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ABSTRACT 
 

Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and 

widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger 

and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire 

management resources. Existing systems that calculate fire weather indices are limited due to low spatial 

and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor 

data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high 

resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to 

data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for 

calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to 

calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by 

applying Semantic Web Technologies to the processing of data streams from a wireless sensor network 

deployed in the Springbrook region of South East Queensland. This paper describes the underlying 

ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have 

developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We 

also describe the Web-based mapping interface that we have developed, that enables users to improve their 

understanding of how fire weather indices vary over time within a particular region. Finally, we discuss 

our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in 

terms of accuracy, precision and query performance.  
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1. INTRODUCTION 
 

Wildfires have been responsible for some of the most devastating natural disasters in Australia 

and are estimated to cause damage with an average annual cost of $77million [1]. Fire weather 

indices play a significant role in issuing warnings and in estimating the level of difficulty 

associated with a potential wild fire/bushfire [2]. The most widely used and accepted systems are 

the McArthur Forest Fire Danger Index (used in Australia) and the Canadian Fire Weather Index 
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(used in North America and the Australia Bureau of Meteorology (BoM)) [2]. Both indices are 

calculated by making use of three weather parameters: wind speed, relative humidity and 

temperature. Although these two fire weather index systems are the most robust and widely 

adopted, they have some limitations. For example, most existing implementations use weather 

parameters collected from widely distributed sensor nodes, tens of kilometers apart. Hence, the 

collected data is not dense enough to estimate fire weather index accurately for a specific region. 

Moreover, the fire danger maps are typically only updated once per day. Hourly variations in 

bushfire risk over the course of 24 hours are not possible. For example, the Canadian Fire Weat 

her Index takes the noon Local Standard Time (LST) values of weather parameters as input. The 

potential cost of imprecise information can be very significant in decision making associated with 

hazard evacuation plans and fire-fighting operations. Therefore, there is an urgent need for 

developing more accurate methods for estimating fire weather indices, with higher spatio-

temporal resolutions.  

 

In recent years, the number of wireless sensor networks (WSNs) deployed in different 

environments has rapidly expanded due to the decreasing cost, size and reliability of micro-sensor 

technologies. Sensors are being used to monitor safety and security of buildings and spaces [3,4], 

to measure humans’ physical, physiological, psychological, cognitive and behavioral processes 

[5] and to capture observations and measurements of the environment parameters [6]. In recent 

years, WSNs consisting of coordinated autonomous sensors have been deployed to monitor forest 

physical parameters (air temperature, relative humidity, wind speed, leaf wetness, air pressure, 

wind direction, solar radiation and so on) [6,7,8]. As a result, an avalanche of raw sensor network 

data streams about forest environments has been collected which provides a valuable research 

platform for scientists or researchers to study or understand the micro-climate and associated fire 

weather indices within a focused area [6].  

 

However, estimating fire weather indices from WSNs streams is a very challenging problem. 

Firstly, WSN data streams are often incomplete or imprecise due to the fading signal strength, 

hazard node faults, inaccuracies of measurement, and limited energy and wireless bandwidth 

[9,10]. Moreover, the large volumes of complex, numerical and unstructured sensor data streams 

being generated, is a major challenge to process in real-time or near-real-time. In addition, 

heterogeneous, non-standard infrastructure, and poor data representation have resulted in many 

sensor data streams being locked inside specific proprietary applications and inaccessible to the 

wider community. To date, only a few studies such as Semantic Sensor Web [11] have focused on 

addressing the limitations of raw sensor data streams by annotating sensor data with semantic 

metadata to improve their spatial, temporal and semantic meaning and their potential 

interoperability and re-usability. The Semantic Sensor Web research also demonstrated the 

application of semantic reasoning rules to derive new knowledge from semantically annotated 

sensor data. However, information processing and analysis of sensor network streams remain in 

its infancy with much related effort focusing on the provision of platforms to support more 

efficient sensor-based applications or the improvement of sensor-based data management, sensor 

network configuration and sensor communication protocols [12,13].  

 

The aim of the research described in this paper is to develop a Semantic Fire Weather Index 

(SFWI) system which combines data pre-processing techniques (e.g., outlier detection and 

semantic annotation), with semantic reasoning technology and domain expert knowledge to 

estimate fire weather indices from WSNs data streams collected from a network deployed in the 
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Springbrook region of South east Queensland [6]. More specifically, the system is designed to 

satisfy the following objectives and user requirements: 

 

 To detect and remove the outliers within the raw sensor data streams to improve the 

quality of the data streams. Following removal of outliers, the cleaned sensor data stream 

are converted to RDF triples - which improves the quality, sharing-ability and reusability 

of the sensor data streams. 

