
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

DOI : 10.5121/ijsea.2013.4407 77

STATISTICAL ANALYSIS FOR PERFORMANCE
COMPARISON

Priyanka Dutta, Vasudha Gupta, Sunit Rana

Centre for Development of Advanced Computing, C-56/1, Anusandhan Bhawan, Sector –
62, Noida

priyankadutta@cdac.in, vasudhagupta@cdac.in, sunitrana@cdac.in

ABSTRACT

Performance responsiveness and scalability is a make-or-break quality for software. Nearly everyone runs
into performance problems at one time or another. This paper discusses about performance issues faced
during Pre Examination Process Automation System (PEPAS) implemented in java technology. The
challenges faced during the life cycle of the project and the mitigation actions performed. It compares 3
java technologies and shows how improvements are made through statistical analysis in response time of
the application. The paper concludes with result analysis.

KEYWORDS

Decision Analysis and Resolution(DAR), Causal Analysis and Resolution(CAR), Groovy Grails, Adobe
Flex, , Jmeter

1. INTRODUCTION

Today’s software development organizations are being asked to do more with less resource. In
many cases, this means upgrading legacy applications to new web-based application with quick
response time and throughput. Nearly everyone runs into performance problems at one time or
another. Focusing on the architecture provides more and potentially greater options for
performance tuning for improvement [1].

CDAC is involved in design, development, maintenance and hosting of the Computer Based
Technical System for Online Acceptance of Applications and Examination Management System.
The project was developed to help client to perform their task easily and effectively in
computerized environment for transparency in the system. The System performs tasks such as:

i. Receives online application forms - The function of this module was to receive
applications online. Fees through Demand Draft (DD) or National Electronic Funds
Transfer (NEFT) transaction are also processed through it. Facility for uploading photos
and signatures of the candidates is also provided.

ii. Generation of Admit cards - The purpose of this module was to generate the admit cards
for online and offline received applications forms. The process of admit card generation
was followed by centre allocation and roll no generation for each applicant.

iii. MIS reports for conducting exams - Various reports were generated by the system and
data was saved securely on the CDAC server.[2]

mailto:priyankadutta@cdac.in
mailto:vasudhagupta@cdac.in
mailto:sunitrana@cdac.in

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

78

In project Pre Examination Process Automation System (PEPAS) we also faced such
performance issues. A typical Examination System involves wide range of functionalities dealing
with public at large and an efficient communication and feedback mechanism to the utmost
satisfaction of all the users. An error – free speedy interface is vital for successful functioning of
the system [2].There were many challenges while building the application. This paper tries to
compare various Java technologies which could be adopted successfully for efficient application
and performance improvement. Section 2 describes how the technology is chosen. Section 3 deals
with various available technologies in Java, section 4 explains performance comparison of the
technologies used with conclusion.

2. TECHNOLOGY SELECTION

There were too many options available in terms of technology selection and keeping in view the
requirements. Decision Analysis and Resolution (DAR) one of the Project management
techniques was utilized to decide on appropriate technology for the project. This Technique is
intended to ensure that critical decisions are made in a scientific and systematic way. DAR
process is a formal method of evaluating key program decisions and proposed solutions to these
issues [3]. Table- 1 depicts DAR sheet wherein how the technology was chosen to develop the
system is shown.

Table 1. DAR Table made for PEPAS

Issues Identified
Alternatives

Evaluation
Method

Evaluation Criteria Remarks Result

1.Presenta
tion Tier
Technolog
y

JSP Java
Applet
Adobe Flex

 Brainstor
ming
 Compari
son
/Performance

 Ease of
Building Interface
 Richness of
User experience
 Ease of
offloading Logics to
client side without
explicit installation
of software at the
client side Browser
Independence.

 Adobe Flex
provides building
Interface with easy to
understand tutorials
over JSP.
 Ease of
Interaction with J2EE
Middle Tier. (Adobe
Flex) which is not
possible in JSP.

