International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

A SECURE EPIDEMIC BASED UPDATE PROTOCOL
FOR P2P SYSTEMS

'Manghui Tu and 2Dianxiang Xu

lDepartment of CITG Purdue University Northwest 2200 169th Street Hammond, IN,
46323, USA
2Department of Computer Science Boise State University 1910 University Drive
Boise, ID, 83725, USA

ABSTRACT

Epidemic Based Update Protocols Are Designed To Address The Consistency Issues For Data Replication
In P2p Systems. However, Update Protocols Also Raise Security Issues. An Epidemic Based Update
Protocol May Be Exposed To Security Threats When It Is Operated In An Untrustworthy P2p Environment.
To Address This Issue, Security Prevention And Detection Protocols Are Designed In The Epidemic Based
Update Protocol To Protect Update And Their Timestamps From Being Tampered By Compromised
Malicious Peers. Theoretic Analysis Shows That The Secured Update Protocol Can Detect All
Manipulations On The Timestamps Of Updates And Can Eventually Identify The Compromised Peers In
The System.

KEYWORDS:

Peer-to-Peer; Epidemic based update protocols; consistency; timestamps, security

1. INTRODUCTION

Peer-to-Peer (P2P) systems aim to support collaboration and data sharing among participants [3,
18, 20, 24, 28]. A major barrier to support fast data accesses on large scale distributed systems is
the high latencies of wide area networks. To overcome the barrier of high network latency, data
stored in the P2P systems can be replicated at peers to improve both data access performance and
availability [3, 4, 18, 20, 25]. However, replication raises consistency issues to be addressed.
Asynchronous update protocols such as epidemic update protocols [2, 7, 9, 24] have been
proposed to improve the response time and avoid single point of failures. In an epidemic update
protocol, updates can be executed locally at any single site, and the updates are then propagated
to all other sites. The key to the success of these protocols is to maintain the causal order, by
using the transaction logs and a happened-before logic [2], which is implemented by a vector
clock based two-dimensional timetable [2, 4, 8, 9, 17]. Security is another important issue in P2P
environments where peers may be compromised and become malicious even with trust
management, access control, and security protection in place [22, 23, 24, 27]. Adversaries may
tamper the updates or update records and introduce conflicting updates into the system. Research
works addressing security issues in P2P systems mainly focus on trust management [1, 21], data
accesses, data storage, and routing mechanisms [26], and few of them addresses the security
issues on the update dissemination. Some research works propose mechanisms to protect the
integrity of the update itself [14, 15, 16, 19], but none considers the security protection of
timestamps or vector clocks of the updates, which are essential to the correctness of the update
protocol.

DOI : 10.5121/ijp2p.2017.8301 1

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

The security protection of timestamps of update transactions is not trivial. Timestamps are
generated by peers to maintain the causal order of update events in the system. A compromised
peer may generate fake timestamps for its own site, signed with its own private key and then
propagate to other site. Such an attack cannot be prevented or detected by using digital signature
based technologies. Also, a site may falsely claim that it has received an update that has not been
propagated to the site or deny the fact that the site has received an update from another site. This
cannot be prevented through the use of digital signature of the site that creates the update.
Without appropriate protection, the tampered timestamps can poison update propagation by
introducing non-existent conflicting updates, too many of which may lead to the crash of the
system [7, 24], or introduce inconsistency to the system without being detected [24]. Thus,
sophisticated mechanisms are needed to detect such malicious activities timely and precisely.

In this paper, to address security issues of the update protocol, detection procedures are designed
in a two-level update protocol to secure the update propagation protocol in such a way that a non-
compromised peer can detect tampered updates and prevent the updates from being further
propagated to other sites. The remainder of this paper is organized as follows. Section 2 discusses
related works on securing timestamps in distributed systems. Section 3 describes the system
model of the P2P system and Section 4 gives background information about timestamps and the
basics of the epidemic based lazy update protocol. Section 5 conducts security analysis and
proposes a secure update dissemination protocol and Section 6 presents simulation results.
Section 7 gives the conclusion of this paper.

