
International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

DOI : 10.5121/ijsea.2010.1305                                                                                                                    66 

TOWARDS PERFORMANCE MEASUREMENT AND 

METRICS BASED ANALYSIS OF PLA APPLICATIONS 

Zeeshan Ahmed
 

University of Wuerzburg, Wuerzburg Germany 
zeeshan.ahmed@uni-wuerzburg.de 

 

ABSTRACT 

This article is about a measurement analysis based approach to help software practitioners in managing 

the additional level complexities and variabilities in software product line applications.  The architecture 

of the proposed approach i.e. ZAC is designed and implemented to perform preprocessesed source code 

analysis, calculate traditional and product line metrics and visualize results in two and three dimensional 

diagrams. Experiments using real time data sets are performed which concluded with the results that the 

ZAC can be very helpful for the software practitioners in understanding the overall structure and 

complexity of product line applications. Moreover the obtained results prove strong positive correlation 

between calculated traditional and product line measures. 

KEYWORDS 

Analysis, Measurement, Software product lines, Variability 

1. INTRODUCTION 

Driven by the problems raised in software industry, especially the maintenance of success rate 

of software products based on product line architecture. Due to the high expectations of 

customers for high quality product in short time and in possible minimum budget, software 

practitioners are now more focused on the use of product line architectures instead of single line 

product engineering and development. Product line is defined as the family of products 

designed to take the advantage of their common aspects and predicted variability [3]. For the 

time being product line approach was considered as the good solution to adopt but with the 

passage of time some feature interaction, process management, product integration and 

composition problems are identified [16] which are currently present without any solid solution. 

These problems requiring quantitative management based comprehensive solutions are the 

major responsible reasons of getting unsatisfactory results. A number of measurement analysis 

based solutions have been developed but still the problems are alive, discussed in section 2 of 

this research paper.  

In order to provide quantitative management based solutions to the effected products, it is 

mandatory to first analyze all the components and features to identify the variation points. 

Because without knowing the actual disease it’s very hard to cure and the wrong diagnose may 

lead to a disaster. Moreover, quantitative management is actually the way towards the 

successful project management.  It applies measurement analysis to analyze product, predict the 

minimum possible cost and time required for software application development [18]. 

Measurement analysis can be applied to all artifacts of the software development life cycle to 

measure the performance and improve the quality.  Measurement analysis allows stating 

quantitative organizational improvement objectives and decomposes them down to measurable 

software process and product characteristics. Moreover measurement analysis allows 

characterizing and controlling in a quantitative manner to achieve the organization’s business 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

67 

 

goals by mapping them to software and measurement goals by using such approaches as for 

example GQM [20].  This can help project managers to track their improvements and mitigate 

potential risks.  

In this research paper I discuss some already proposed solutions in section 2 to identified 

aforementioned problems and support software practitioners with effective and efficient 

quantitative management based approach in section 3 and 4. Moreover I perform empirical 

evaluation to evaluate the feature, functionality and strength of proposed solution in section 5 

using real time data sets. 

2. RELATED RESEARCH 

2.1. Review Design 

I decided to review only the most relevant and up-to-date literature with respect to the goal and 

scope of this research. I started looking for explicitly available relevant literature from different 

sources like internet, proceedings of some software engineering conferences and journal 

publications. As the outcome, I resulted with almost more than 100 relevant research papers, 

which created a review population.  Therefore, I defined review criteria to filter the research 

papers based on the conclusive outputs obtained from abstract, summary and conclusion. While 

reading the abstract I was looking for the keywords like software product line, quantitative 

management, preprocessed code, analysis, visualization, measurement and variability. After the 

implementation of defined review criteria, 8 research papers were selected for detailed review. 

During detailed review, I put emphasis on the validity of the proposed solutions in literature. I 

have briefly described the methods discussed by the authors in the selected literature and up to 

what extent they can be used to solve targeted problem. 

2.2. Reviewed Literature 

I have reviewed Relation-based approach [6], Static Scanning Approach [10] and Columbus 

[14] as the methodologies to quantitatively analyze the C++ source code. Then I have reviewed 

TUAnalyser & Visualization [19] and CodeCrawler [13] to produce visualization of obtained 

results from quantitative analysis. Then I have reviewed Polymorphism Measure [1], Assessing 

reusability of C++ Code: [5] and Evaluation of Object Oriented Metrics: [7] methodologies to 

perform measurement analysis.  

