o6 and site s1 is equal to 12. Because the combination (s1, s3) leads to the minimum

total distance (i.e., 9 + 12 = 21), the two sites s1 and s3 are the 2bs.

o1

o2

o5

o3

o4

s1

s2

s4

s3
o6

2

3

4
4

4

4

Figure 1. An example of the KBSQ

To process the KBSQ, the closest site for each object needs to be first determined and then the

distance between object and its closest site is computed so as to find the best combination of K

sites. When a database is large, it is crucial to avoid reading the entire dataset in identifying the K

best sites. For saving CPU and I/O costs, we develop an efficient method combined with the

existing spatial indexes to avoid unnecessary reading of the entire dataset. A preliminary version

of this paper is [8], and the contributions of this paper are summarized as follows.

• We present a novel query, namely the K Best Site Query, which is indeed an important

type of spatial queries with many real applications.

• We propose a straightforward approach to process the KBSQ and also analyze the

processing cost required for this approach.

• An efficient algorithm, namely the K Best Site Query (KBSQ) algorithm, operates by the

support of R*-tree [9] and Voronoi diagram [10] to improve the performance of KBSQ.

• A comprehensive set of experiments is conducted. The performance results manifest the

efficiency of our proposed approaches.

The rest of this paper is organized as follows. In Section 2, we discuss some related works on

processing spatial queries similar to the KBSQ, and point out their differences. In Section 3, the

straightforward approach and its cost analysis is presented. Section 4 describes the KBSQ

algorithm with the used indexes. Section 5 shows extensive experiments on the performance of

our approaches. Finally, Section 6 concludes the paper with directions on future work.

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

19

2. RELATED WORK

In recent years, some queries similar to the KBSQ are presented, including the Reverse Nearest

Neighbor Query (RNNQ) [11], the Group Nearest Neighbor Query (GNNQ) [12], and the Min-

Dist Optimal-Location Query (MDOLQ) [13]. Several methods have been designed to efficiently

process these similar queries. However, the query results obtained by executing these queries are

quite different from that of the KBSQ. Also, the proposed methods cannot be directly used to

answer the KBSQ. In the following, we investigate why the existing methods for processing the

similar queries cannot be applied to the KBSQ separately.

2.1. Methods For RNNQ

Given a set of object O and a site s, a RNNQ can be used to retrieve a set S of objects contained

in O whose closest site is s. Each object o in S is termed a RNN of s. An intuitive way for finding

the query result of KBSQ is to utilize the RNNQ to find the RNNs for each site. Then, the K sites

having the maximum number of RNNs (meaning that they are closer to most of the objects) are

chosen to be the K best sites.

Taking Figure 2 as an example, the RNNs of site s1 can be determined by executing the RNNQ

and its RNNs are objects o4 and o6. Similarly, the RNNs of sites s2, s3, and s4 are determined as o1

and o2, o3, and o5, respectively. As sites s1 and s2 have the maximum number of RNNs, they can

be the 2bs for the KBSQ. However, sites s1 and s2 lead to the total distance 24 (i.e., d(o4, s1) +

d(o5, s1) + d(o6, s1) + d(o1, s2) + d(o2, s2) + d(o3, s2)), which is greater than the total distance 22 as

sites s1 and s3 are chosen to be the 2bs. As a result, the intuition of using the RNNQ result to be

the KBSQ result is infeasible.

o1

o2

o5

o3

o4

s1

s2

s4

s3

o6

3

4
4

4

4

2 2

3

8
2

o o s4 6 1and are ’s RNN

o o s1 2 2and are ’s RNN

o s3 3is ’s RNN

o s5 4is ’s RNN

Figure 2. An example of the RNNQ

2.2. Methods For GNNQ

A GNNQ retrieves a site s from a set of sites S such that the total distance from s to all objects is

the minimum among all sites in S. Here, the result s of GNNQ is called a GNN. To find the K best

sites, we can repeatedly evaluate the GNNQ K times so as to retrieve the first K GNNs. It means

that the sum of distances between these K GNNs and all objects is minimum, and thus they can be

the K bs. However, in some cases the result obtained by executing the GNNQ K times is still

different from the exact result of KBSQ.

Let us consider an example shown in Figure 3, where 2bs are required. As shown in Figure 3(a),

the first and second GNNs are sites s3 and s1, respectively. As such, the 2bs are s3 and s1, and the

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

20

total distance d(o1, s1) + d(o2, s1) + d(o4, s1) + d(o3, s3) + d(o5, s3) + d(o6, s3) = 23. However,

another combination (s2, s4) shown in Figure 3(b) can further reduce the total distance to 13.