Adobe
Flex

iReport
Crystal
Report

 Brainstor
ming
 Compari
son

 Easy to build
reports
 Rich features
 Open source

 Ease of
interaction with J2EE
Middle Tier

iReport

2.Technol
ogy for
Middle
Tier

EJB 2
Spring
Grails

 Brainstor
ming
 Compari
son

 Functionality
 Interoperability
 Advanced
Technology

 Use EJB 2 - less
functionality over
grails.
 Spring –
Interoperability is
complex.
 Grails –
Advanced
Technology Grails
Groovy GFS (Grails
Flex Scaffolding)
with integration of
Adobe Flex.

Grails
On
Grails

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

79

After the careful evaluation of the technology the development bed was chosen. Grails and Adobe
Flex3 were the chosen technologies as an outcome of the DAR.

Groovy is a dynamic language for the JVM that offers a flexible Java-like syntax that all Java
developers can learn in matter of hours. Grails is an advanced and innovative web-application
framework based on Groovy that enables a developer to establish fast development cycles
through Agile Methodologies and to deliver quality product in reduced amount of time [4].
Grails Flex Scaffold (GFS) is a plug-in that deals with Flex code generation by scaffolding
methodology [5]. When it came to attractive user interface the use of Adobe Flex is a powerful,
an open source application framework that allowed us to easily build the GUI of the application.
[6]

The base model was developed and accepted by client. After acceptance the client placed
different work orders. For every work order, customization of the base model was to be made as
per the requirements. Timelines were set for each and every activity including requirements
gathering, development and testing. A work plan was prepared at the beginning of the project
wherein constraints were highlighted. To control the project there is need to compare actual
performance with planned performance and taking corrective action to get the desired outcome
when there are significant differences. By monitoring and measuring progress regularly,
identifying variances from plan, and taking corrective action if required, project control ensures
that project objectives are met.

3. CAR(CAUSAL ANALYSIS AND RESOLUTION)

Causal Analysis and Resolution (CAR) is done to identify how to increase the effectiveness in
code review to make it a capable process. For doing CAR we used 5 Whys technique. The 5
Whys is a questions-asking method used to explore the cause/effect relationships underlying a
particular problem, with the goal of determining a root cause of a defect or problem.

Why 39% Code review effectiveness(CRE) is not manageable

Why Code Review (CR) has not been planned effectively

Why No formal CR done, at some places it was code walkthrough only

Why No Checklist for review and all the processes have not been checked thoroughly

Why The review was done by peers from other team

Conclusion Informal Code Review.

Code reviews done without checklists

Code Review done by peers from other team was not effective

Action All processes will be covered in the code review.

Use checklist to review the code.

Pair programming

Table 2. CAR Table

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

80

4. THE CASE ANALYSIS

Performance responsiveness and scalability is a make-or-break quality for software. Two work
orders were completed on time, but following problems were persistent:

1. System Performance was slow
2. Stale Object Exception was thrown
3. Garbage Collector overhead limit exceeded

The problems were discussed and analyzed in the brainstorming session. Discussions were made
for doing extensive code reviews. Using CAR (Causal Analysis and Resolution) technique for
project management drawbacks in existing code reviews was identified and their corrective
actions were planned. Revisiting and evaluating the design and architecture of the system once
again were also discussed. The outcomes of CAR were some changes like:

a) Change in mail sending process – Earlier mail was sent synchronously after the saving of
registration data. Asynchronous Mechanisms of sending mail like installing and using Grails
Asynchronous Mails Plug-in brings down the response time required for doing registration.
Another advantage of using Grails Asynchronous Mails Plug-in is that the activity of sending
mails may be scheduled or re-tried after certain amount of time. This feature would be useful
in events when Mail Server is heavily loaded or Mail server is “down”. The implementation
of this plug-in requires minimal code changes in the current application.

b) JVM options to tune JVM Heap size - Java has a couple of options that help control how
much memory it uses:

a. -Xmx sets the maximum memory heap size
b. -Xms sets the minimum memory heap size

For a server with a 'small' amount of memory, we recommend that -Xms is kept as small as
possible e.g. -Xms 16m. Some set this higher, but that can lead to issues e.g. the command that
restarts tomcat runs a java process. That Java process picks up the same -Xms setting as the
actual Tomcat process. So you will effectively be using two times -Xms when doing a restart. If
you set -Xms too high, then you may run out of memory.