2. RELATED WORK

The secure update dissemination issue has been recently studied in some research works [14, 15,
16, 19, 11]. In distributed systems, nodes may be compromised and can compromise the data
availability and integrity. Secure dissemination schemes without public key signature has been
developed in [14, 15, 16, 19]. The epidemic-style update diffusion in distributed systems that may
suffer Byzantine component failures was first discussed in [14]. In this work, two protocols are
developed based on the principle that a replica site accepts an update only if b+1 correct nodes
have accepted the updates. A more efficient update dissemination algorithm is proposed in [15]
and an optimal protocol is proposed in [16]. The algorithm may require less rounds of
computation optimality of the algorithm. All these research works assume that there are b
compromised nodes which become malicious, and thus require data to be written to at least b+1
non-faulty nodes initially before the update dissemination, which makes the dissemination slow.
In [19], a new update dissemination algorithm is proposed by using the path verification protocol,
which allows an update to be forwarded even when the forwarding host has not accepted that
update. A host accepts an update only receiving b+1 propagations with the same update and
disjoint gossip path. Even the sender cannot remove its own identity to fake a path, but it cannot
prevent multiple compromised servers to fake multiple disjoint paths by modifying the existing
path, without server integrity protection. Also, it cannot prevent compromised servers to
impersonate other servers without proper authentication. Most of research works focus on public
key algorithms to protect the integrity of the update from groups of clients [5, 11]. The digital
signature method makes the integrity protection much efficient, but all of those research works do
not consider the security protection of vector clocks, which is essential to the efficiency of update
dissemination.

3. SYSTEM MODELING

Some peers are dedicated for the P2P system with strong security management (e.g. timely patch
installation, appropriate firewall setup, well enforced security policies, strict access control, and
secured communication and information storage). Some other peers participate as non-dedicated

2

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

servers without strong security management. Generally speaking, those peers without strong
security management may have a higher probability to be compromised than those well managed
peers. In this research, some of the peers are assumed to be untrustworthy.

Fig.1 The topology of the P2P system modeled as a two level hierarchy.

To provide reliable and provable communication, P2P systems may be organized into structured
overlay networks [6, 10, 13, 25, 28]. In such systems, peers are organized into groups and each
group is managed by a super peer. In this research, we consider structured P2P overlay systems
with two-level hierarchy, in which peers are grouped into non-overlap local groups. Each local
group will be managed by a super peer, which represents the local group to communicate with
other groups for update information exchange. The super peers are organized into a super group.
A peer can only communicate with another peer in the same group (a super peer can
communicate with other super peers and all peers in its local group). Let HC = {HO,HM-1}
denote the set of M local groups and Pk = {Pk,0, Pk,1, ... } denote the set of Nkpeers in group
Hk, where Pk,0is the super peer. Also, let HS denote the super group, hence, HS = {P0,0, P1,0,
..., PM-1,0}. Thetopology of the P2P system considered in this research is shown in Fig.1. Note
that systems with millions of nodes can be extended to form a multi-layered hierarchical structure
with more than 2 layers.

To improve access performance, data are replicated at peers in such way that the super group
holds the primary copy of the data andeach super peer may hold a subset of the primary copy of
the data. Note that data set hosted by the two super peers may be overlapping with each other. We
assume that once a local group holds a replica of a data object, the super peer in that group also
holds a copy of that data object (it could be the primary copy of the data object or a non-primary
copy of such data object). Data can be read and updated at any peer, but only a limited number of
users are allowed to make updates. Let t denote a transaction, site(t) denote the peer at which the
update t is committed, TS(t) and p(t) denote the logical (timestamps) and physical time of
transaction t, RS(t) and WS(t) denote the read and update data set of transaction t, and let r(t)
denote the record of updatet. When a user needs to access a data object, it can access at any peer
that holds a copy of that data object. For an update t, site(t) needs to propagate t to every peer that
holds a copy of any non-empty subset of WS(t). To fit the large scale of the system, an epidemic
based lazy update mechanism is chosen for update dissemination [2, 8, 9].