 To develop a Fire Weather Index ontology (in OWL, Web Ontology Language) to 

represent different levels of fire weather danger ratings. These fire weather danger ratings 

based on input from the meteorological domain experts.  

 To define First-Order-Logical inference rules for estimating fire weather indices, and 

then convert these rules into SPARQL inference rules by using SPARQL [14] and OWL 

ontologies. 

 To design an efficient storage technique for storing, querying and retrieving large volume 

of sensor observation RDF triples efficiently. A multiple repository storage method is 

evaluated. 

 To develop an inference algorithm to infer the fire weather indices (FWIs) for a specific 

region and a given time period by combining SPARQL inference rules with an Inverse 

Distance Weighting [15] based approach. This combined approach enables accurate 

spatial distributions of FWIs to be inferred from point data. 

 To develop a set of Web services that enable users to search, explore and visualize fire 

weather indices within a time period for a specific region - using Google Earth, timeline 

and pie chart visualizations.  
 

The remainder of the paper is structured as follows. In section 2, we briefly discuss related work. 

Section 3 presents our methodology. Section 4 describes the data pre-processing steps, which 

includes detecting and removing outliers, annotating data streams with terms from a set of OWL 

ontologies, and storing the RDF triples in optimized RDF storage. In section 5, we describe how 

we combine meteorologists’ knowledge with semantic reasoning technology to infer accurate fire 

weather indices. Section 6 provides details about the system’s technical architecture, functionality 

and the user interface. Section 7 provides detailed information about the evaluation process and 

results. Lastly, we discuss the future work and draw conclusions. 

 

2. RELATED WORK 
 

Using satellite telemetered data to detect and forecast forest fires is the traditional approach and 

still the predominant method. For example, a wildfire monitoring service was proposed to show 

how satellite images, ontologies and linked geospatial data can be combined for wildfire 

monitoring [16,17]. This approach processed satellite images to detect pixels where the fire may 

exist and then representing satellite image metadata, knowledge extracted from satellite images 

and auxiliary geospatial datasets encoded as linked data.  

 

However, it has been proven that using WSNs to detect and forecast forest fires provides more 

timely and higher density data than using traditional satellite telemetered data [18]. Hence a 

number of recent efforts have focused on monitoring forest fires using WSNs [13,18,19,20,21]. 

Generally, these past research efforts can be classified into two categories: WSN level and WSN 

data analysis level. At the WSN level, previous research has focused on improving the WSN 
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configurations, deployment, communication protocols, and hardware devices to enable more 

efficient fire detection and monitoring. For example, Aslan et al. [13] have proposed a framework 

consisting of four main components: an approach for deploying sensor nodes, an architecture for 

the sensor network for fire detection, an intra-cluster communication protocol, and an inter-

cluster communication protocol. The aim is to improve the energy efficiency, support early 

detection and accurate localization, enable forecast capability, and adapt sensor networks to harsh 

environments. Fernández-Berni et al. [21] have been working on early detection of forest fires 

using a vision-enabled WSN. This work includes a vision algorithm for the detection of smoke 

and a low-power smart imager to stream images. They integrated these two components to 

generate a prototype vision-enabled sensor network node.  

 

At the WSN data analysis level, researchers are mainly working on investigating the best sensor 

combinations (light, air temperature, air pressure, wind speed, wind direction, soil moisture, leaf 

wetness, relative humidity, rainfall, smoke etc.) and on developing more advanced algorithms 

(clustering, summaries, threshold, statistical modeling, neural network, threshold values, 

Dempster-Shafer theory based algorithm etc.) [13,20,22,23] to improve fire hazard detection and 

monitoring. For example, Diaz-Ramirez et al. [20] proposed two algorithms for detecting forest 

fires from WSNs. The first algorithm is a threshold-based method which takes temperature, 

humidity and light as input, while the second algorithm is a Dempster-Shafer theory based 

algorithm which only takes temperature and humidity as input.  

 

The FireWatch [24] system was proposed to overcome the limitations of the traditional satellite 

and camera-based systems by integrating WSN technologies, computer-supported cooperation 

work (CSCW) and a Geographic Information System (GIS). This system was designed to detect 

forest fires using WSNs but not to support fire hazard predictions. 

 

At present, only a few approaches have directly focused on calculating fire weather index from 

the WSN data streams [25,26]. For example, Sabit et al. [25] have presented approaches to 

generate micro-scale estimates of the Fire Weather Index from WSN data streams – but they do 

not use Semantic Web technologies.  

