
International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

DOI : 10.5121/ijdps.2013.4404 37

STUDY OF VARIOUS FACTORS AFFECTING

PERFORMANCE OF MULTI-CORE PROCESSORS

Nitin Chaturvedi1 S Gurunarayanan2

1Department of Electrical Electronics Engineering, BITS, Pilani, India
nitin80@bits-pilani.ac.in

2Department of Electrical Electronics Engineering, BITS, Pilani, India
sgru@bits-pilani.ac.in

ABSTRACT

Advances in Integrated Circuit processing allow for more microprocessor design options. As Chip
Multiprocessor system (CMP) become the predominant topology for leading microprocessors, critical
components of the system are now integrated on a single chip. This enables sharing of computation
resources that was not previously possible. In addition the virtualization of these computation resources
exposes the system to a mix of diverse and competing workloads. On chip Cache memory is a resource of
primary concern as it can be dominant in controlling overall throughput. This Paper presents analysis of
various parameters affecting the performance of Multi-core Architectures like varying the number of
cores, changes L2 cache size, further we have varied directory size from 64 to 2048 entries on a 4 node, 8
node 16 node and 64 node Chip multiprocessor which in turn presents an open area of research on multi-
core processors with private/shared last level cache as the future trend seems to be towards tiled
architecture executing multiple parallel applications with optimized silicon area utilization and excellent
performance.

KEYWORDS

Chip Multiprocessor (CMP), Multiple-Chip Multiprocessor (M-CMP), Tiled Architecture.

1. INTRODUCTION

Present sub-micron integrated circuit technologies have fueled microprocessor performance
growth [3, 4]. Each new process technology increases the integration density allows for higher
clock rates and offers new opportunities for micro-architectural innovation. Both of these are
required to maintain microprocessor performance growth. Micro-architectural innovations
employed by recent microprocessors include multiple instruction issue, dynamic scheduling,
speculative execution, instruction level parallelism [6] and non-blocking caches. In the past, we
have seen the trend towards CPUs with wider instruction issue and support for larger amounts of
speculative execution but due to fundamental circuit limitations and limited amounts of
instruction level parallelism, the superscalar execution model provides diminishing returns in
performance for increasing issue width. Faced with this situation, building further a more
complex wide issue superscalar processor was not at all the efficient use of silicon resources and
a better utilization of silicon area. So researchers came up with a novel architecture which was
constructed from simpler processors then super-scalar and multiple such processors are integrated
on a single chip popularly known as chip multiprocessor or multi-core processors. To understand
the performance trade-offs between wide-issue processors and single chip multiprocessors in a
more quantitative way, researchers had compared performance of a six-issue dynamically
scheduled superscalar processor with a 4 two-issue multiprocessor. Comparison has a number
of unique features. The results show that on applications that cannot be parallelized, the

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

38

superscalar micro-architecture performs better than one processor of the multiprocessor
architecture. For applications with fine grained thread-level parallelism the multiprocessor micro-
architecture can exploit this parallelism so that the super-scalar micro-architecture is at most 10%
better. For applications with large grained thread-level parallelism and multiprogramming
workloads the multiprocessor micro-architecture performs 50–100% better than the wide super-
scalar micro-architecture. Today data centres powering web and transaction services face new
requirements as they attempt to deliver higher levels of content-rich and high-bandwidth services
to increasing numbers of users. These workloads share certain common characteristics. They
exhibit high Thread-Level Parallelism (TLP) with multiple and independent processes running
concurrently. Moreover, servers equipped with even more powerful and power-hungry
microprocessors to meet higher computational demands are pushing the power and cooling
capabilities of these servers to their limits, resulting in increased operating costs and decreased
system reliability. Therefore for achieving high performance while maintaining existing power
and thermal envelopes requires novel microprocessor designs that not only focuses on
performance but rather on the aggregate performance per watt. The rest of the paper is organized
as follows: In Section 2, the performance limits of superscalar design are discussed and it also
presents the case for a single chip multiprocessor from an applications perspective and extended
to M-CMP. Section 3 gives details of Simulation methodology. Section 4 presented the obtained
results and finally Section 5 concludes.