• Relation-based approach is used for simplifying the process of metrics extraction from 

the C++ object oriented code [6]. In this approach relations are designed like prolog 

clauses to describe the language entity relationship and to increases the code readability, 

optimization and search speed.  

• Static scanning approach breaks non-preprocessed C/C++ code file into a series of 

lexical tokens and then matches already existing vulnerable patterns with series of 

tokens [10]. Furthermore the approach was validated with the implementation of ITS4 . 

• Columbus is a reverse engineering framework to extract the facts from preprocessed 

C++ code by acquiring the project information is indispensable way [14]. The major 

strengths of this approach are, this method can be used for reverse-engineering purposes 

to study the structure, behavior and quality of the C++ code and can also be used to 

track the evolution of design decisions between the architectural level and the 

implementation level of a software system written in C++ [15]. 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

68 

 

• TUAnalyser & Visualization approach is used to visualize the extracted information 

from C++ source code by first storing the extracted information into RSF format which 

then passed as input to Graphviz  to produce visual output [19].  

• Code Crawler is used to visualize the C++ object oriented source code semantics in 

lightweight 2D & 3D and polymeric views by using a tool called FAMIX  [13]. 

• Polymorphism measure is used to identify the software reliability problems in the early 

stages of software development life cycle [1]. This measurement approach has been 

categorized into two categories Static polymorphism and Dynamic polymorphism. 

Static polymorphism based on the compile time and dynamic is based on the runtime 

binding decisions. Furthermore five metrics are initiated to combine the early identified 

polymorphism forms with inheritance relationship.  

• Assessing reusability of C++ Code is a method for judging the reusability of C++ code 

components and assessing indirect quality attributes from the direct attributes [5]. This 

method has been divided into two phases. First phase is used to identify and analytically 

validate a set of measurements for assessing direct quality attributes. The second phase 

identifies and validates a set of measurements for assessing indirect quality attributes. 

Moreover, a set of relations is also provided which maps directly measurable software 

quality attributes to another set of quality attributes that can only be measured 

indirectly.  

• Evaluation of Object Oriented Metrics approach is used to analyze the measures and 

their relationship with each other from object oriented code metrics defined by 

Chidamber and Kemerer [17] and fault-proneness across three different versions of this 

target application [7]. Proposed approach concluded with the result, that none of the 

object oriented metrics performs better than LOC in anticipating fault-proneness. 

2.3. Review Remarks 

The reviewed literature doesn’t provide much information about the comprehensive 

management for product line management, analysis of generic software and visualization for 

obtained results of measurement analysis from generic software components made in C++. 

Discussed related research work does, however, help and provide some approaches in analyzing 

the C++ code, visualizing the data and calculating the measures. Yet, none of the reviewed 

research directly deals with the target solution of this research. 

3. PROPOSED SOLUTION 

I propose and present a quantitative management based approach consisting of three main 

components .i.e., Analysis, Visualization, and Measurement shown in Fig 1. During analysis the 

preprocessed source code of product line based application is analyzed to identify the software 

single and product line source code characteristics, then in measurement several traditional and 

product line measures are calculated to identify the behavior and the rate of complexity and then 

in the end qualitative visualization support is provided to obtained results. To provide a 

comprehensive solution to the software practitioners, based on above discussed three 

components   in analyzing the software product preprocessed source code, identifying software 

level complexities and variabilities, measuring performance by calculating source code metrics I 

have proposed a solution called Zeeshan Ahmed - C++ Prepreprocessed source code analyzer 

(ZAC) [23] [24] [25]. 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

69 

 

 

Fig 1. Measurement Analysis and Visualization 

To fulfil the desired jobs and obtain required result the conceptual model of ZAC is divided in 

to five main components .i.e., C++ Source Code, ZAC-Analyzer, ZAC-Data Manager, ZAC-

Measurer, and ZAC-Visualizer which works in cyclic fashion as shown in Fig 2. 