 

Other noteworthy recent effort [27,28,29] proved that the integration of Semantic Web 

technologies and sensor networks can offer more to users and enable the development of 

environmental decision support systems, e.g., flood response planing system. Moreover, Sheth et 

al. [27] have proposed the Semantic Sensor Web to address integration and communication 

problems between networks by annotating sensor data with semantic metadata to improve their 

spatial, temporal and semantic meaning. It also demonstrates how rules can be applied to derive 

additional knowledge from semantically annotated sensor data. In our work, we adopt a similar 

semantic annotation or mark-up approach to enrich WSN data streams with semantic metadata to 

improve their data quality, share-ability and reusability. The primary difference between our work 

and Sheth’s is that we apply and evaluate this approach in the context of estimating fire weather 

indices at a fine spatial and temporal scale. 

 

3. METHODOLOGY 
3.1 Case Study 
 

The Gold Coast Springbrook National Park is one of Queensland’s five World Heritage listed 

areas and covers 6,197 hectares restored from agricultural grassland to native rainforest 
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vegetation. Located about 96 km south of Brisbane in the state of Queensland, it is a place of 

exceptional natural beauty and ecological importance. The Springbrook WSN project [6] being 

undertaken by CSIRO, Queensland Department of Environment and Resource Management, and 

Australia Rainforest Conservation Society has employed more than 180 sensor nodes attached to 

several hundred solar-powered sensor devices in the Springbrook National Park region, (bounded 

by 28 °14'1512'' – 28 °13'138''S latitude, and 153°15'60'' –153°16'43''E longitude) (See Figure 1). 

This tagged region is an area of approximately 0.13 square miles.  

 

 
 

Figure 1. Study Area: the Springbrook WSN deployed in the Springbrook National Park 

 

More specifically, in this project CSIRO scientists installed different types of sensor devices to 

monitor air temperature, relative humidity, wind speed, leaf wetness, soil water potential, total 

solar radiation, wind direction etc. The Springbrook sensor data set is ideal for our research 

because it records those parameters specifically required to calculate fire weather indices. For this 

study, we collected three types of weather variables: air temperature, wind speed and relative 

humidity from the Springbrook WSN project [6]. All the data were captured by Vaisla WXT520 

weather transmitters. Each transmitter is sampled at 10 minute intervals.  
 

3.2 Methodology 
 

The proposed methodology for undertaking this research can be sub-divided into the following 

four major steps described below: 

 

1. Data Pre-processing and Storage: A data pre-processing step was applied to detect and 

remove the outliers within the collected data streams. Then, the cleaned data streams 

were converted into RDF triples which are stored in optimized repository (multiple RDF 

triple stores). 

2. Semantic Inferencing: 241 Fist-order logical rules were collected and converted to 

SPARQL inference rules by using the defined FWI ontology and other OWL ontologies. 

The SPARQL inference rules were saved in the optimized repository. Then, a rules-based 

inferencing algorithm was applied to generate fire weather indices and an Inverse 

Distance Weighting (IDW)-based neighbourhood region prediction algorithm was 

developed and applied to calculate more precise raster-based fire weather indices for a 

specific region at a time period (from point data). 

3. System Implementation: A Web-based SFWI system was developed with a search 

interface to enable users to search fire weather indices for a specific region within a time 

period. A visualization interface consisting of Google Earth, timeline and pie charts was 
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developed. The Google Earth map displays animated fire weather index search results, 

while the pie charts are used to compare entire period, day-time and night-time average 

fire weather indices. 

4. Evaluation: Finally, three aspects of the system are evaluated. The first evaluation 

involves comparing our system with the McArthur Forest Fire Danger Index and the 

BoM Daily fire weather Index values. The second evaluation involves the assessment and 

optimization of SPARQL querying and RDF triple store configuration to obtain scalable 

performance. The third evaluation involves the assessment of the SFWI system usability 

by acquiring user feedback from 8 users.  

 

4. DATA PRE-PROCESSING AND STORAGE 
4.1 OUTLIER REMOVEMENT AND SEMANTIC ANNOTATION 
 

Data quality is a significant issue associated with WSNs due to the limited resources available 

(power, memory, computational capacity and communication bandwidth), and the harsh 

environmental conditions [30-33]. In particular, outliers can significantly affect the accuracy of 

our fire weather index calculations. To detect outliers, we take advantage of the fact that air 

temperature, humidity and wind speed readings from sensors geographically close to each other, 

follow the same patterns [32,34]. In this study, we adopt an outlier detection approach, proposed 

by our previous work [35], to remove the outliers within the raw sensor data streams to generate 

the cleaned wireless sensor data streams. 