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017
4. BACKGROUND INFORMATION

In an epidemic based update protocol, timestamps is critical to ensure the happened-before
property, i.e., Ve, fe E, e>fiffTS(e) <TS(f), where TS(e) and TS(f) denote the timestamps of event
e and event f, and E is the set of all events [4, 8, 9, 17]. The timestamps is maintained by the
vector clock mechanism. The vector clock mechanism was proposed by [12] to ordering events in
a distributed systems, in which each process needs to maintain a vector with the size of the
number of all processes in the system. In such a system, each process is indexed and corresponds
to an element in the vector clock. In the vector, each element corresponds to the number of events
has taken place at its corresponding process. Replica sites maintain logs and then exchange log
information to keep each other informed about the transactions that have occurred on their sites.
This ensures that eventually all data replicas will incorporate all the transactions that have
occurred in the system [4, 8, 9, 17]. Logs and timestamps are combined to a two-dimensional
timetable to make the update dissemination more efficient [8, 9]. Essentially, each replica site P;
keeps a timetable T(shown in Fig. 2),the k™ row of which (T[k, *]) represents P;’s knowledge of
the updates that peer P; has received (through the update exchange information sent by Py). If
Ti[k, j] = v, then P; knows that P, has received the it update (namely, 7 that is originally issued
at peer P; and all updates that are causally preceding ¢ {the V" update issued at peer P;).The row
T|[i, *] represents P; s record of the received updates that are originally issued at each replica site,
e.g., Ti[i, j] = u means that P; has received the u® update (namely,) that is issued at P; and all
other updates that are causally preceding 7. Also, each peer P; maintains a local log, denoted as L,
to log all updates issued locally at P; or propagated to P;.

index| .. | Q]| K| .| o
- P hasthoeived the 1" update from P
i u P;'s knowledge that Phas received the W update from P;
J Wi | 47T
TR S B 3
P;s knowledge that Pyhas received the v" update from P

Fig.2 A sample timetable Ti at peer Pi.

Thus, the timetable can be used to define the well-known timetable property, e.g., HasRecvd(T;, t,
Py = (Tj[k, site(t)] =2TS(¢)[site(r)]). That is, site P; is sure that P, must have received update
transaction ¢ if Tj[k, site(?)] =TS(¢)[site(r)]. When P; performs an update operation, it places a
record in the log L, When P; sends a message to P; it includes all of such update ¢ that
HasRecvd(T, t, Py) is false, together with the time table 7;. When P; receives a message from P it
applies all non-conflict updates and updates its time-table in an atomic step to reflect the new
information received from P,. When a site receives a log record, it knows that the log records of
all causally preceding events either were received in previous messages, or are included in the
current message. This is referred as the log property and such property is stated as what follows:
Ve, f, (e2f) A (fe L)), then e € L; (Liis the local log maintained by site P;). This protocol ensures
that whenever a site is aware of an update, it is aware of all causally preceding updates.

Now let’s discuss how to apply timestamps to detect conflicting transactions. When Pjreceives an
update ¢ issued at P, it first searches its local (update record) log Lito see if there exists such a
transaction t' that TS(¢) <>TS(t') (¢ and ¢’ are executed concurrently, denoted as 7 Il #'), and the data
accessed are overlapping (i.e., (WS(f) nWS(t) # @) v (RS(t) nWS(t) # @) v (WS(r) N RS(t') # @)
[2, 8, 9]. If we only consider transactions accessing a single data object and allow users to read

4

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

old data, then the condition of (WS(¥) "WS(¢") # ¢) is sufficient to determine the conflict. If such a
transaction ¢’ exists, then a conflicting flag is set with the record of update ¢ (i.e.,r(f)), and
transaction reconciliation procedure is to be launched to abort both update # and update ¢'.

The correctness of the protocol relies on the exchange of timestamps among all peers, and
conflicts are identified and reconciled based on the causal order defined by timestamps. However,
in an untrustworthy P2P system, a compromised peer may manipulate the timestamps of some
updates, which can poison the updates in the system through propagating malicious update
information to other sites. This may either introduce non-existing conflicts into the system which
implements a denial of service attack, or introduce the inconsistency into the system without
detection by hiding existing conflicts, which may lead the system into an unrecoverable state [7,
24].