 

Fig 2. ZAC Conceptual Model 

In the first component preprocessed source code of software product written in C++ 

programming language is treated as input context. In second component internal source code 

characteristics .i.e., namespace, includes, macros, class, methods, functions, declarations, 

expressions and conditions are analyzed. In third component the resultant information is stored 

and managed in a relational data base called ZAC-Data Manager. In fourth component ZAC-

Measurer using Goal Question Metrics (GQM) [20] will calculate source code metrics. In the 

last component, as the last step ZAJ-Visualizer will produce visualization of obtained results in 

different 2D and 3D diagrams e.g. graphs, line charts, bar charts and tree map with respect to 

the context and semantic. 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

70 

 

4. ZAC 

To empirically evaluate the real time strength of proposed solution, I have implemented the 

proposed conceptual design of ZAC as software application.  ZAC is implemented using open 

source and freely available development tools and technologies as shown in Fig 3. 

 

Fig. 3 ZAC - Involved Technologies 

According to the scope of this research, application is capable of treating preprocessed C++ 

source code as an input. The designed and implemented system sequence model of application 

is consists of six main components .i.e., ZAC- Source Code Analyser, ZAC-Semantic Modeler, 

ZAC-Data Manager, ZAC-Measurer, ZAC-Visualizer and ZAC-Editor as shown in Fig 4. 

 

 

Fig 4. ZAC System Sequence Design 

Preprocessed C++ source code is given to the application as an input. ZAC-Analyser first treats 

the input source code and analyzes the source code. To analyze preprocessed source ZAC-

Analyser is divided into further two internal sub-components .i.e., ZAC-Lexer and ZAC-Parser. 

In ZAC-Lexer the whole application is divided into possible number of lexical tokens where as 

in ZAC-Parser parsing is performed using generated lexical tokens to understand and validate 

the syntax and semantic of the input preprocessed source code with respect to the parser rules 

based on grammar of used programming language used in application development. The 

resultant output of ZAC-Analyser consisting of the information about the total number of 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

71 

 

artifacts, classes, components, control flows, decisions, defines, directives, parameters, 

exceptions, expressions, features, headers, macro expressions and namespaces is used by ZAC-

Semantic Modeler, which will generate a semantic based object oriented preprocessed source 

code model as shown is Fig 5.  

 

Fig 5. ZAC Object Oriented Preprocessed Source Code Model 

This model is further stored in database in the form of relations and relationships using ZAC-

Data Manager. Moreover generated semantic based object oriented preprocessed source code 

model is also used by ZAC-Measure to calculate traditional and product line measures metrics. 

The output of the ZAC-Analyzer and ZAC-Measures is visualized in visual diagrams .i.e., tree 

maps, tree graphs and pie charts in two dimensional effects using ZAC-Visualizer. This all 

process above discussed process is based on automatic operational processing but as the last 

component ZAC-Editor provides several different options to manually operate analyze the 

software characteristics and calculate metrics. 

 

 

 Fig. 6  ZAC Screen Shots 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

72 

 

5. EMPIRICAL EVALUATION 

The main goal of this empirical evaluation is to evaluate the feature, functionality and strength 

of ZAC by performing experiments using real time software product line application developed 

in C++ programming language as an input context. I have to first analyze software preprocessed 

source code characteristics, then calculate the traditional and product line measures and 

visualize the results. Moreover using the outcome of this experiment I try to observe and present 

the correlation between traditional and product line applications. 

5.1. Context of empirical evaluation 

Two available different source code versions (1.0 & 1.1) of an open source product line 

application Irrlicht are used as the context for the evaluation. Irrlicht is a cross-platform high 

performance real time 3D application (engine) developed in C++ language [9]. 

5.2. Defined measures for empirical evaluation 

It is quite difficult and time consuming to calculate all the traditional and product line measures, 

so, I have defined some traditional and product line measures which will be calculated from 

input preprocessed source code during the empirical evaluation. I have selected three relevant 

measures from over all currently available traditional and product line measures. The 

information about the selected traditional and product line measure is given in Table I and Table 

II. 

TABLE I 

 DEFINED TRADITIONAL MEASURE 

Traditional Measures  Definition Comments 

CLD (Class Leaf Depth) CLD is used to measure 

maximum number of levels 

in the hierarchy of classes 

that are below the class. 