 

Machine-processable semantics allows semi-autonomous or autonomous agents to streamline the 

capture, reasoning and re-use of data streams. To date, there exist a wide variety of existing 

sensor and observation ontologies to describe sensor networks, sensor devices and sensor 

observations with machine-interoperable semantics. Such ontologies include the Semantic Sensor 

Network Ontology (SSN) [36], OntoSensor [37], and CSIRO’s Sensor Ontology [38]. The SSN 

ontology, developed by the W3C Semantic Sensor Network Incubator group, is the most 

comprehensive ontology which provides the top-level classes and properties for representing 

sensors, the measurement capabilities of sensors, and the sensor observations. More specifically, 

the SSN has defined the core concepts and relations (sensors, features, properties, observations 

and systems) and has been aligned to the DOLCE-Ultra Lite (DUL) ontology [39,40]. In addition, 

a number of groups have developed extensions to SSN, that we are able to take advantage of. The 

W3C Semantic Sensor Network Incubator group developed an Automatic Weather Station 

(AWS) ontology [41] to specify different sensor types, including aws:TemperatureSensor, 

aws:WindSensor and  aws:HumiditySensor. The W3C Semantic Sensor Network Incubator group 

also developed a Climate and Forecast (CF) ontology [42] that defines climate data variables, 

such as cf:air_temperature, cf:relative_humidity and cf:wind_speed. NASA developed a unit 

ontology [43] that defines vocabularies for physical properties and corresponding units of 

measurements, such as unit:degreeCelsius, unit:metrePerSecond and unit:percent etc. Figure 2 

illustrates how we combine these ontologies to describe our sensor data streams. 

 

Before using SPARQL inferencing to estimate fire weather indices, we first need to convert the 

cleaned sensor observations (formatted in CSV files) to RDF triples. The combined SSN, AWS, 

DUL, and Unit ontologies were employed to convert the CSV formatted sensor observations to 

RDF triples. For instance, suppose that we have a temperature observation: “2012-01-02 

03:50:00, air_temperature, AT_1, SN_1, 13.5, °C”. Parsing of this string is performed as follows: 

2012-01-02 03:50:00 is the time when an observation was collected; air_temperature indicates 
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the property of the observation; AT_1 is the ID of the sensor device; SN_1 is the ID of the sensor 

node that the sensor was attached to; 13.5 is the observation value; and the °C is the observation 

unit. After parsing, this observation is converted to RDF triples with spatial, temporal and 

semantic metadata (as shown in Figure 2). 

 

 
 

Figure 2. Instance of a temperature observation represented using the SSN, AWS, DUL, CF and Unit 

ontologies  

 
 

Figure 3. Algorithm for saving sensor observations to the multiple repository triple store 

 

4.2 Storage Techniques 
 

It is widely acknowledged that RDF graph-based triple stores are not very efficient in terms of 

query and reasoning performance [46], thus we propose a multiple repository storage approach to 

improve the query and reasoning performance of RDF graph-based triple stores. This multiple 

repository storage consists of a RDF graph catalog repository, and a set of RDF graph sub-

repositories. The catalog repository is used to store catalog information about the sub-repositories 

(e.g., sub-repositoryID, sub-repository graphs, graph maximum Time, graph minimum Time, sub-

repository data type etc.). There are four sub-repositories: relative humidity, air temperature, wind 
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speed and a FWI repository. The relative humidity repository, wind speed repository and air 

temperature repository are used to store relative humidity RDF graphs, wind speed RDF graphs, 

and air temperature RDF graphs, respectively. When a user uploads a set of raw sensor 

observations to the system, the system will firstly filter the data using our data pre-processing 

approach and then convert them to RDF graphs. Next, the system automatically generates a 

unique ID for each graph (that defines the place/time/indicator context).  Based on the uploaded 

data type, the system chooses a sub-repository to save this RDF graph. If the RDF graph is 

successfully uploaded to the repository, the system will save the corresponding graph storage 

information (context, maxTime and minTime, repositoryID) to the catalog repository to enable 

efficient searching and retrieval in the future. Figure 3 illustrates how to save raw sensor 

observations to a corresponding repository. The FWI repository is used to store the SPARQL 

inferencing results that calculate the fire weather indices. Detailed information describing the 

storage of inference results is explained in section 5.3. 

 

5. SEMANTIC INFERENCING 
5.1 Fire Weather Index Ontology 
 

Next we developed a Fire Weather Index (FWI) ontology to define fire weather index classes and 

relative properties. Fire weather indices can be categorized into five high level categories: 

fwi:Low, fwi:Moderate, fwi:High, fwi:VeryHigh and fwi:Extreme. For the fwi:Low category, fires 

can be easily controlled and there will be no risk to life or forest. For the fwi:Moderate category, 

fires can be easily controlled but still present a threat. For the fwi:High category, fires can be 

controlled but present a threat. For the fwi:VeryHigh category, fires can be difficult to control and 

present a real threat, while for the fwi:Extreme category fires will likely be uncontrollable and fast 

moving with flames that may be higher than roof tops. Moreover, these five high level classes can 

be further sub-classed into 15 subclasses: (fwi:Min-Low, fwi:Mid-Low, fwi:Max-Low), (fwi:Min-