Therefore, using the way of executing GNNQ K times to find the K best sites could return

incorrect result.

(a) incorrect result

o1

o2

o5
o3

o4

s1

s2

s4

s3

o6

3

2

1

1
3

3

(b) correct result

o1

o2

o5
o3

o4

s1

s2 s4s3

o6

4

5

2

1

6

5

The first isGNN s3

The second isGNN s1

The third isGNN s2

The last isGNN s4

Figure 3. An example of the GNNQ

2.3. Methods For MDOLQ

Given a set of objects O and a set of sites S, a MDOLQ returns a location which, if a new site s

not in S is built there, minimizes∑
∈Oo

ji

i

sod),(where d(oi, sj) is the distance between object oi and

its closest site }{sSs j U∈ . At first glance, the MDOLQ is more similar to the KBSQ than the

other queries mentioned above. However, using the MDOLQ to obtain the K best sites may still

lead to incorrect result.

Consider an example of using MDOLQ to find the K best sites in Figure 4. As 2bs are to be found,

we can evaluate the MDOLQ two times to obtain the result. In the first iteration (as shown in

Figure 4(a)), the site s1 becomes the first bs because it has the minimum total distance to all

objects. Then, the MDOLQ is executed again by taking into account the remaining sites s2, s3, and

s4. As the site s2 can reduce more distance compared to the other two sites, it becomes the second

bs (shown in Figure 4(b)). Finally, 2bs are s1 and s2 and the total distance is computed as d(o4, s1)

+ d(o5, s1) + d(o6, s1) + d(o1, s2) + d(o2, s2) + d(o3, s2) = 20. However, the computed distance is not

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

21

minimum and can be further reduced. As we can see in Figure 4(c), if s2 and s4 are chosen to be

the 2bs, the total distance can decrease to 16.

(a) Step 1

o1

o2

o5
o3

o4

s1

s2

s4

s3 o6

4

5

3

6

5

4

o1

o2

o5
o3

o4

s1

s2

s4

s3 o6

4

5

3

2

42

(b) Step 2

o1

o2

o5
o3

o4

s1

s2

s4

s3 o6

4

3

2
2

3

2

(c) correct result

Figure 4. An example of the MDOLQ

3. STRAIGHTFORWARD APPROACH

In this section, we first propose a straightforward approach to solve the KBSQ problem, and then

analyze the processing cost required for this approach. Assume that there are n objects and m

sites, and the K bs would be chosen from the m sites. The straightforward approach consists of

three steps. The first step is to compute the distance d(oi, sj) from each object oi (1 ≤ i ≤ n) to each

site sj (1 ≤ j ≤ m). As the K best sites are needed to be retrieved, there are totally Cm
K possible

combinations and each of the combinations comprises K sites. The second step is to consider all

of the combinations. For each combination, the distance from each object to its closest site is

determined so as to compute the total distance. In the last step, the combination of K sites having

the minimum total distance is chosen to be the query result of KBSQ.

Figure 5 illustrates the three steps of the straightforward approach. As shown in Figure 5(a), the

distances between objects and sites are computed and stored in a table, in which a tuple represents

the distance from an object to all sites. Then, the C
m

K combinations of K sites are considered so

that Cm
K tables are generated (shown in Figure 5(b)). For each table, the minimum attribute value

of each tuple (depicted as gray box) refers to the distance between an object and its closest site.

As such, the total distance for each combination can be computed by summing up the minimum

attribute value of each tuple. Finally, in Figure 5(c) the combination 1 of K sites can be the K bs

because its total distance is minimum among all combinations.

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

22

(a) Step 1

n

m
1

1

2

2 ...

...

m

n

4

4

5

2

2

6 ...

3

3

6 ...

...

...

...

...

...

(c) Step 3

n
K

1

1

2

2 ...

...

K

n

4

4

2

2

2

6 ...

3

8

6 ...

...

...

...

...

...

combination 1

(b) Step 2

...

n
K

1

1

2

2 ...

...

K

n

4

4

2

2

2

6 ...

3

8

6 ...

...

...

...

...

...

combination 1

n
K

2

1

2

3 ...

...

K+1

n

6

5

2

4

4

3 ...

3

8

2 ...

...

...

...

...

...

n
K

1

1

2

2 ...

...

m

n

4

4

5

2

2

6 ...

3

3

6 ...

...

...

...

...

...

combination C
m

K

combination 2

Figure 5. Straightforward approach

Since the straightforward approach includes three steps, we consider the three steps individually

to analyze the processing cost. Let m and n be the numbers of sites and objects, respectively.