I expect that the CLD helps in the 

indication of fault proneness. 

Because a class with many 

ancestors is more likely to be fault-

prone than a class with few 

ancestors [12]. So Increase in the 

number CLD can cause the increase 

in the complexity of the software 

which then can be resulted in more 

fault proneness. 

 

NOC (Number of 

children) 

NOC is used to measure the 

number of direct 

descendent for each class. 

NOC helps in the indication of the 

fault proneness. Lower the rate of 

fault proneness if higher the rate of 

NOC [21]. 

 

DIT (Depth of 

inheritance) 

DIT is used to measure the 

ancestors of the class. 

DIT helps in the indication of fault 

proneness. The DIT was found to 

be very significant in [21], it means 

that the larger the DIT, the larger 

the probability of fault-proneness in 

the software. 

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

73 

 

TABLE II 

 DEFINED PRODUCT LINE MEASURE 

Product Line 

Measures  

Definition Comments 

NIT (Namespace 

Inheritance Tree) 

NIT is used to measure 

the number of ancestors of 

the name spaces. 

NIT can also be very helpful in the indication 

of fault proneness. Because namespace is one 

of the major components of any product line 

software application. Every component of 

project like class, library etc exists inside the 

namespace. If the number of namespace will 

increase, then the number of ancestor 

namespaces will also be increased which will 

result in much complexity.  So if the NIT will 

increase it may possible then the number fault 

proneness will also increase. 

 

NOA (Number of 

Artifacts) 

NOA is used to measure 

the number of artifacts 

used and to measure the 

direct ancestors for each 

artifacts. 

Each artifact of system represents the each file 

of the system, like class and include file. If the 

number of artifacts will increase most 

probably the number of dependencies between 

the artifacts will also be increase, which 

ultimately causes the increase in complexity. 

So higher the number of NOA higher will be 

the probability of fault proneness in the 

product line system. 

 

CIR (Class 

Inheritance 

Relationship)  

CIR measures the 

relationship of each class 

with other class. 

CIR becomes more complex if the number of 

ancestor classes will increase, especially in 

the case of multiple inheritances when a child 

class will be having more than one parent. So, 

CIR can be very helpful in the indication of 

fault proneness because if the number of CIR 

will increase the probability of fault proneness 

will also be increased. 

 

5.3. Defined visualization modes for empirical evaluation 

I have defined some modes of visualization to present the obtained results using ZAC during the 

empirical evaluation. I have selected four modes of visualization i.e. Tree Map, Namespace 

Graph, Bar chart and Inheritance graph, for the visual representation of obtained results. 

5.4. Evaluation 

1) Static Source Code Analysis 

During the static analysis both the versions 1.0 and 1.1 of Irrlicht are analyzed using ZAC and 

observed experimental units of the source code are presented in Table III. I have first performed 

the analysis of source code characteristics and calculate the absolute and relative improvement 

in the latest version 1.1 as compared to the version 1.0 of Irrlicht. After analyzing the results I 

have come to know that the number source code with respect to each characteristic has been 

decreased in Irrlicht 1.1 as compared to Irrlicht 1.0. 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

74 

 

TABLE III 

GENERAL AND PRODUCT LINE SOFTWARE CHARACTERISTIC S 

Characteristic 

Name 

Irrlicht 

1.0 

Irrlicht 

1.1 

Observation Observation 

Software 

characteristics 

Ver 1.0 Ver 1.1 Absolute Improvement  

in Ver 1.1 

Relative Improvement in 

Ver 1.1 

Artifacts 776 698 78 10.51 % 

Namespaces 8 7 1 12.50 % 

Components 561 482 79 14.08 % 

Decisions 703 445 258 36.70 % 

Define Macros 609 447 162 26.60 % 

Pragma Directives 11 10 1 9.09 % 

Macro Expressions 402 276 126 31.34 % 

Classes  333 207 126 37.84 % 

Include 1027 532 495 48.20 % 

 

2) Traditional and product line measures based analysis 

I have calculated the already defined traditional and product line measures of Irrlicht 1.0 and 

1.1, results are presented in Table IV and Table V. 