When setting the -Xmx setting you should consider a few things like -Xmx has to be enough for
you to run your application. If it is set too low then you may get Java OutOfMemory exceptions
(even when there is sufficient spare memory on the server). If you have 'spare' memory, then
increasing the -Xmx setting is often a good idea. Just note that the more you allocate to Java the
less will be available to your database server or other applications and less for Linux to cache
your disk reads.

Note that Java can end up using (a lot) more than the -Xmx value worth of memory, since it
allocates extra/separate memory for the Java classes it uses. So the more classes are involved in
your application the more memory that Java process will require.

The PermGen space is used for things that do not change (or change often) e.g. Java classes. So
often large, complex applications will need lots of PermGen space. Similarly if you are doing
frequent war/ear/jar deployments to running servers like Tomcat or JBoss you may need to issue
a server restart after a few deployments or increase your PermGen space. To increase the

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

81

PermGen space use something like: -XX:MaxPermSize=128m. The default is 64MB. (Note that
Xmx is separate from the PermGen space, so increasing Xmx will not help with the PermGen
errors).

Since our technology selection was made using DAR, hence we revisited our DAR and made two
teams. One team worked upon Java/servelet technology and the second one worked on Spring
Framework. For team one with java/servelet technology oracle database server has been choosen
in place of mysql. A comparative study on query execution time was carried out and we found
that query executed on MySQL is executing 30 times faster than the same query being executed
on ORACLE. So we finally decided that for our application and for the kind of data which we
record, MySQL database gives better performance.

5. PERFORMANCE COMPARISON

One of the most critical aspects of the quality of a software system is its performance and hence
we set our goals to improve the performance of the system. Performance Test from Jmeter was
undertaken. This was done iteratively after tuning the application and each time we get better
result of performance from performance tests. Jmeter is one of the Java tools which are used to
load testing client/server applications. It is used for testing the systems performance which
automatically stimulates the number of users. It is also important to select the right kind of
parameter based on your application for analyzing the test results. Since our application receives
too many hits hence we choose response time as the evaluating parameter. Response time is the
elapsed time from the moment when a given request is sent to the server until the moment when
the last bit of information has returned to the client. We carried out the performance test on our
base application developed with Grails and Flex. We gave inputs of 1 sec, 5sec, 10sec and 60 sec
with sample sets ranging from 20 to 700 users and the report is as follows:

We carried out the performance test on our base application developed with grails and flex. We
gave inputs of 1sec, 5sec, 10sec and 60sec with sample sets ranging from 20 to 700 users. This
table shows the first Jmeter Report of Performance Testing on Base Version of Grails & Flex. It
can be seen here that average response time for sample set in 10 second for 20 users is coming to
be 333 milliseconds with standard deviation of 51.3% which is very high and the throughput is
2.03 request /sec which is very low. Looking at these statistics it was evident that the system was
unstable.

Samples Average
(msec)

Min
(msec)

Max
(msec)

Std. Dev. Error
%

Throughput
(/sec)

