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ABSTRACT 
 
Advances in Integrated Circuit processing allow for more microprocessor design options. As Chip 
Multiprocessor system (CMP) become the predominant topology for leading microprocessors, critical 
components of the system are now integrated on a single chip. This enables sharing of computation 
resources that was not previously possible. In addition the virtualization of these computation resources 
exposes the system to a mix of diverse and competing workloads. On chip Cache memory is a resource of 
primary concern as it can be dominant in controlling overall throughput. This Paper presents analysis of 
various parameters affecting the performance of Multi-core Architectures like varying  the number of 
cores, changes L2 cache size, further we have varied directory size from 64 to 2048 entries on a 4 node, 8 
node 16 node and 64 node Chip multiprocessor which in turn presents an open area of research on multi-
core processors with private/shared last level cache as the future trend seems to be towards tiled 
architecture executing multiple parallel applications with optimized silicon area utilization and excellent 
performance. 
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1. INTRODUCTION 
 
Present sub-micron integrated circuit technologies have fueled microprocessor performance 
growth [3, 4]. Each new process technology increases the integration density allows for higher 
clock rates and offers new opportunities for micro-architectural innovation. Both of these are 
required to maintain microprocessor performance growth. Micro-architectural innovations 
employed by recent microprocessors include multiple instruction issue, dynamic scheduling, 
speculative execution, instruction level parallelism [6] and non-blocking caches. In the past, we 
have seen the trend towards CPUs with wider instruction issue and support for larger amounts of 
speculative execution but due to fundamental circuit limitations and limited amounts of 
instruction level parallelism, the superscalar execution model provides diminishing returns in 
performance for increasing issue width. Faced with this situation, building further a more 
complex wide issue superscalar processor was not at all the efficient use of silicon resources and 
a better utilization of silicon area. So researchers came up with a novel architecture which was 
constructed from simpler processors then super-scalar and multiple such processors are integrated 
on a single chip popularly known as chip multiprocessor or multi-core processors. To understand 
the performance trade-offs between wide-issue processors and single chip multiprocessors in a 
more quantitative way, researchers had compared performance of a six-issue dynamically 
scheduled superscalar processor with a 4 two-issue multiprocessor. Comparison has a number 
of unique features. The results show that on applications that cannot be parallelized, the 
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superscalar micro-architecture performs better than one processor of the multiprocessor 
architecture. For applications with fine grained thread-level parallelism the multiprocessor micro-
architecture can exploit this parallelism so that the super-scalar micro-architecture is at most 10% 
better. For applications with large grained thread-level parallelism and multiprogramming 
workloads the multiprocessor micro-architecture performs 50–100% better than the wide super-
scalar micro-architecture. Today data centres powering web and transaction services face new 
requirements as they attempt to deliver higher levels of content-rich and high-bandwidth services 
to increasing numbers of users. These workloads share certain common characteristics. They 
exhibit high Thread-Level Parallelism (TLP) with multiple and independent processes running 
concurrently. Moreover, servers equipped with even more powerful and power-hungry 
microprocessors to meet higher computational demands are pushing the power and cooling 
capabilities of these servers to their limits, resulting in increased operating costs and decreased 
system reliability. Therefore for achieving high performance while maintaining existing power 
and thermal envelopes requires novel  microprocessor designs that not only focuses on 
performance but rather on the aggregate performance per watt. The rest of the paper is organized 
as follows: In Section 2, the performance limits of superscalar design are discussed and it also 
presents the case for a single chip multiprocessor from an applications perspective and extended 
to M-CMP. Section 3 gives details of Simulation methodology. Section 4 presented the obtained 
results and finally Section 5 concludes.  
 
2. LITERATURE REVIEW 
 
2.1. Super-Scalar Processors 
 
A trend in the microprocessor industry has been the design of CPUs with multiple instruction 
issue and the ability to execute instructions out of program order. This ability, called dynamic 
scheduling uses hardware to track register dependencies between instructions; an instruction is 
executed, possibly out of program order, as soon as all of its dependencies are satisfied. The 
register dependency checking was done with a hardware structure called the scoreboard. IBM 
used register renaming to improve the efficiency of dynamic scheduling using hardware 
structures called reservation stations [2]. It is possible to design a dynamically scheduled 
superscalar microprocessor using reservation stations, the most recent implementations of 
dynamic superscalar processors have used a structure similar to the one shown in Figure 1, which 
shows three major phases of instruction execution in a dynamic superscalar machine they are 
fetch, issue and execute. 
 