TABLE IV 

TRADITIONAL MEASURE 

Traditional 

Measure 

Irrlicht Irrlicht Fault Proneness Fault Proneness 

Coupling Ver 1.0 Ver 1.1 Absolute Improvement Relative Improvement 

CLD  66 21  45        68.18 %  

DIT  232 145 87 37.5 % 

NOC  64 21 43 67.18 % 

 

0

50

100

150

200

250

CLD DIT NOC

Irrlicht  1.0

Irrlicht 1.1

 
Fig. 7: Analysis Traditional Measure 

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

75 

 

TABLE V 

PRODUCT LINE MEASURE 

PL 

Measure 

Irrlicht Irrlicht Fault Proneness Fault Proneness 

Coupling Ver 1.0 Ver 1.1 Absolute Improvement Relative Improvement 

NIT 7 6 1        14.28 % 

NOA 783 704 79 10.08 % 

CIR 160 97 63 39.37 % 

 

0

100

200

300

400

500

600

700

800

900

NIT NOA CIR

Irrlicht  1.0

Irrlicht 1.1

 

Fig. 8: Analysis Product line measure 

After analyzing the results by calculating the absolute and relative improvement of fault 

proneness in Irrlicht 1.1 as compared to Irrlicht 1.0, I have identified that the traditional and 

product line measures based resultant values are decreased in Irrlicht 1.1 as compared to Irrlicht 

1.0. If we see the results in Table 1V then we come to know that the number of CLD, DIT and 

NOC measures have been decreased in the Irrlicht 1.1 with respect to the Irrlicht 1.0, which 

shows that the number of fault proneness is decreasing as shown in Figure 7. Furthermore If we 

observe the results in Table V then we will come to know that the number of NIT, NOA and 

CIR measures have been decreased in the Irrlicht 1.1 with respect to the Irrlicht 1.0, which 

shows the decrease in the number of fault proneness shown in Figure 8. 

3) Visualization of software characteristics 

I have presented defined visual diagrams of the results based on the static source code analysis 

of the Irrlicht 1.0 and 1.1. These diagrams present some of the whole results of visualization 

produced by the ZAC. This visual representation can be helpful for the software practitioners in 

observing the overall structure and complexity of relationships between attributes namespaces 

and classes etc. 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

76 

 

 

Fig 9. File Tree Map  

Fig. 9 File Tree Map presents the number of files used in Irrlicht 1.0 in Figure 9 (a) and Irrlicht 

1.1 in Fig 9 (b), drawn in a tree map with respect to their type and size, likewise files 

represented in the pink color presents the CPP files (“.cpp” files), green colored files represents 

doc files (“.doc” files). Whereas the placement of each file is with respect to the association of 

files with each other and directory structure. This visual representation is helpful for the 

software practitioners in analyzing the over file structure of both the projects and can also 

conclude with a vital difference as well. 

 

Fig 10. Namespaces Structure  

Fig. 10 Namespace Structure presents the graph of namespaces used Irrlicht 1.0 and Irrlicht 1.1. 

As shown in Fig. 10 (a), there are 8 namespaces, default namespace behaving as the parent 

namespace for his children namespaces include, jpeglib, libpng, MacOSX and zlib, furthermore 

MacOSX is also behaving as the parent to his child namespaces MacOSX.xcodeproj and 

MainMenu.nib. Whereas shown in Fig. 10 (b), there are 7 namespaces in over all project Irrlicht 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

77 

 

1.1, default namespace behaving as the parent namespace for his children namespaces jpeglib, 

libpng, MacOSX and zlib, further more MacOSX is also behaving as the parent to his child 

namespaces MacOSX.xcodeproj and MainMenu.nib  This visual representation is helpful for 

the practitioners to analyze the overall structure of the namespaces used in the project; moreover 

software practitioners can also take advantage in analyzing the complexity in namespace 

relationship. 

  

Fig  11. Bar Chart Analysis of Artifacts 

Fig. 11 File bar Chart presents the total number of artifacts used in Irrlicht 1.0 and Irrlicht 1.1, 

drawn in a bar chart. As shown in Fig 11 (a), the bar chart of Irrlicht 1.0, consists of 775 red 

lines where as shown in Fig 11 (b) the bar chart consists of 698 red lines; each red line is 

representing an artifact and the length of each red line represents size of respective artifact used 

in the Irrlicht 1.1. This kind of visual representation is very helpful for the overall source code 

analysis. Because some time even the rate of increase or decrease in some source code elements 

with respect to class or namespace can also play a vital role in increasing or decreasing the 

complexity e.g. cohesive or coupled code. 