2. LITERATURE REVIEW

2.1. Super-Scalar Processors

A trend in the microprocessor industry has been the design of CPUs with multiple instruction
issue and the ability to execute instructions out of program order. This ability, called dynamic
scheduling uses hardware to track register dependencies between instructions; an instruction is
executed, possibly out of program order, as soon as all of its dependencies are satisfied. The
register dependency checking was done with a hardware structure called the scoreboard. IBM
used register renaming to improve the efficiency of dynamic scheduling using hardware
structures called reservation stations [2]. It is possible to design a dynamically scheduled
superscalar microprocessor using reservation stations, the most recent implementations of
dynamic superscalar processors have used a structure similar to the one shown in Figure 1, which
shows three major phases of instruction execution in a dynamic superscalar machine they are
fetch, issue and execute.

Figure1. Dynamic Super Scalar Microprocessor

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

39

The goal of the fetch phase is to present the rest of the CPU with a large and accurate window of
decoded instructions. Three factors constrain instruction fetch: miss predicted branches,
instruction misalignment, and cache misses. The ability to predict branches correctly is crucial to
establishing a large, accurate window of instructions. However, good branch prediction is not
enough. As previous work has pointed out, it is also necessary to align a packet of instructions for
the decoder. Even with good branch prediction and alignment a significant cache miss rate will
limit the ability of the fetcher to maintain an adequate window of instructions. Previous research
have shown that over 60% of the instruction cache miss latency can be hidden on a database
benchmark with a 64KB two way set associative instruction cache. In the issue phase, a packet of
renamed instructions is inserted into the instruction issue queue. An instruction is issued for
execution once all of its operands are ready. The results have shown a quadratic increase in the
size of the instruction issue queue and researchers believe that the instruction issue queue will
fundamentally limit the performance of wide issue superscalar machines. In the execution phase,
operand values are fetched from the register file or bypassed from earlier instructions to execute
on the functional units. The wide superscalar execution model will encounter performance limits
in the register file, in the bypass logic and in the functional units. Wider instruction issue requires
a larger window of instructions, which implies more register renaming. Not only must the register
file be larger to accommodate more renamed registers, but the number of ports required to satisfy
the full instruction issue bandwidth also grows with issue width. Again, this causes a quadratic
increase in the complexity of the register file with increases in issue width.

2.2. Single Chip Multiprocessor

In today’s information era, commercial servers constitute the backbone of the global information
and communication system infrastructure. Such servers run useful commercial applications that
are essential to many aspects of everyday life such as banking, airline reservations, web searching
and web browsing. As more people depend on these multi-threaded throughput-oriented
applications, demand for more throughputs is likely to increase for the foreseeable future.
Commercial servers must therefore improve their performance by providing more throughputs to
keep up with the application demand.

Figure2. Single Chip Multiprocessor (CMP)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

40

Since commercial applications have abundant thread-level parallelism, commercial servers were
designed as multiprocessor systems—or clusters of multiprocessors—to provide sufficient
throughput. While traditional symmetric multiprocessors (SMPs) can exploit thread-level
parallelism, they also suffer from a performance penalty caused by memory stalls due to cache
misses and cache-to-cache transfers, both of which require waiting for long off-chip delays.
Several researchers have shown that the performance of commercial applications and database
applications in particular, is often dominated by sharing misses that require cache-to-cache
transfers. To avoid these overheads, architects proposed several schemes to integrate more
resources on a single chip. Researchers have shown that chip-level integration of caches, memory
controllers, cache coherence hardware and routers can improve performance of online transaction
processing workloads by a factor of 1.5. Simultaneous multithreading designs allow the processor
to execute several contexts (or threads) simultaneously by adding per-thread processor resources.
This approach also improves the performance of database applications compared to a superscalar
processor with comparable resources. The trend towards more integration of resources on a single
chip is becoming more apparent in CMP designs where multiprocessor systems are built on a
single chip. Chip multiprocessor (CMP) systems can provide the increased throughput required
by multi-threaded applications while reducing the overhead incurred due to sharing misses in
traditional shared-memory multiprocessors. A chip multiprocessor design is typically composed
of two or more processor cores (with private level-one caches) sharing a second- level cache.
CMPs in various forms are becoming popular building blocks for many current and future
commercial servers. The increasing number of processor cores on a single chip increases the
demand on two critical resources: the shared cache capacity and the off-chip pin bandwidth.