5. SECURING THE UPDATE PROTOCOL

To secure the update protocol, security protection, malicious detection, and fault tolerance
procedures will be designed. For simplicity, the description of the secure update protocol will
focus on a single group first. Without loss of generality, an arbitrary group Hk will be considered.

A. SECURITY THREATS TO THE UPDATE PROTOCOL

The following attacks are considered in the research, (a) manipulating updates; (b) manipulating
update value; (c) impersonating other peers to propagate updates; (d) manipulating timetable; and
(e) manipulating timestamps for updates executed locally.

secureUpdateExecution (P t, cid) {
begin mutex
acquire write lock on WS(¢) and execute t;
Tiili, 1] = Tyili, i] ++;
TS(t) = Tyili, *1;
commit(t);
client cid sign a signature, sig..,; = {cid, t.id (1),
TS(1), p(t), WS(t), WS(¢2).value, site(t), t}keid;
builds a transaction record r(¢) = {{cid, Tid(t),

secureSendLocal (Py;, msg, Pyj)

if RV (#)[i] # O return ;

updateSet = {r(t)l r(H)e Ly,

A —HasRecvd(Ty,jlj, *1, 1, Pij)};

sort the updateSet such that each r(7) is followed by
r(t") such that t' immediate concurrent or succeeds .
msg.updateSet= updateSet; and msg.timestable =Ty j;
Py,; forms a signature, sigy; ={msg }KA ’

r(t) = send (msg, Sigx;) to Py s TS(1), WS(t), WS(¢t).value, site(t), t}, sig.a};
if r(zy) is valid A site(t;) = Py ;V r(t) € updateSet r(t). RV (¢) is initialized to be all 0;
if (r(0).RVi, (D] < TS()i]) r@)-RVy, (DLl =TS(t)li] 5 Lii= L O {r(D};

else malicious_resolve(Py;); } end mutex; }

Fig 3 (a). The secured update execution protocol Fig 3 (b) The secured update forwarding protocol

To fight against attack methods (a) and (b), authentication mechanisms such as digital signature
can be used to digitally sign t together with the value of the update t (WS(t).value), TS(t), client
ID (cid), WS(t), local transaction ID (t.id), and site(t). Whenever a peer receives an update
forwarding message, it verifies the digital signature of the message by using the client’s public
key stored locally. Therefore, no update message can be modified and no fake update can be
generated by any compromised peer. The update execution procedures incorporated with
authentication procedures are shown in Fig. 3(a). Similarly, to fight against attack method (c), the
update forwarding message can be digitally signed with the ID of the peer who forwards the
message and then verified by the receiving peer. The update forwarding procedures incorporated
with authentication procedures are shown in Fig. 3(b).

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

B. VECTOR CLOCK MANIPULATIONS AND COUNTERMEASURES

It is much more complex to fight against attack methods (d) and (e). To prevent 7S(¢) from being
manipulated by a peer other than site(r), TS(¢) can be digitally signed together with the update
(shown in Fig.3 (a)), and then verified by the receiving peer (shown in Part A of the secured
update protocol described in Fig. 8). However, it cannot easily prevent and detect a compromised
peer Py; (P, =site(t)) to generate an arbitrary 7S(¢) for update ¢ as the following 5 cases. Case 1,
increasingPy;'s own entry in 7S(¢) from TS(®)[i] to TS'(H)[i], e.g., TS'(®[i] > TS(¥)[i]. Case 2,
decreasingPy;'s own entry in 7S(f) from TS()[i] to TS'(#)[i], e.g., TS'()[il< TS(#)[i]. Case 3,
increasinganother peerP;;'s entry in 7S(¢) from TS(#)[j] to TS'(®)[jl, e.g., TS'®[j] > TS(®)[j]. Case
4, decreasing another peer Py;'s entry in TS(¢) from TS(®)[j] to TS'®)[j], e.g., TS'(OIj1 < TS@j1.
Case 5, any combination of the above 4 cases. Note thatPy; can also be a super peer, i.e., i= 0.

Consider case 1. Py; (P, =site(t)) generates a manipulated 7.5(¢) for an update ¢ by increasing its i

entry. For example, Pysgenerates 75'(¢) = (1, 3, 3, 6, 4) for the update r whose legitimate 75(¢)
should be (1, 3, 3, §, 4), as shown in Fig. 4.