 

Fig 12. Inheritance Relationship  



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

78 

 

Complexity graphs based on all the used “include” in Irrlicht 1.0 (1026) and Irrlicht 1.1(532) 

along with their relationship with each other with respect to the namespace are presented in 

Figure 12 (a) and (b). This visualisation can help software practitioners in understanding the 

over inherited structure of applications. 

 5.5. Analysis on Results 

First of all preprocessed source code of Irrlicht 1.0 & 1.1 was analyzed; the outcome of analysis 

was concluded with information about the decrease in each characteristic of Irrlicht version 1.1 

as compared to version 1.0. Then traditional and product line measures of both the versions 1.0 

and 1.1 of Irrlicht were calculated, which resulted with the information, that the number of 

traditional as well as the product line measures has been decreased in Irrlicht version 1.1 as 

compared to version 1.0.  

As the last step, the correlation [2] between traditional and product line measures was 

calculated. This resultant correlation +0.93 show the strong correlation between calculated 

traditional and product line measures. As the resultant value is positive “+”, so I can say higher 

the rate of traditional measures higher will be the rate of product line measure. Furthermore, I 

have also produced the visualization of some source code characteristics in graph, bar char and 

tree maps, which helps the software practitioners in understanding the overall structure and 

complexity of product line applications. 

5.6. Limitations  

During the static analysis of Irrlicht 1.0 & 1.1 some experimental units were dropped and not 

considered, because currently available version of ZAC is not capable of completely resolving 

all the experimental units of Irrlicht 1.0 and 1.1. 

6. CONCLUSIONS 

The aim of this research work was to provide the effective support to software practitioners in 

quantitatively managing the software product line applications by analyzing software 

preprocessed code characteristics, measuring complexity which may indicate the potential 

reliability and maintainability problems in delivered software [11] and producing visualization 

of results. To achieve the aforementioned research goals I have discussed some already 

proposed approaches by some other authors and own quantitative analysis based solution. In the 

end I have performed empirical evaluation to evaluate the feature, functionality and strength of 

ZAC by performing experiments using real time data set and concluded with results that ZAC 

can be very helpful for the software practitioners in understanding the overall structure and 

complexity of product line applications. Moreover I have also proved using obtained results in 

empirical evaluation that there is a strong positive correlation between calculated traditional and 

product line measures. 

REFERENCES 

[1] Benlarbi S. and Melo W., Polymorphism Measure for Early Risk Prediction, In Proceeding of 

21st international conference on software engineering, ICSE 99, Los Angeles USA. 1999 

[2] Correlation, <http://www.socialresearchmethods.net/kb/statcorr.htm>, [Accessed, 01 Aug. 2006] 

[3] D.M Weiss and C.T.R Lai, Software Product-Line Engineering: A Family-based Software 

Development process. MA: Addison Wesley: Reading MA, 1999 

[4] Ducasse, T. Girba, M. Lanza, and S. Demeyer, Moose: a Collaborative Reengineering and 

Extensible Reengineering Environment, In Tools for Software Maintenance and Reengineering, 

Liguori, Napoli, Italy, 2004 



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

79 

 

[5] Fatma Dandashi and David C. Rine, A Method for Assessing the Reusability of Object- Oriented 

Code Using a Validated Set of Automated Measurements, In the proceedings of the 2002 ACM 

symposium on Applied computing, Pages: 997 – 1003,ISBN:1-58113-445-2, 2002 

[6] Giancarlo Succi and Eric Liu. A Relations-Based Approach for Simplifying Metrics Extraction. 

In Department of Electrical and Computer Engineering, University of Calgary. 2500 University 

Drive NW, Calgary, AB T2N 1N4. 1999 

[7] Giovanni Denaro, Mauro Pezz`e and Luigi Lavazza. An Empirical Evaluation of Object 

Oriented  Metrics in Industrial Setting, In The 5th  Caber Net Plenary Workshop,  2003 

[8] Graphviz, Graph Visualization Software, < http:// www.graphviz.org >, [Accessed, 15 Jun. 