Avg.
Bytes

1 sec

20 2722 1710 3472 499.36 0 4.88 327

100 31214 297 52071 19425.21 0.24 1.89 1357.64

5 sec

20 315 260 505 64.47 0 3.97 327

50 3629 699 5387 1254.05 0.12 5.76 920.4

100 6098 638 11230 2818.44 0.43 7.95 2453.35

10 sec

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

82

20 333 294 530 51.3 0 2.03 327

100 6177 320 9990 2431.46 0.04 5.98 524.8

60 sec

300 494 267 3820 615 0 4.89 327

400 6248 333 15355 3947.63 0.1 6.03 833.86

500 37292 789 113203 30205.56 0.46 3.41 2195.23

700 68532 337 170815 43343.26 0.68 3.39 3088.47

Table 3. 1st Jmeter Report with Grails

Performance tests were also carried out for Java/Servlet application which showed that it was no
way near the grails version in view of performance of the application. For 10sec with 20 users,
the average response time is 23640msec which is far more than 333msec (average response time
for sample of 10 sec and 20 users in case of Grails and Flex).

Samples Average
(msec)

Min
(msec)

Max
(msec)

Std. Dev. Error
%

Throughput
(/sec)

Avg.
Bytes

1 sec
1 2870 2870 2870 0 0 0.348432 51283
2 4296 3565 5027 731 0 0.361598 51283
5 8745 4510 12829 3063.947 0 0.36673 51283
10 15295 3597 26190 7458.177 0 0.369072 51283
20 27417 4175 50226 14277.99 0 0.390678 51283
50 65343 4730 125804 36155.33 0 0.394185 51283
100 96242 4240 129667 39525.4 0.49 0.764 26154.33
5 sec

1 2795 2795 2795 0 0 0.357782 51283
2 3091 3016 3167 75.5 0 0.352734 51283
5 6767 4497 8903 1697.582 0 0.387447 51283
10 12644 3863 20973 5624.403 0 0.39248 51283
50 62592 4064 119374 34217.76 0.02 0.401858 50257.34
100 94558 4128 128009 39101.14 0.48 0.753551 26667.16
10 sec

1 2734 2734 2734 0 0 0.365764 51283
2 2885 2787 2984 98.5 0 0.25047 51283
5 4424 3436 5284 692.505 0 0.384734 51283
10 10351 3982 17581 4326.702 0 0.393902 51283
20 23640 4082 44047 12011.69 0 0.386473 51283
50 61088 3460 117988 33411.58 0.02 0.397599 50257.34
100 59016 4325 100826 19939.48 0.57 0.91943 22051.69

Table 4. Jmeter Report with Java/Servlet

The Spring Framework provides integration with Hibernate in terms of resource management,
DAO implementation support, and transaction strategies. When we did the performance test on
this we found the following statistics:

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

83

Samples Average
(msec)

Min
(msec)

Max
(msec)

Std. Dev. Error
%

Throughput
(/sec)

Avg.
Bytes

1 sec
1 189 189 189 0 0 5.291005 102
2 191 191 191 0 0 2.828854 102
5 193 190 196 2.227106 0 4.911591 102
10 878 200 1243 273.9256 0 5.099439 102
20 1841 620 2997 753.7219 0 5.042864 102
50 5490 495 9441 2512.129 0 4.949515 102
100 11706 497 22748 6436.252 0 4.332568 102
5 sec
1 207 207 207 0 0 4.830918 102

2 218 217 219 1 0 0.732064 102
5 208 206 214 2.939388 0 1.188213 102

10 207 200 216 4.019950 0 2.118195 102
20 215 208 230 5.064336 0 4.031445 102
50 2811 280 6004 1486.374 0 4.936321 102
100 8869 311 17970 5450.867 0 4.577078 102

10 sec
1 219 219 219 0 0 4.56621 102
2 233 233 233 0 0 0.381025 102
5 227 224 229 1.854724 0 0.606796 102
10 225 220 230 2.98161 0 1.084599 102

20 223 219 235 4.130375 0 2.054232 102
50 888 331 2299 506.5207 0 4.483903 102
100 7162 373 17162 656.5207 0 4.445432 102

Table 5. Jmeter Report with Spring Framework

In the mean time when we were exploring and testing with other technologies we also did
optimization of Grails version wherein we took following major corrective measures:

a) Removed bidirectional mappings which helped us to remove the unnecessary tables created
by the mapping to store the values.