TS0 =(1.3,3, 6, 4)

[€](3)s1 Suiseanoul
Aq (3)sL sareindiuew 7

L
TS(9=(1,3,3,6,4) no inconsistency is introduced(t,, t3, ty

each will still precede t)

Fig. 4. TS(¢) is manipulated by the compromised peer Py 3 (which is site(f)) by increasing TS(#)[3].

Based on the conflict detection procedure defined in Section IV and Section V, this
manipulation does not introduce any “new” inconsistency to the system (shown in Theorem 1).
To detect this type of manipulation, we can enforce an immediate concurrentorimmediate
succeeding update execution order at the receiving site P;; such that only an immediate
concurrent update or an immediate succeeding update (denoted as #) of ¢ can be selected as the
next update to be tested locally for execution. An update # immediate succeeds another update 7,
denoted as 1,7, if V] # site(?), TS(H)[j] =TS(0)[j] ATS(!)[site(£)] =TS(r) [site(£)] +1. An update
¢ isimmediateconcurrentwith another update ¢, denoted as t<>,-mtf, if die {1, 2, ..., N}, TS(lf)[i]
=TS([il+1 AV, TSI <TS@)[1]. Similarly, a timestamp Viimmediate succeeds another
timestamp V, (V, 2, V1) if die {1, 2, ..., N} Vi[i] =Vali] +1 AVj #i, Vi[j] =V5[j]. A timestamp
V| is immediateconcurrent with another timestamp V, (V, <>;, V)) if die {1, 2, ..., N}, Vi[i]
=V,lil + 1AVIA, Vi[I] <V,[l]. With this immediate succeeding or immediate concurrent
execution order, whenever there is such a # missing in the propagation message from Pyj, Py,
can conclude that a manipulation has been committed either by P,; or the peerP,; has been
misled by other peers through the timetables mechanism (shown in Theorem 2), which requires

a tracking process to identify the malicious peer (shown in the proof of Theorem 2). If itis
misled, Py ; can simply resend the missing updates.

Theorem 1. If P, ; (site(f)) generates a manipulated timestamps for ¢ by increasing the i"™ entry of
TS(?), then, the manipulation of ¢ will not introduce any non-existent conflict into the system.

Proof: Suppose that an update ¢ with 7S(¢) = (1, 3, 3, 5, 4) is originally issued at peer Py; (i = 3)
and is manipulated to 7S'(r) = (1, 3, 3, 6, 4). Based on the current conflict detection procedure
defined in Section IV, two updates (¢ and ¢') conflict with each other if and only if 75(f) <> TS(t")
A ((WS(r) N WS(#) # @). Suppose that there is another update #; conflicts with the manipulated
update ¢ but #; does not conflict with the original update z, then TS'(f) <> TS(t;) A (TS(t) > TS(t,)

6

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

vTS(t)) = TS(?)). First consider TS(¢;) = TS(f). We know that TS(r) 2 TS'(¢) since V] #i, TS®)[/]
=TS'(1))[j]1 ATS()[i] <TS'(¢))[i], therefore, we have TS(¢;) = TS'(¢) and this contradicts with the
condition TS'(f) <> TS(t;). Then consider TS(r) = TS(t;). Since t, reads from ¢, no matter what
changes applied to TS(¢), TS'(t) > TS(t,) will always hold based on the current epidemic update
protocol. Therefore, it contradicts the condition 7S'(f) <> TS(t;). Therefore, it is impossible that
the manipulation of ¢ as Case 1 will lead to 7S'(r) <> TS(t;). Hence, it is true that such an update ¢
with manipulated timestamps 75'(¢) will not introduce non-existent conflict into the system.

Theorem 2.Assume theimmediateconcurrent or immediate succeeding update execution order is
enforced in the entire system. If the update messageP, received from P,; missesan immediate
concurrent or immediate succeeding update?, then either Py could have been misled by other
peers through manipulated timetable or the site Py; is malicious.