Moderate, fwi:Mid-Moderate, fwi:Max-Moderate), (fwi:Min-High, fwi:Mid-High, fwi:Max-High), 

(fwi:Min-VeryHigh, fwi:Mid-VeryHigh, fwi:Max-VeryHigh), (fwi:Min-Extreme, fwi:Mid-Extreme, 

and fwi:Max-Extreme). Finally, the FWI ontology was aligned to the Provenance (PROV) 

ontology [44], which provides a set of classes, properties, and restrictions to represent the 

provenance information. Figure 4 illustrates how the FWI ontology can be applied to describe a 

high fire weather event that was observed at Sensor Node 2. 

 

 
 

Figure 4. Applying the FWI ontology to describe the High fire weather index from three sensors 

(WindSpeed WS_2, RelativeHumidity RH_2, AirTemperature AT_2) on SN-Node2 
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5.2 Defining SPARQL Inference Rules 
 

Inferencing is a mechanism by which a set of rules that represent domain expert knowledge are 

used to logically derive additional domain specific knowledge. SPARQL [14] is a standard RDF 

query language recommended by the World Wide Web Consortium (W3C) and considered as an 

essential graph-matching query language. More specifically, a SPARQL query consists of a body, 

a complex RDF graph pattern matching expression (which may include basic graph patterns, 

group graph patterns, optional graph patterns, alternative graph patterns and patterns  

 

 
 

Figure 5. An example of applying SPARQL reasoning to an RDF dataset to infer a High fire weather index  

 

on named graphs), and a head, an expression that indicates how to construct an answer to the 

query [45]. More specially, SPARQL has four types of query forms (Select, Construct, Ask and 

Describe) to define four types of result formats.  

 

SPARQL [14] can be used for inferencing because the SPARQL Construct query form returns an 

RDF graph that is formed by taking each query solution in sequence, substituting for the variables 

in the graph pattern, and combining the triples into a single RDF graph. In other words, the 

Construct query form can derive new triples when the graph patterns match. The returned RDF 

graph can be directly inserted into a repository by using the Insert graph update operation. 

Consider the following example using a SPARQL Construct query form and Insert graph update 

operation to infer a fire weather index value. In order to infer fire weather indices, we collected 

241 fire weather index rules in total from the meteorologists. These rules were represented as 

SPARQL queries and then stored in the multiple repository storage. For example, one of these 

rules is expressed as: “if relative humidity >= 80% AND 17.5 m/s <= wind speed <=24.4m/s 

AND 32 °C <= air temperature <= 41 °C, for a given location at time T, then at time T this 
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location has a High fire weather index.” We can interpret this rule statement into a SPARQL rule 

expressed as follow: 

 

Construct { 

      ?FireEvent_1 prov:atLocation ?node.   

      ?FireEvent_1 prov:atTime ?T.   

      ?FireEvent_1 rdf:type fwi:High. 

} 

 

Where{ 

 ?RH_OB1 ssn:ObservedProperty cf:relative_humidity.         ?RH_OB1 

ssn:ObservationSamplingTime ?T. 

?RH_OB1 dul:unitOfMeasure unit:percent.                            ?RH_OB1 ssn:ObservedBy  ? 

RH_Sensor1. 

?RH_Sensor1 ssn:deployedOnPlatform ?node.                       ?RH_Sensor1 ssn:hasValue 

?RH_OB1V. 

?WS_OB1 ssn:ObservedProperty cf:wind_speed.                  ?WS_OB1 

ssn:ObservationSamplingTime ?T. 

?WS_OB1 dul: unitOfMeasure unit:meterPerSecond.            ?WS_OB1 ssn:ObservedBy  

?WS_Sensor1. 

?WS_Sensor1 ssn:deployedOnPlatform ?node.                      ?WS OB1 ssn:hasValue 

?WS_OB1V. 

?AT_OB1 ssn:ObservedProperty cf:air_temperature.            ?AT_OB1 

ssn:ObservationSamplingTime ?T 

?AT_OB1 dul: unitOfMeasure unit:degreeCelsius                 ?AT_OB1 ssn:ObservedBy  

?AT_Sensor1. 

?AT_Sensor1 ssn:deployedOnPlatform ?node.                      ?AT_Sensor1 ssn:hasValue 

?AT_OB1V.  