 
 

Figure1. Dynamic Super Scalar Microprocessor 
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The goal of the fetch phase is to present the rest of the CPU with a large and accurate window of 
decoded instructions. Three factors constrain instruction fetch: miss predicted branches, 
instruction misalignment, and cache misses. The ability to predict branches correctly is crucial to 
establishing a large, accurate window of instructions. However, good branch prediction is not 
enough. As previous work has pointed out, it is also necessary to align a packet of instructions for 
the decoder. Even with good branch prediction and alignment a significant cache miss rate will 
limit the ability of the fetcher to maintain an adequate window of instructions. Previous research 
have shown that over 60% of the instruction cache miss latency can be hidden on a database 
benchmark with a 64KB two way set associative instruction cache. In the issue phase, a packet of 
renamed instructions is inserted into the instruction issue queue. An instruction is issued for 
execution once all of its operands are ready. The results have shown a quadratic increase in the 
size of the instruction issue queue and researchers believe that the instruction issue queue will 
fundamentally limit the performance of wide issue superscalar machines. In the execution phase, 
operand values are fetched from the register file or bypassed from earlier instructions to execute 
on the functional units. The wide superscalar execution model will encounter performance limits 
in the register file, in the bypass logic and in the functional units. Wider instruction issue requires 
a larger window of instructions, which implies more register renaming. Not only must the register 
file be larger to accommodate more renamed registers, but the number of ports required to satisfy 
the full instruction issue bandwidth also grows with issue width. Again, this causes a quadratic 
increase in the complexity of the register file with increases in issue width. 
 
2.2. Single Chip Multiprocessor 
 
In today’s information era, commercial servers constitute the backbone of the global information 
and communication system infrastructure. Such servers run useful commercial applications that 
are essential to many aspects of everyday life such as banking, airline reservations, web searching 
and web browsing. As more people depend on these multi-threaded throughput-oriented 
applications, demand for more throughputs is likely to increase for the foreseeable future. 
Commercial servers must therefore improve their performance by providing more throughputs to 
keep up with the application demand.  
 

 
 

Figure2. Single Chip Multiprocessor (CMP) 
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Since commercial applications have abundant thread-level parallelism, commercial servers were 
designed as multiprocessor systems—or clusters of multiprocessors—to provide sufficient 
throughput. While traditional symmetric multiprocessors (SMPs) can exploit thread-level 
parallelism, they also suffer from a performance penalty caused by memory stalls due to cache 
misses and cache-to-cache transfers, both of which require waiting for long off-chip delays. 
Several researchers have shown that the performance of commercial applications and database 
applications in particular, is often dominated by sharing misses that require cache-to-cache 
transfers. To avoid these overheads, architects proposed several schemes to integrate more 
resources on a single chip. Researchers have shown that chip-level integration of caches, memory 
controllers, cache coherence hardware and routers can improve performance of online transaction 
processing workloads by a factor of 1.5. Simultaneous multithreading designs allow the processor 
to execute several contexts (or threads) simultaneously by adding per-thread processor resources. 
This approach also improves the performance of database applications compared to a superscalar 
processor with comparable resources. The trend towards more integration of resources on a single 
chip is becoming more apparent in CMP designs where multiprocessor systems are built on a 
single chip. Chip multiprocessor (CMP) systems can provide the increased throughput required 
by multi-threaded applications while reducing the overhead incurred due to sharing misses in 
traditional shared-memory multiprocessors. A chip multiprocessor design is typically composed 
of two or more processor cores (with private level-one caches) sharing a second- level cache. 
CMPs in various forms are becoming popular building blocks for many current and future 
commercial servers. The increasing number of processor cores on a single chip increases the 
demand on two critical resources: the shared cache capacity and the off-chip pin bandwidth. 
 
2.3. Multiple-Chip Multiprocessor (M-CMP) 
 
The increasing number of transistors per chip now enables Chip Multiprocessors (CMPs), which 
implement multiple processor cores on a chip. CMP-based designs provide high-performance, 
cost-effective computing for workloads with abundant thread-level parallelism, such as 
commercial server workloads. Smaller-scale Single-CMP (S-CMP) systems, such as Stanford 
Hydra and Sun UltraSparc T1 [1], use a single CMP along with DRAM and support chips. 
Larger-scale Multiple-CMP (M-CMP) systems, such as Piranha [7] and IBM Power4, combine 
multiple CMPs to further increase performance.  
 

         
 

Figure3. Multiple-CMP 
 
Because all of these systems use shared memory (to preserve operating system and application 
investment), a key challenge for M-CMP systems is implementing correct and high performance 
cache coherence protocols. These protocols keep caches transparent to software, usually by 
maintaining the coherence invariant that each block may have either one writer or multiple 
readers. S-CMP systems are conceptually straightforward and maintain coherence with traditional 
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non-hierarchical snooping protocols (which rely on a logical bus) or directory protocols (which 
track cached copies at memory). M-CMPs present a greater challenge, because they must 
maintain both intra-CMP coherence and inter- CMP coherence. 
 