Proof: Case 1.1: if Vt,€ Z(¢) = {#l () e updateSetn—HasRecvd(Ty;, t, Py;)}, > tvi<> 1, then ¢
either has a smaller timestamps than or concurrent with the updates in the update propagation
message. Let ,e Z(¢) and has the smallest timestamps, then one or more updates preceding ¢, are
missing in the update propagation message. Based on the sending protocol shown in Fig. 3(b),
this can happen only if Py; itself is maliciousor Py; “thought” that Py; has received such missing
updates based on information provided by the two-dimensional timetable T} ;, which is updated
when P;; receives update propagation message from another peer. This happens only if another
peer has provided some false information to 7}; that the site Py; has received such update 7. To
track which peer has provided such false timetable information, another two dimension table is
needed for each site. Let X;; denote such timetable at site P;. If the knowledge of Pj; on the
update reception status of a site Py; is updated, e.g., an entry T} ;[i, m] is updated, and this update
is done with the knowledge provided by Py, then X, [i, m] = [. Through this mechanism, it will
always be able to identify which peer lied about the update reception status of Py, together with
the update propagation message log. Note that the tracking mechanism is very expensive since it
may need to investigate multiple sites. Case 1.2: If Jre Z(¢) and 1 >vI<> t,, then ¢ has a
smaller timestamps than some but not all of the propagated updates in the update propagation
message. Since each site Py strictly follows the immediate concurrent or immediate succeeding
update execution order, it is impossible that those missing updates are propagated by other peers.
Therefore, Py; can be determined to be malicious.€

Consider case 2. Py; (P =site(t)) generates a manipulated 7S(¢) for ¢ by decreasing its i entry.
For example, Py sgenerates 7S'(¢) = (1, 3, 3, 4, 4)for the update ¢ whose legitimate 7S(¢) should be
(1,3, 3,5, 4), as shown in Fig. 5.

TS(t) =(1,3,3, 5, 4)

2
(3
23
ES
o |T
v
&2
—|2
2|9
Zlw
sz TS(t:) =(1,3, 2, 4, 4)

<

A y
- inconsistency can be introduced since
TS()=(1,3,3,4,4) some site may execute t; , while some

others may execute t.

Fig. 5. TS(¢) is manipulated by the compromised peer Py 3 (which is site(?)) by decreasing 7S(#)[3].

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

Note that 7S'(¢) is the timestamps of another legitimate update #,(i.e., £;=> f). t; and may arrive at
different sites which introduces inconsistency undetected. Also, suppose that there is another
update t, at Py, WS(H) NWS(t,) # ¢ reads from update #,, then, 7S(1,) = (2, 3, 3, 4, 4). The update
protocol will treat the relationship between ¢ and ¢, as t=> t, (TS'(t) = TS(t,)), while ¢ and ¢,
should actually conflict with each other since WS(t) N WS(t,) # @~ TS(t) <> TS(t,) is true. Too
many of such undetected inconsistencies and conflicts can bring the system into an unrecoverable
state. To fight against this, a detection procedure should be designed in the update receiving
protocol. Whenever a peer Pj,receives an update propagation containing an update with
timestamps (1, 3, 3, 4, 4), the update is either the manipulated update ¢ or the update ¢, that
causallyprecedes ¢ asshown in Fig. 5. Based on the current update protocol, either ¢ or ¢, can be
integrated in the system and the other will be ignored. To determine whether the update is
legitimate, Py, can check the value of the update ¢ (or #,) (WS(f).value or WS(t,).value) against the
value of WS(f) in the local database (WS (¢).value) or WS (t)).value after ¢ (or 1) is executed
locally. If the two values do not match with each other, then P, can determine that ¢ is
manipulated and site(f), Py, is malicious.

Theorem 3. If P,; (site(t)) generates a manipulated timestamps for ¢ by decreasing the i" entry of
TS(?), then any inconsistency introduced by the manipulation of ¢ can be detected by a legitimate
receiving peer Py, and the malicious peer P, can be identified. Also, the manipulated update ¢
will not create conflict with any other update.