Then, the time complexity of the first step is m*n because the distances between all objects and

sites have to be computed. In the second step, C
m

K combinations are considered and thus the

complexity is Cm
K *n*K. Finally, the combination having the minimum total distance is

determined among all combinations so that the complexity of the last step is C
m

K. The processing

cost of the straightforward approach is represented as k
m

k
m CKnCnm ++ *** .

4. KBSQ ALGORITHM

The above approach is performed without any index support, which is a major weakness in

dealing with large datasets. In this section, we propose the KBSQ algorithm combined with the

existing indexes R*-tree and Voronoi diagram to efficiently process the KBSQ.

Recall that, to process the KBSQ, we need to find the closest site s for each object o (that is,

finding the RNN o of site s). As the Voronoi diagram can be used to effectively determine the

RNN of each site [14], we divide the data space so that each site has its own Voronoi cell. For

example, in Figure 6(b), the four sites s1, s2, s3, and s4 have their corresponding Voronoi cells V1,

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

23

V2, V3, and V4, respectively. Taking the cell V1 as an example, if object o lies in V1, then o must be

the RNN of site s1. Based on this characteristic, object o needs not be considered in finding the

RNNs for the other sites. Then, we use the R*-tree, which is a height-balanced indexing structure,

to index the objects. In a R*-tree, objects are recursively grouped in a bottom-up manner

according to their locations. For instance, in Figure 6(a), eight objects o1, o2, ..., o8 are grouped

into four leaf nodes E4 to E7 (i.e., the minimum bounding rectangle MBR enclosing the objects).

Then, nodes E4 to E7 are recursively grouped into nodes E2 and E3, that become the entries of the

root node E1.

(a) R-tree

o1

o2
o5

o3

o4

o6

o7

o8

E1
E2

E3

E4

E5

E6

E7

(b) Voronoi diagram

s1
s2

s4

s3

V4
V2

V3 V1

Figure 6. Spatial indexes

Combined with the R*-tree and Voronoi diagram, we design the following pruning criteria to

greatly reduce the number of objects considered in query processing.

• Pruning objects: given an object o and the K sites s1, s2, ..., sK, if o lies in the Voronoi

cell Vi of one site si contained in {s1, s2, ..., sK}, then the distances between object o and

the other K-1 sites need not be computed so as to reduce the processing cost.

• Pruning MBRs: given a MBR E enclosing a number of objects and the K sites s1, s2, ...,

sK, if E is fully contained in the cell Vi of one site si contained in {s1, s2, ..., sK}, then the

distances from all objects enclosed in E to the other K-1 sites would not be computed.

To find the K bs for the KBSQ, we need to consider Cm
K combinations of K sites. For each

combination of K sites s1, s2, ..., sK with their corresponding Voronoi cells V1, V2, ..., VK, the

processing procedure begins with the R*-tree root node and proceeds down the tree. When an

internal node E (i.e., MBR E) of the R*-tree is visited, the pruning criterion 2 is utilized to

determine which site is the closest site of the objects enclosed in E. If the MBR E is not fully

contained in any of the K Voronoi cells, then the child nodes of E need to be further visited.

When a leaf node of the R*-tree is checked, the pruning criterion 1 is imposed on the entries (i.e.,

objects) of this leaf node. After the traversal of the R*-tree, the total distance for the combination

of K sites s1, s2, ..., sK can be computed. By taking into account the total combinations, the

combination of K sites whose total distance is minimum would be the query result of the KBSQ.

Figure 7 continues the previous example in Figure 6 to illustrate the processing procedure, where

there are eight objects o1 to o8 and four sites s1 to s4 in data space. Assume that the combination

(s2, s3) is considered and the Voronoi cells of sites s2 and s3 are shown in Figure 7(a). As the MBR

E2 is not fully contained in the Voronoi cell V2 of site s2, the MBRs E4 and E5 still need to be

visited. When the MBR E4 is checked, based on the pruning criterion 2 the distances from objects

o1 and o2 to site s3 would not be computed because their closest site is s2. Similarly, the closest

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

24

site of the objects o7 and o8 enclosed in MBR E7 is determined as site s3. As for objects o3 to o6,

their closest sites can be found based on the pruning criterion 1. Having determined the closest

site of each object, the total distance for combination (s2, s3) is obtained. Consider another

combination (s2, s4) shown in Figure 7(b). The closest site s2 of four objects o1 to o4 enclosed in

MBR E2 can be found when E2 is visited. Also, we can compute the total distance for the

combination (s2, s4) after finding the closest sites for objects o5 to o8. By comparing the distances

for all combinations, the 2bs are retrieved.