b) Explicitly clearing the Hibernate Session Level/1st Level Cache increases the performances.
Hibernate 1st Level cache is a transaction-level cache of persistent data. It was seen that
when this transaction-level cache is cleared, write performance of the system was increased.
Initial load testing shows 5 x improvements in terms of Time Taken to insert for doing this
test, 3000 inserts were made without clearing Hibernate 1st level cache which took around
240 sec. After clearing the Hibernate 1st Level cache, the same operation took 45sec.

c) By default Hibernate uses, Optimistic Locking strategies by the use of versioning. The system
experiences high number of concurrent reads and writes. In such situations optimistic locking
fails and throws an exception for Stale Object. The default behavior of Hibernate was
changed from optimistic to pessimistic locking for avoiding this error. The change required

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

84

minimal code modification. The change however, may result in some performance penalty as
there will be row level locking for reads.

d) For implementing row level locking, the Storage engine of MySQL was changed from
MyISAM (which is tuned for High Performance without being ACID compliant) to InnoDB
(which is tuned to support transactions and is fully ACID Complaint)

e) Worked on the query optimization and removal of unnecessary queries which were building
load on mysql.

f) Initially the images were stored in the database along with the path and also on the
application server which made the size of the application bulky and created lots of problems
while retrieving the images for generation of application form or admit card. Now, the images
are stored in a separate folder outside the webapps which helped in improving the
performance of the application.

After doing all the above changes, the application was tested with Jmeter to find the performance
result which is depicted below:

Samples Average
(msec)

Min
(msec)

Max
(msec)

Std. Dev. Error
%

Throughput
(/sec)

Avg.
Bytes

1 sec
1 47 47 47 0 0 21.2766 683
2 47 47 48 0.5 0 3.656307 683
5 48 47 52 1.939072 0 5.820722 683
10 49 46 54 3.257299 0 10.41667 683
20 50 46 59 4.093898 0 19.32367 683
50 791 146 1199 289.9754 0 23.57379 683
100 1973 104 3858 1051.758 0 23.94063 683
5 sec

1 47 47 47 0 0 21.2766 683
2 48 47 50 1.5 0 0.784314 683
5 49 46 54 3.03315 0 1.230921 683
10 55 52 63 2.712932 0 2.194908 683
20 57 53 75 5.634714 0 4.148517 683
50 48 46 62 3.589763 0 10.006 683.38
100 51 46 62 4.430564 0 19.73165 683.19
10 sec
1 48 48 48 0 0 20.83333 683
2 56 56 57 0.5 0 0.395491 683
5 54 51 60 3.544009 0 0.620887 683
10 58 52 79 8.971622 0 1.101443 683
20 56 50 76 7.031358 0 2.093145 683
50 49 46 68 4.422669 0 5.071508 683
100 49 46 77 4.272985 0 10.0311 683.19

60 sec
300 53 47 106 6.930367 0 4.990435 683.19
400 51 47 114 5.434344 0 6.640327 683.19

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

85

500 50 46 96 5.398905 0 8.287201 683.19
700 50 45 178 8.207943 0 11.55726 683.19

Table 6. After optimization Jmeter report of Groovy Grails Version

The results showed that in 1sec with 1 user when compared with spring version Grails showed an
improvement of 75% in response time and throughput increased to various folds from 5.2
requests/sec to 21.2 request/sec. A comparative analysis of the three technologies is shown below
with respect to response time and standard deviation. The results show that Grails is giving the
best performance and hence it is rightly chosen technology.

Response time should be minimum irrespective of the number of users. As it can be seen from the
graph that for grails the line is close to 0 and as we move from grails to spring the graph line
moves away from 0. For java/servlet version the average response time increases with the number
of users.