Filter(                                                                                                                                                                                                                               

?RH_OB1V>=80&&?RH_OB1V<=100&& 

?WS_OB1V>=17.5&&?WS_OB1V<=24.4&& 

?AT_OB1V>=32&&?AT_OB1V<=41) 

} 

 

Suppose that we collected three type of sensor observations (relative humidity: 85%, 

wind speed: 23.3m/s, and air temperature: 40°C) from the sensor node 1 at 2012-01-

02T12:00:00, then these sensor observations can be expressed in RDF format as shown in 

Figure 5. When we apply the above inference rule to this data set, then it generates new 

triples (shown in Figure 5 shaded pink), which are the inference results that are saved to 

the FWI Repository. 
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Figure 6. Inference algorithm for inferring new FWIs 

 

5.3 Inference Algorithm 
 

The Canadian Forest Fire Weather Index system takes Noon Stand Time weather parameters as 

input. Hence, it only produces the daily fire weather indices at noon local time, which limits its 

accuracy and usefulness in decision-making. Our approach (Figure 6) enables users to access and 

query the fire weather indices in real time and at 10 minute intervals. Moreover, our system only 

performs the inferencing operation when it receives a query from a user. When users input their 

query time parameters to the system, the system will search the FWI Repository which stores all 

the historical inferred fire weather indices. If the FWI Repository contains the requested fire 

weather indices then it will return them. If not, the system will retrieve the time range information 

for the missing fire weather indices and create a temporary RDF graph repository as a data hub to 

estimate fire weather indices. Next, the system visits all the sub-repositories to upload related 

sensor data combinations to the temporary repository. Then, a SPARQL inference operation 

applies the inferencing rules to infer all the fire weather indices. Finally, the inferred fire weather 

indices are saved in the FWI Repository and the requested fire weather index results are presented 

to the user. 

 

5.4 IDW-Based Neighborhood Region Prediction  
 

In Section 4.1 we described the pre-processing step to remove outliers within the sensor data 

streams. However, data loss often occurs in WSNs due to random link faults, hazard node faults, 

inaccuracies of measurements, calibration errors, and fading signal strength etc. [9,10]. Thus, an 
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additional goal of this study is to reduce inaccuracies of inference results that occur due to data 

loss. Therefore, we propose a neighborhood region prediction approach based on assumptions 

that the fire weather index of a specific place is influenced mostly by the nearby sensor nodes and 

less by the more distant sensor nodes. This approach utilizes a commonly used technique – 

Inverse Distance Weighting (IDW) [15] for interpolation between a known scattered set of points.  

Let  if sn
 
be the fire weather index at sensor node 

isn ,       1 2, , , Nf sn f sn f sn be the fire 

weather indices set, and N be the total number of fire weather indices. Hence, we can use the 

following formula to calculate the fire weather index  f L at a specific location L : 

 
   

 1

1

N
i i

N
i

j

j

w L f sn
f L

w L






      (1) 

where i (1 i N  ), j  (1 j N  ), and  

 
 

1

,
i p

i

w L
d sn L

      (2) 

Where p is the power parameter (typically, 2p  ), and  ,id sn L is the distance between sensor 

node
isn and location L .  

    , cos sin sin( ) cos( ) cos( ) cos( )i i i id sn L r a x x x x y y           (3) 

 

Where x and y are the latitude value and longitude value of the location L , 
ix and 

iy  are the 

latitude value and longitude value of the sensor node 
isn , and r  (typically, 6373.8r  kilometers) 

is the radius of the Earth. This IDW-Based Neighbourhood Region Prediction algorithm is 

applied to the inferred fire weather indices, prior to the display and animation of sFWI spatial 

distributions via the Google Earth mapping interface (described in Section 7.2). 

 

6. IMPLEMENTATION 
6.1 System Architecture 
 

Figure 7 depicts the principle technical components of our Semantic Fire Weather Index (SFWI) 

system and the data flow between them. Our architecture combines programming technologies 

(Java, JavaScript, and JSON) and Web-based visualization technologies (Google Earth, Keyhole 

Markup Language (KML), timeline and pie charts) to maximize access and interactivity. In 

addition, we apply Semantic Web technologies (RDF, OWL ontologies, SPARQL, and RDF 

Sesame Repository Stores) to enrich sensor data with domain-specific semantic metadata, to 

reason across the sensor data streams, and to discover implicit knowledge such as fire weather 

index. More specifically, we adopt Java IDE Eclipse and Semantic Web plugin Sesame to support 

the development. 