s1

s2

s3

o1

o2
o5

o3

o4

o6

o7

o8

E4

E5

E6

E7

s4

(a) combination (,)s s2 3

s1

s2

s3

o1

o2
o5

o3

o4

o6

o7

o8

E4

E5

E6

E7

s4

(b) combination (,)s s2 4

E2 E2

E3 E3

Figure 7. Processing KBSQ with indexes

5. PERFORMANCE EVALUATION

We conduct four experiments for the straightforward approach and the proposed KBSQ algorithm

in this section. The first three experiments are evaluated to study the performance of the proposed

methods by measuring the CPU time for processing a KBSQ. The last experiment demonstrates

the usefulness of the KBSQ algorithm by comparing the precision of query result against its

competitors.

5.1. Experimental Setting

All experiments are performed on a PC with Intel 2.83 GHz CPU and 4 GB RAM. The

algorithms are implemented in Java. One synthetic dataset is used in our simulation. The

synthetic dataset consists of 1000 objects whose locations are uniformly spread over a region of

100000 * 100000 meters. In the experimental space, we also generate 30 query datasets, each of

which contains 25 sites whose locations are in the same range as those of the objects mentioned

above. For each query dataset, we perform a KBSQ to find the K best sites, where the default

value of K is set to 5. The performance is measured by the average CPU time in performing

workload of the 30 queries. Table 1 summarizes the parameters under investigation, along with

their default values and ranges. We compare the proposed KBSQ algorithm with the

straightforward approach to investigate the performance of processing a KBSQ. Also, we compare

the precision of the KBSQ algorithm against its competitors, including the RNNQ, the GNNQ, and

the MDOLQ methods.

Table 1. System parameters.

Parameter Default Range

Number of objects (O) 1000 500, 1000, 5000, 10000

Number of sites (S) 25 20, 25, 30, 35

K 5 1, 5, 10, 20

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

25

5.2. Efficiency Of KBSQ Algorithm

In this subsection, we compare the KBSQ algorithm with the straightforward approach in terms of

the CPU time. Three experiments are conducted to investigate the effects of three important

factors on the performance of processing KBSQ. These important factors are the number of

objects O, the number of sites S, and the value of K.

Figure 8 illustrates the performance of the KBSQ algorithm and the straightforward approach as a

function of the number of objects (ranging from 500 to 10000). Note that hereafter all figures use

a logarithmic scale for the y-axis. As we can see from the experimental result, the KBSQ

algorithm significantly outperforms the straightforward approach in the CPU time, even for a

smaller number of objects (e.g., 500). This is mainly because for the straightforward approach the

distances of all objects have to be computed which incurs high computation cost. Moreover, the

performance gap between the KBSQ algorithm and the straightforward approach increases with

the increasing number of objects. The reason is that most distance computations of objects can be

avoided by using the KBSQ algorithm with the support of R*-tree, but these distance

computations are necessary for the straightforward approach.

Figure 8. Effect of number of objects.

Figure 9 demonstrates the effect of various numbers of sites (i.e., varying S from 20 to 35) on the

performance of the KBSQ algorithm and the straightforward approach. When the number of sites

increases, the CPU overhead for both algorithms grows. The reason is that as the number of sites

becomes greater, the number of combinations to be considered increases so that more distance

computations between objects and sites are required. The experimental result shows that the

KBSQ algorithm outperforms its competitor significantly in all cases, which confirms again that

applying the KBSQ algorithm with R*-tree and Voronoi diagram can greatly improve the

performance of processing a KBSQ.

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

26

Figure 9. Effect of number of sites

Finally in this subsection, we study how the value of K affects the performance of the KBSQ

algorithm and the straightforward approach, by varying K from 1 to 20. Similar to the previous

experimental results, the KBSQ algorithm achieves significantly better performance than the

straightforward approach (as shown in Figure 10). The KBSQ algorithm outperforms the

straightforward approach by a factor of 70 to 240 in terms of the CPU cost. In addition, an

interesting observation from Figure 10 is that a smaller K (e.g., 1) or a larger K (e.g., 20) results in

a lower CPU time for the KBSQ algorithm and the straightforward approach. This is because for a

smaller (or larger) value of K, less number of combinations needs to be considered in processing a

KBSQ so that the required CPU time can be reduced.