2.3. Multiple-Chip Multiprocessor (M-CMP)

The increasing number of transistors per chip now enables Chip Multiprocessors (CMPs), which
implement multiple processor cores on a chip. CMP-based designs provide high-performance,
cost-effective computing for workloads with abundant thread-level parallelism, such as
commercial server workloads. Smaller-scale Single-CMP (S-CMP) systems, such as Stanford
Hydra and Sun UltraSparc T1 [1], use a single CMP along with DRAM and support chips.
Larger-scale Multiple-CMP (M-CMP) systems, such as Piranha [7] and IBM Power4, combine
multiple CMPs to further increase performance.

Figure3. Multiple-CMP

Because all of these systems use shared memory (to preserve operating system and application
investment), a key challenge for M-CMP systems is implementing correct and high performance
cache coherence protocols. These protocols keep caches transparent to software, usually by
maintaining the coherence invariant that each block may have either one writer or multiple
readers. S-CMP systems are conceptually straightforward and maintain coherence with traditional

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

41

non-hierarchical snooping protocols (which rely on a logical bus) or directory protocols (which
track cached copies at memory). M-CMPs present a greater challenge, because they must
maintain both intra-CMP coherence and inter- CMP coherence.

3. SIMULATION METHODOLOGY AND APPLICATION

For evaluating the performance of the novel CMP or M-CMP micro-architectures requires a way
of simulating the environment in which we would expect these architectures to be used in real
systems. We have used GEM5 [8] full system functional simulator extended with Multi-facet
GEMS which is popularly used in the research community. The heart of GEM5 is the Ruby
memory simulator.
1. Execution time: The Ruby Cycle is our basic metric of simulated time used in the Ruby module
of the GEMS simulator. The Ruby module is the basic module for the memory system
configuration and interconnection network design The Ruby cycles are the recommended
performance metric in GEMS.
2. L1 cache misses: As the name says it represents the misses of L1 cache. It's calculated by
dividing request missed by number of requests (Instruction + Data). It's an important metric for
cache hierarchy.
3. L2 miss/miss rate: This represents the total misses and miss rate of the L2 cache. It is
calculated from the number of requests issued to the L2 and the misses of all banks of L2.
4. L2/Dir replacement: Number of replacements of L2/Directory entries. It's caused by capacity
misses and conflict misses.
5. Miss latency average: Average of the L1 miss latency in Ruby cycles. It is measured from the
moment a memory request is issued to the moment when the date is retrieved.
6. Memory requests: Number of reads and writes issued to main memory.
7. Applications: The benchmark used is a multithreaded implementation of a simulation of 3D
Lattice-Boltzmann magneto-hydrodynamics (in other words, plasma turbulence). Pthreads are
used to implement threading.

4. RESULTS

In order to analyze the impact of various parameters on the performance of Multi-core
Architectures, we have varied the number of cores, which in turn changes L2 cache size further
we have varied directory size from 64 to 2048 entries on a four node, 8 node 16 node and 64 node
Chip multiprocessor.

 Figure4. L1 Data Miss Rate

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

42

All simulations in this section are configured with same cache size: 32KB L1I + 32KB L1D and
512KB L2 cache per core. The L1 data cache miss rate was calculated as dividing number of L1D
misses by data requests. It was observed that L1 miss was greatly affected by directory si ze. It
again influences L2 requests and on-chip traffics. Therefore, it's an important factor that
determines CMP performance.

Figure5. L2 Misses

The number of L2 misses increases as no of cores within the system increases, nevertheless the
miss rate decrease to 40%-80% because of the larger total L2 cache on chip.

Figure6. L2 Miss Rate

It was observed that L2 miss rate decreases with increase in director size. L2 misses is mainly
determined by L2 cache size and more importantly application working set.

Figure7. L2 Replacement

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

43

L2 Replacement occurs when the L2 cache is full and another allocation is required. According to
LRU policy, a block will be chosen and replaced by a new one. If this block is clean just ignore it
and process allocation without pause. Otherwise the data block needed to be written back to main
memory. It was observed that the replacements are influence by directory and L2 size and on the
applications.

Figure8. Directory Replacements

On 16 core node we have observed that larger directory size does not improve the directory
replacements. The reason is that so many data are mapped to the same location resulting in many
conflicts. One possible solution is increase set associativity of directory to avoid the conflicts.
The trend seems normal in other two cases.