A large volume of micro-climate sensor data collected by Vaisala Weather Transmitter WXT520 

devices is harvested from the Springbrook WSN project: including 2.5 years of relative humidity 

sensor data, air temperature sensor data and wind speed sensor data. The data processing step 

performs data cleaning (implemented by Java) to remove the outliers and conversion to RDF 

(implemented in Java). The generated RDF triples are stored in the relative humidity, air 

temperature and wind speed repositories respectively. The inference component performs the 

SPARQL reasoning to infer the fire weather indices at specific points/sensor nodes and saves the 

results in the FWI repository. 
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A search interface was developed to enable users to search and retrieve fire weather index from 

the FWI Repository by specifying a region and time period. After a query region is specified, the 

IDW-Based Neighbourhood Region Prediction is applied to generate raster-based visualizations 

dynamically displayed in a Web-based Google Earth interface. In addition, a browser-based 

timeline to display the fire weather trends over the query period (at 10 min intervals) and three 

pie charts to compare average fire weather indices for the entire period, day time and night time.  

 

 
 

Figure 7. High level architecture view of the SFWI system 

 

6.2 User Interface 
 

The user interface (shown in Figure 8) (accessible via a Firefox or Chrome Web browser), 

enables users to interactively:  

 

 Search and retrieve the fire weather indices for a specific region and time range. For 

example, show me the fire weather indices between “09/01/2012 12:00:00” and 

“13/02/2012 12:00:00”. The search results are displayed overlaid on the specified region 

using Google Earth layers (See Figure 8 (a)). 

 Statistically analyze the fire weather indices to compare day-time and night-time results. 

The results are displayed as pie charts (See Figure 8 (b)). 

 

The Google Earth animations dynamically show how FWI values vary over time. The pie charts 

on the right show the statistical information about the average, day-time and night-time fire 

weather indices. From the pie chart, we can affirm that typically FWIs are higher during daylight 

hours (15% low-, 62.5% low, and 22.5% moderate) than during night time (64.7% low-, 15.7% 

low, 2% low+, 5.9% moderate+ and 11.8% high-). However, the pie chart also illustrates that 

although night time is more likely to show lower fire weather indices, in some cases, higher fire 

weather indices may appear during the night. 
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Figure 8. User interface for Displaying SFWI Search, Browse results 

 

7. EVALUATION 
7.1 Evaluation of the Accuracy and Precision of Fire Weather Index Calculations 
 

We evaluate the accuracy and precision of our approach, by comparing our results with the 

McArthur Forest Fire Danger Index (FFDI) and the Bureau of Meteorology’s (BoM) Daily Fire 

Weather Index (which is based on the Canadian Fire Weather Index). 

 

Firstly, we collected 6 months of data (from 01/01/2012 00:00:00 to 01/07/2012 00:00:00) from 

the Springbrook project. These data sets consist of three weather parameters: air temperature, 

relative humidity and wind speed. This assessment involved calculating the similarity between 

our system fire weather indices estimates and the FFDI estimates for the same region. The 

similarity results for each month are presented in Figure 9. They reveal that our method and the 

FFDI produced similar results: Jan.2012 similarity ≥98%, Feb. 2012 similarity ≥99%, Mar. 2012 

similarity ≥96%, Apr. 2012 similarity ≥97%, May similarity ≥99.5%, and Jun. 2012 similarity 

≥99%. These results prove that our inference rules (as defined by the domain experts) can 

accurately estimate fire weather indices. 
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Figure 9. Similarities between FFDI estimates and SFWI estimates for period Jan- Jun 2012 

 
Figure 10. Comparison of BoM-FWIs with SFWIs for period 09/01/2012 00:00:00 - 14/01/2012 00:00:00 

 

Secondly, we compared the BoM’s Daily Fire Weather Indices (BoM-FWIs) with our semantic-

based high resolution dynamic Fire Weather Indices (SFWIs) (that changes every 10 minutes) for 

a 5 day period (from 09/01/2012 00:00:00 to 14/01/2012 00:00:00).  The aim of this assessment is 
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to evaluate the precision of our calculations. The evaluation results, shown in Figure 10, reveal 

that our approach is able to provide more precise results. The results also show that FWI values 

have a strong relationships with time. More specifically, FWI values in the early afternoon are 

higher than in any other period. In addition, Figure 10 demonstrates that our system is able to 

infer more accurate and precise fire weather index values with finer spatio-temporal resolution 

than the traditional approaches. 

 

7.2 Evaluation of the RDF Triple Stores and SPARQL Query Performance 
 

We also evaluated the performance of the SPARQL inference and query engine by measuring the 

speed of SPARQL query and inference. 144,966 triples of weather parameters were generated. 

Next, we stored a copy of the triples in one RDF repository (1R) which is the typical approach 

and a copy of the triples in our multiple repository storage (MR) approach. To conduct this 

evaluation, we executed 8 new SPARQL queries over different time periods (e.g. 1 hour, 6 hours 

etc.) on the single RDF (1R) repository to infer fire weather indices. The corresponding execution 

time results are calculated and presented in Figure 11 labelled (NQ-1R) (New Query – 1 

Repository). Secondly, we re-ran these 8 SPARQL queries again on the single RDF repository. 