3. SIMULATION METHODOLOGY AND APPLICATION 
 
For evaluating the performance of the novel CMP or M-CMP micro-architectures requires a way 
of simulating the environment in which we would expect these architectures to be used in real 
systems. We have used GEM5 [8] full system functional simulator extended with Multi-facet 
GEMS which is popularly used in the research community. The heart of GEM5 is the Ruby 
memory simulator. 
1. Execution time: The Ruby Cycle is our basic metric of simulated time used in the Ruby module 
of the GEMS simulator. The Ruby module is the basic module for the memory system 
configuration and interconnection network design The Ruby cycles are the recommended 
performance metric in GEMS. 
2. L1 cache misses: As the name says it represents the misses of L1 cache. It's calculated by 
dividing request missed by number of requests (Instruction + Data). It's an important metric for 
cache hierarchy. 
3. L2 miss/miss rate: This represents the total misses and miss rate of the L2 cache. It is 
calculated from the number of requests issued to the L2 and the misses of all banks of L2. 
4. L2/Dir replacement: Number of replacements of L2/Directory entries. It's caused by capacity 
misses and conflict misses. 
5. Miss latency average: Average of the L1 miss latency in Ruby cycles. It is measured from the 
moment a memory request is issued to the moment when the date is retrieved. 
6. Memory requests: Number of reads and writes issued to main memory. 
7. Applications: The benchmark used is a multithreaded implementation of a simulation of 3D 
Lattice-Boltzmann magneto-hydrodynamics (in other words, plasma turbulence). Pthreads are 
used to implement threading. 
 
4. RESULTS 
 
In order to analyze the impact of various parameters on the performance of Multi-core 
Architectures, we have varied the number of cores, which in turn changes L2 cache size further 
we have varied directory size from 64 to 2048 entries on a four node, 8 node 16 node and 64 node 
Chip multiprocessor.  
 

 

     Figure4. L1 Data Miss Rate 
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All simulations in this section are configured with same cache size: 32KB L1I + 32KB L1D and 
512KB L2 cache per core. The L1 data cache miss rate was calculated as dividing number of L1D 
misses by data requests. It was observed that L1 miss was greatly affected by directory si ze. It 
again influences L2 requests and on-chip traffics. Therefore, it's an important factor that 
determines CMP performance. 

 

 
 

Figure5. L2 Misses 
 

The number of L2 misses increases as no of cores within the system increases, nevertheless the 
miss rate decrease to 40%-80% because of the larger total L2 cache on chip. 

 

 
 

Figure6. L2 Miss Rate 
 

It was observed that L2 miss rate decreases with increase in director size. L2 misses is mainly 
determined by L2 cache size and more importantly application working set. 

 

 
 

Figure7. L2 Replacement 
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L2 Replacement occurs when the L2 cache is full and another allocation is required. According to 
LRU policy, a block will be chosen and replaced by a new one. If this block is clean just ignore it 
and process allocation without pause. Otherwise the data block needed to be written back to main 
memory. It was observed that the replacements are influence by directory and L2 size and on the 
applications.  
 

 
 

Figure8. Directory Replacements 
 
On 16 core node we have observed that larger directory size does not improve the directory 
replacements. The reason is that so many data are mapped to the same location resulting in many 
conflicts. One possible solution is increase set associativity of directory to avoid the conflicts. 
The trend seems normal in other two cases.  
  

 
 

Figure9. Memory request 
 
Memory request to some extent represents the requirement of memory bandwidth of applications. 
Comparing with L2 misses in previous figure it is observed that the memory read requests caused 
by L2 miss is the dominant faction of total memory requests. 
 

 
 

Figure10. Average Miss Latency 
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The miss latency increases 50% from 4-core to 16- core and 150%-230% from 16-core to 64-
core. On a L1 miss, there are up to 3 nodes involved to fulfill the miss: local node, home node and 
remote node. The 3- way communication aggravates the latency of on-chip communication. 
 
 

  
 
 

Figure11. Average Network Latency 
 

With Hierarchical network model, we can measure the average network latency in detail. It goes 
from 14, 22 to 36 in there configurations. For all structure, the latency looks almost the same, 
which depends on network topology and on-chip link latency.  
 
4. CONCLUSIONS 
 
The current advanced submicron integrated circuit technologies require us to look for new ways 
for designing novel microprocessors architectures to utilize large numbers of gates and mitigate 
the effects of high interconnect delays. In this paper we have discussed the details of 
implementing both a wide, dynamically scheduled superscalar processor and a single chip 
multiprocessor. The alternative S-CMP is composed of simpler processors and can be 
implemented in approximately the same area. We believe that the S-CMP will be easier to 
implement and will reach a higher clock rate. Results show that on applications that cannot be 
parallelized the superscalar processor performs marginally better than one processor of the 
multiprocessor architecture. On applications with large grained thread-level parallelism and 
multiprogramming workloads the single chip multiprocessor performs 50–100% better than the 
wide superscalar processor. Novel architectures like M-CMP that exploits large bandwidth 
instead of extremely high frequency to achieve the target throughput performance by  executing 
multiple threads concurrently in a shallow with simple pipeline effectively  hides instruction and 
memory latency while utilizing resources. Results shows that the performance of these S-CMP 
and M-CMP depends on L2 cache size, no of directory entry and no of processors integrated on 
the single chip. Therefore, paper presents an open area of research on CMP to achieving high 
performance while maintaining existing power and thermal envelopes requirements and the 
designs must focus not only on performance but rather on the aggregate performance per watt, 
optimized interconnect topology, novel intra and inter CMP cache coherence protocol. Further 
performance gap between processors and memory require adaptive novel techniques to manage 
on chip cache memory judiciously.  
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