Figure9. Memory request

Memory request to some extent represents the requirement of memory bandwidth of applications.
Comparing with L2 misses in previous figure it is observed that the memory read requests caused
by L2 miss is the dominant faction of total memory requests.

Figure10. Average Miss Latency

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

44

The miss latency increases 50% from 4-core to 16- core and 150%-230% from 16-core to 64-
core. On a L1 miss, there are up to 3 nodes involved to fulfill the miss: local node, home node and
remote node. The 3- way communication aggravates the latency of on-chip communication.

Figure11. Average Network Latency

With Hierarchical network model, we can measure the average network latency in detail. It goes
from 14, 22 to 36 in there configurations. For all structure, the latency looks almost the same,
which depends on network topology and on-chip link latency.

4. CONCLUSIONS

The current advanced submicron integrated circuit technologies require us to look for new ways
for designing novel microprocessors architectures to utilize large numbers of gates and mitigate
the effects of high interconnect delays. In this paper we have discussed the details of
implementing both a wide, dynamically scheduled superscalar processor and a single chip
multiprocessor. The alternative S-CMP is composed of simpler processors and can be
implemented in approximately the same area. We believe that the S-CMP will be easier to
implement and will reach a higher clock rate. Results show that on applications that cannot be
parallelized the superscalar processor performs marginally better than one processor of the
multiprocessor architecture. On applications with large grained thread-level parallelism and
multiprogramming workloads the single chip multiprocessor performs 50–100% better than the
wide superscalar processor. Novel architectures like M-CMP that exploits large bandwidth
instead of extremely high frequency to achieve the target throughput performance by executing
multiple threads concurrently in a shallow with simple pipeline effectively hides instruction and
memory latency while utilizing resources. Results shows that the performance of these S-CMP
and M-CMP depends on L2 cache size, no of directory entry and no of processors integrated on
the single chip. Therefore, paper presents an open area of research on CMP to achieving high
performance while maintaining existing power and thermal envelopes requirements and the
designs must focus not only on performance but rather on the aggregate performance per watt,
optimized interconnect topology, novel intra and inter CMP cache coherence protocol. Further
performance gap between processors and memory require adaptive novel techniques to manage
on chip cache memory judiciously.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.4, July 2013

45

REFERENCES

[1] A. S. Leon et al., “The UltraSPARC T1 processor: CMT reliability,” in Proc. IEEE Custom Integrated

Circuits Conf., Sep. 2006, pp. 555–562.
[2] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360 model 91: Machine

philosophy and instruction-handling,” IBM Journal of Research and Development, vol. 11, pp. 8–24,
1967.

[3] T. C. Chen, “Where CMOS is going: trendy hype vs. real technology,” presented at the IEEE Int.
Solid-State Circuits Conf. (ISSCC), Sanrancisco, CA, Feb. 2006, Plenary Session 1.1.

[4] M. Horowitz and W. Dally, “How scaling will change processor architecture,” in IEEE ISSCC Dig.
Tech. Papers, Feb. 2004, pp. 132–133.

[5] K. Farkas, N. Jouppi, and P. Chow, “Register file considerations in dynamically scheduled processors,”
Proceedings of the 2nd Int. Symp. on High-Performance Computer Architecture, pp. 40–51, San Jose,
CA, Feb 96.

[6] D. W. Wall, “Limits of Instruction-Level Parallelism,” Digital Western Research Laboratory, WRL
Research Report 93/6, November 1993.

[7] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,R. Stets,
and B. Verghese. Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing.In
Proceedings of the 27th Annual International Symposium on ComputerArchitecture, pages 282–293,
June 2000.

[8] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood, “Multifacet's General Execution-driven
Multiprocessor Simulator (GEMS) Toolset” Computer Architecture News (CAN), pages 92-99, November
2005.

Authors

Nitin Chaturvedi

Received M.Sc (Electronics) from Devi Ahilya University Indore in 2002 and M.Tech
from Panjab University Chandigarh in 2005. Presently working as a Lecturer and
pursuing Ph.D. from Birla Institute of Technology and Science, Pilani, India. His field of
interest is Computer Architectures, Digital CMOS Circuits.

S Gurunarayanan

Received B.E, M.E. and Ph.D. from Birla Institute of Technology & Science Pilani.
Presently he is working as Professor having more than 22 years of teaching experience in
EEE Group, BITS, Pilani, India. His area of interest includes Computer Architecture,
VLSI System Design.