The execution time results presented in Figure 11 are labelled as (RQ-1R) (Repeat Query – 1 

Repository). Thirdly, we ran these 8 new SPARQL queries on the multiple repository storage to 

infer the corresponding fire weather indices. The execution time results are presented in Figure 11 

and labelled as (NQ-MR) (New Query – Multiple Repository). Lastly, we re-ran these 8 SPARQL 

queries again on the multiple repository storage. The execution time results are presented in 

Figure 11 labelled as (RQ-MR) (Repeat Query- Multiple Repository). The overall results 

illustrated in Figure 11 show that our multiple repository storage outperforms the single 

repository approach. Moreover, our method performs significantly better than the single 

repository approach in terms of running repeated queries over a long period. Therefore, our 

approach demonstrates greatly improved querying speed. 

 

 
 

Figure 11. Execution time for running SPARQL queries over different time periods for new queries and 

repeat queries over single and multiple repositories respectively (NQ-1R, RQ-1R, NQ-MR, RQ-MR) 
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7.3 Evaluation of System Usability 
 

Finally, the system usability was assessed by soliciting feedback from eight users via a 

questionnaire and by observing user behaviour during the tests. Eight users were asked to respond 

to the following questions on the questionnaire after they had completed a given set of tasks using 

the system: 

 

 Q1 - I found the user interface for searching/querying fire weather indices easy to use; 

 Q2 - I found the Google Earth visualization and animations useful; 

 Q3 - I found the timeline visualization useful;  

 Q4 - I found the daily, day time and night time charts useful; 

 Q5 - I could understand the spatial and temporal patterns of fire weather indices better 

after using the system. 

 

Users were asked to provide a response to each question from a five-point Likert scale: 

1=Strongly agree; 2=Agree; 3=Neither agree nor disagree; 4=Disagree; 5=Strongly disagree. 

 

 

 

 

Questions Q1 Q2 Q3 Q4 Q5 

Positive 

Feedback 

100% 100% 87.5% 100% 100% 

 
Table 1. The evaluation results of usability 

 

User feedback from the questionnaire was presented in Table 1 and on-the-whole positive. All the 

users found that the user interface was intuitive and easy to use, and the Google Earth 

visualizations and the pie charts visualizations useful for exploring variations and trends in fire 

weather indices over time and location. Users requested that the timeline visualization should be 

improved to support zoom in and zoom out functionalities. They felt this would be more useful 

for meteorologists or regional fire safety agencies to understand the fire weather index fluctuation 

trends over a long period or between regions. Moreover, a significant number of users requested 

the ability to overlay the Google Earth visualization fire weather index map with country roads, 

Digital Elevation Models (DEM) and land cover maps (forest cover or grassland). They felt that 

this would greatly assist firefighters and/or residents in developing fire fighting, evacuation and 

rescue plans.   
 

8. FUTURE WORK AND CONCLUSIONS 
 

In conclusion, many micro-climate WSNs collect observations and measurements about 

environment physical parameters which provide ideal data for estimating bushfire risks. 

However, the quality of WSN data largely depends on the configuration of the sensor network. 

Existing fire weather index analyses that take noon time weather parameters collected from the 

distributed weather stations as input, cannot provide residents, firefighters or fire officials with 

accurate fire weather index information for a local region. Hence, we developed the Semantic 

Fire Weather Index (SFWI) system which overcomes the limitations of the existing fire weather 
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index by estimating fire weather index from micro-scale WSN data streams. Specifically, we 

integrated semantic reasoning with domain expert knowledge to estimate fire weather index for a 

specific region and time. Data pre-processing and an IDW-based algorithm were developed to 

support and improve the accuracy of the data underpinning our system. A FWI ontology was 

developed to enable the description of different level fire weather indices. In addition, we 

developed a visualization interface that enables fire managers, and the general public to access 

the fire weather index data via an easy-to-use mapping and timeline interface. The outcome is an 

extensible framework and a robust foundation for future advanced WSNs that can be used to 

enhance the development of fire rescue system or other environmental decision support systems. 

Future research is required to integrate SPARQL inference with fuzzy inference technology to 

provide users with estimates of uncertainty together with the fire weather indices. In addition, a 

user interface is required to enable meteorologists to easily enter, save and publish their domain 

expert knowledge via human-readable rules that can be translated to corresponding SPARQL 

rules. Finally, other environmental data sets such as land cover (forest land cover and grassland 

land cover), digital elevation models, creek and road networks could usefully be combined with 

the sensor network data streams to assist firefighters, local residents and natural disaster managers 

in decision-making. 
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