2006] 

[9] Irrlicht, <http://irrlicht.sourceforge.net.> [Accessed, 15 Jun. 2006] 

[10] J. Viega, J.T. Bloch, Y. Kohno and G. McGraw, ITS4: A static vulnerability scanner for C and 

C++ code, acsac, p. 257, 16th Annual Computer Security Applications Conference 

(ACSAC'00),  2000 

[11] L.  Briand and J. Wüst, The Impact of Design Properties on Development Cost in Object-

Oriented System, IEEE Transactions on Software Engineering, vol. 27, no. 11, November 2001 

[12] L. Briand, J. Wuest and H. Lounis, Replicated Case Studies for Investigating Quality Factors in 

Object-Oriented Designs, Empirical Software Engineering: An International Journal, 2001 

[13] Michele Lanza, St´ephane Ducasse, Harald Gall and Martin Pinzger, CodeCrawler: An 

Information Visualization Tool for Program Comprehension, Proceedings of the 27th 

international conference on Software, ICSE 2005: 672-673, 2005 

[14] Rudolf Ferenc, ´ Arp´ad Besz´edes and Tibor Gyim´othy. Extracting Facts with Columbus from 

C++ Code. In proceedings of the 6th International Conference on Software. 2002 

[15] Rudolf Ferenc, Juha Gustafssony, L´aszl´o M¨ullerz, and Jukka Paakkix. Recognizing Design 

Patterns in C++ Programs with the Integration of Columbus and Maisa, Acta Cybern, 15(4): 

669-682, 2002 

[16] Silva Robak, Bogdan Franczyk, Feature interaction product lines, In Proceedings of Feature 

Interaction in Composed Systems, 2001 

[17] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE Transactions on 

Software Engineering, 20(6):476–493, June 1994 

[18] The Standish group report, <http://www.standishgroup.com/quarterly_reports/index.php >, 

[Accessed, 1 Aug. 2006] 

[19] Thomas Gschwind, Martin Pinzger, Harald Gall, TUAnalyzer—Analyzing Templates in C++ 

Cod, In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04) 2004 

IEEE, 2004 

[20] Victor R. Basili, Gianluigi Caldieram, H. Dieter Rombach, The Goal Question Metric 

Approach”. Encyclopedia of Software Engineering, pp. 528-532, John Wiley & Sons, Inc., 1994  

[21] V. R. Basili, L. C. Briand, and W. L. Melo, A Validation of Object-Oriented Design Metrics as 

Quality Indicators, In IEEE Transactions on Software Engineering, volume 22, pages 751–761, 

Oct. 1996. 

[22] Wickenkamp Axel, Maturing a prototype of a code measurement system, Diploma Thesis, 

Version 1.0. University of Kaiserslautern, May 2004 

[23] Z. Ahmed, Measurement Analysis and Fault Proneness Indication in Product Line Applications 

(PLA), In the proceedings of 6th International Conference on New Software Methodologies, 

Tools, and Techniques (SOMET-07), ISSN 0922-6389, Rome Italy, 7-9 November 2007 

[24] Z. Ahmed, Variants Handling using ZAC, ISBN-13: 978-3838341033, Book Publication, 

Language: English, Published February 2010.   



International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3, July 2010 

80 

 

 

[25] Z. Ahmed: "Statistical Semantic Modeling of Preprocessed Source Code to Identify, Measure 

and Visualize the Complexities in Software Product Line Applications", In the proceedings of 

4th International Statistical Conference May 9-11, Paper ID 19, Vol. 15, 1-12, ISBN 978-969-

8858-04-9, 2008 

 

Author Bibliography 

Zeeshan Ahmed is a Research Scientist, presently working in the 

Department of Bioinformatics- University of Wuerzburg Germany. He 

has on record more than 12 years of University Education and more than 

7 years of professional experience of working within different 

multinational organizations in the field of Computer Science with 

emphasis on software engineering of product line architecture based 

artificially intelligent systems. He also has more than 4 years experience 

of teaching as lecturer and supervising research thesis to graduate and 

undergraduate students in different institutes and universities. 

 