Figure 1. Graph showing comparative analysis of Table3, Table4 and Table 5 in average response time
with number of users in 1 sec

Standard deviation is a quantity calculated to indicate the extent of deviation for a group as a
whole and it should be near to 0 irrespective of the number of users. It is clear from the graph that
standard deviation in case of grails is very near to 0 and hence rightly chosen technology.

Figure 2. Graph showing comparative analysis of Table3, Table4 and Table 5 in standard deviation with
number of users in 1 sec

When we compared this report to the first test report of Grails version we found that for 10 sec
with 20 samples there was an overall improvement in response time and standard deviation.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

86

Response time is improved to 83% and there is 86% improvement in standard deviation which is
remarkable in itself.

Samples Avg
(msec)

Min
(msec)

Max
(msec)

Std. Dev. Error
%

Throughput(/
sec)

KB/sec Avg.
Bytes

10 sec
20 333 294 530 51.3 0 2.03 0.65 327
20 56 50 76 7.031358 0 2.093145 1.396111 683

Table 7. Comparison of 1st v/s Optimized Groovy Grails Report

It is also to be noted that now for 60 sec with 700 users the response time is 50 milliseconds and
standard deviation is 8.2 and throughput is 11.5 request/sec.

6. CONCLUSION

Comparison of the three technologies namely Java/servelet, spring framework and Grails for
performance led us to the result that Grails is a better performing platform for the project we
undertook. Things like RSS feeds and domain modeling allows for faster development of the
application while allowing the focus to be on functional code. The system through various
optimizations has shown an overall improvement of 84 % in response time and 93% in standard
deviations. In latest work order the system did not show any performance issues and the servers
functioned smoothly without any downtime. After improvements done in our system we did not
faced any memory leak issues. Through continuous improvement of the application we have been
able to gain customer satisfaction.

ACKNOWLEDGEMENT

The authors would like to thank Mrs. R.T.Sundari for her continuous guidance in writing the
paper. We would also like to thank the EdCIL PEPAS team for their continuous effort in
improving the application.

REFERENCES

[1] Five Steps to Solving Software Performance Problems by Lloyd G. Williams, Ph.D.,Connie U. Smith,
Ph.D.

[2] Application of the Decision Analysis Resolution and Quantitative Project Management Technique
for Systems Developed Under Rapid Prototype Model by Priyanka Dutta, Vasudha Gupta, Santosh
Singh Chauhan

[3] http://www.processgroup.com/pgpostoct05.pdf
[4] http://www.springsource.com/developer/grails
[5] http://grails.org/plugin/flex-scaffold+1
[6] http://www.adobe.com/products/flex.html
[7] http://grails.org/plugin/asynchronous-mail

http://www.processgroup.com/pgpostoct05.pdf
http://www.springsource.com/developer/grails
http://grails.org/plugin/flex-scaffold+1
http://www.adobe.com/products/flex.html
http://grails.org/plugin/asynchronous-mail

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

87

About Authors

Priyanka Dutta has an experience of 8 Years and is currently working as Senior
Technical Officer with CDAC. She has worked on various web based projects namely
EdCIL Pre Examination Process Automation, Hospital Information Management System,
Development of Robust Document Analysis and Recognition System for Printed Indian
Scripts etc. There have been significantly higher achievements in projects like Provident
Fund for Automation for CDAC, OCR Tool Development, Payroll Generation for PGI
Chandigarh and Digital Library for Vigyan Prasar. She has an exposure to wide area of
technologies and platforms.

Vasudha Gupta has an experience of 4.5years and is currently working as Technical
Officer with CDAC. Prior she has worked with Oracle Financial Services Software
Limited for 1.5 years on the renowned banking product “Flexcube”. She has worked on
various web based projects namely EdCIL Pre Examination Process Automation, ONES,
etc.

Sunit Kumar Rana has an experience of 7 years and is currently working as Project
Engineer - II with CDAC. He has worked on various web based projects namely EdCIL
Pre Examination Process Automation, DPIMS, HIMS, DWH, FMS. He has an exposure
to wide area of technologies. He is an SCJP certified.