Figure 10. Effect of K

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

27

5.3. Precision Of KBSQ Algorithm

The following experiment demonstrates the precision of the KBSQ algorithm and its competitors

(including the RNNQ, the GNNQ, the MDOLQ methods) under various values of K, where the

precision is represented as follows:

%100
#

)(#
×=

real

realresult

bs

bsbs
precision

I

In the above equation, bsresult refers to the set of K best sites retrieved by executing the KBSQ

algorithm, the RNNQ method, the GNNQ method, or the MDOLQ method. As for bsreal, it is the

set of the real K best sites. In Figure 11, we vary K form 1 to 20 to investigate the precision of the

KBSQ algorithm, the RNNQ method, the GNNQ method, and the MDOLQ method. As we can see,

as the real K best sites can be precisely determined by executing the KBSQ algorithm, the

precision of the KBSQ algorithm is always equal to 100% under different values of K. However,

if the RNNQ, the GNNQ, and the MDOLQ methods are adopted to answer a KBSQ, some of the

real K best sites are missed. As shown in the experimental result, the precision for the MDOLQ

method can only reach 60% to 85%. Even worse, the precision for the RNNQ and the GNNQ

methods is below 60% for a smaller value of K, which means that most of the retrieved best sites

are incorrect.

Figure 11. Precision for different K

6. CONCLUSIONS

In this paper, we focused on processing the K Best Site Query (KBSQ) which is a novel and

important type of spatial queries. We highlighted the limitations of the previous approaches for

the queries similar to the KBSQ, including the RNNQ, the GNNQ, and the MDOLQ. To solve the

KBSQ problem, we first proposed a straightforward approach and then analyzed its processing

cost. In order to improve the performance of processing the KBSQ, we further proposed a KBSQ

algorithm combined with R*-tree and Voronoi diagram to greatly reduce the CPU and I/O costs.

Comprehensive set of experiments demonstrated the efficiency and the precision of the proposed

approaches.

International Journal of Database Management Systems (IJDMS) Vol.5, No.5, October 2013

28

Our next step is to discuss the space requirement of the proposed methods and design a novel

index structure for answering the KBSQ. Then, we will focus on processing the KBSQ for moving

objects with fixed or uncertain velocity. More complicated issues will be introduced because of

the movement of objects. Finally, we would like to extend the proposed approach to process the

KBSQ in road network.

ACKNOWLEDGEMENTS

This work was supported by National Science Council of Taiwan (R.O.C.) under Grants NSC

101-2119-M-244 -001 and NSC 102-2119-M-244 -001.

REFERENCES

[1] Benetis, R.; Jensen, C.S.; Karciauskas, G.; Saltenis, S. Nearest neighbor and reverse nearest

neighbor queries for moving objects. VLDB Journal 2006, 15, 229-249.

[2] Hakkoymaz, V. A specification model for temporal and spatial relations of segments in multimedia

presentations. Journal of Digital Information Management 2010, 8, 136-146.

[3] Huang, Y.-K.; Chen, C.-C.; Lee, C. Continuous k-nearest neighbor query for moving objects with

uncertain velocity. GeoInformatica 2009, 13, 1-25.

[4] Huang, Y.-K.; Liao, S.-J.; Lee C. Evaluating continuous k-nearest neighbor query on moving objects

with uncertainty. Information Systems 2009, 34, 415-437.

[5] Mokbel, M.F.; Xiong, X.; Aref, W.G. Sina: Scalable incremental processing of continuous queries in

spatio-temporal databases. In Proceedings of the ACM SIGMOD 2004.

[6] Pagel, B.-U.; Six, H.-W.; Winter, M. Window query-optimal clustering of spatial objects. In

Proceedings of the ACM SIGMOD 1995.

[7] Papadias, D.; Tao, Y.; Mouratidis, K.; Hui, C.K. Aggregate nearest neighbor queries in spatial

databases. ACM Trans. Database Syst. 2005, 30, 529-576.

[8] Huang, Y.-K.; Lin, L.-F. Evaluating k-best site query on spatial objects. In Proceedings of the NDT

2011.

[9] Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACM

SIGMOD 1984.

[10] Samet, H. The design and analysis of spatial data structures. Addison-Wesley, Reading 1990.

[11] Korn, F.; Muthukrishnan, S. Influence sets based on reverse nearest neighbor queries. In Proceedings

of the ACM SIGMOD 2010.

[12] Papadias, D.; Shen, Q.; Tao, Y.; Mouratidis, K. Group nearest neighbor queries. In Proceedings of

the ICDE 2004.

[13] Zhang, D.; Du, Y.; Xia, T.; Tao, Y. Progressive computation of the min-dist optimal-location query.

In Proceedings of the VLDB 2006.

[14] Zhang, J .; Zhu, M.; Papadias, D.; Tao, Y.; Lee, D.L. Location-based spatial queries. In Proceedings

of the ACM SIGMOD 2003.