Proof: There will only be two cases. Case 2.1, TS'(t)[i] <T,.[m, i] +1, then ¢ will be ignored by
Py Case 2.2, TS'(0)[i] =Ty lm, i] +1, which means that Py, has not received the update #; with
TS(t)[i] =TS (D[i]. If TS(t,) #TS'(¢), then ¢ will be detected by applying the immediate concurrent
or succeeding order. If TS(¢;) =TS'(¢). Since t,-> t at Py;, by applying ¢ to the local database at Py,
before t;, WS(#).value will definitely be different from WS’(f).value (the value of the local
database at Py,), which can be detected by Py, and the malicious peer can be identified as Py;.
Also, t, is an existing update and thus ¢ with 7S'(¢) =TS(¢,) will not introduce non-existent conflict
into the system. €

Consider case 3, Py; (P, =site(t)) generates a manipulated 75(¢) for # by increasing its jth entry. For
example, Py igenerates 7S'(¢) = (1, 3, 4, 5, 4)for the update r whose legitimate7'S(¢) should be (1,
3,3,5,4), as shown in Fig. 6

TS(9=(1,3 3,5 4 TS(;) =(1,3, 2,4, 3)

[2](3)s1 Suiseasoul
Aq (3)SL sarendiuew &g

A
TS(H)=(1,3,4,5,4)

The conflict between t; and t can be
hidden without detection

Fig. 6. TS(¢) is manipulated by the compromised peer Py 5 (which is site(f)) by increasing TS(¢)[2].

This manipulation may introduce inconsistency to the system undetected without appropriate
handling. For example, assume that there is another update #,(7S(t,) = (1, 3, 4, 4, 4)) is issued at
site Py, concurrently with ¢ and WS(#,) A WS(¥) # ¢, then ¢, should conflicts with #since 7.S(¢) = (1,
3,3, 5, 4). Without a detection procedure, the system will consider the relationship between #; and
t as t;~> ¢ sincethe timestamps (1, 3, 4, 4, 4) precedes (=) the timestamps (1, 3, 4, 5, 4)). In order
to avoid being detected by enforcing the immediate concurrent or succeeding execution order,
P, can wait until ¢ arrives at P ; before it propagates ¢ to other sites. To detect the inconsistency

8

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

introduced by this attack, a peer Py,, can check the value of the update ¢ (WS(¢).value) against the
value of WS(?) in the local database (WS’(¢).value) after t is executed locally. If the two values do
not match with each other, then Py, can determine that update zconflicts with update ¢, and site(?),
Py, is malicious.

Theorem 4. If a peer P, (site(t)) generates a manipulated timestamps for ¢ by increasing the it
entry of 7S(¢), then, any inconsistency introduced (or any conflict hidden) by the manipulation of
t can be detected by a legitimate receiving peer Py ,, and the malicious peer Py, can be identified.
Proof: if the manipulation is successfully implemented, both the /" entry and " entry have been
increased (j" entry is increased for manipulation while i entry is increased for recording the
legitimate update event).To pass the immediate concurrent or succeeding update execution order
at Py, Py; has to propagate together with or after the update #; which is immediately succeeded
by . If site(#;) #P, then whenever Py, receives both f and t,, Py; (site(f)) will be determined as a
malicious site. Consider site(#;) =Py ;, which is essentially the same case as shown in case 3. Since
ticonflicts with ¢t at Py; and #,=>¢, then there will be a difference between WS(7).value and
WS’(t).value and it will be detected by a non-compromised peer Py, and this can happen only
because Py; (site(?)) is malicious. €

Consider case 4, Py, (P =site(t)) generates a manipulated 7.5(f) for ¢ by decreasing its 7" entry.
For example, P;;generates TS'(f) = (1, 3, 1, 5, 4)for the update ¢+ whose legitimate7'S(¢) should be
(1,3,3,5,4), as shown in Fig. 7.

TS(t)=(1,3,3,5,4)

[2)(3)sL Buiseanap
Aq (1)sLserendiuew g

ate
TS(#)=(1, 3, 1, 5, 4) Non-existent conflict between t, (as well
as tzandty) and t are intentionally

introduced

Fig. 7. TS(¢) is manipulated by the compromised peer Pj; (which is site(f)) by decreasing T.S(£)[2].

Without detection, such manipulation may introduce non-existent conflicts into the system.
Examples of such updates could be 1, and #;, with TS(t;) = (1, 3, 3, 4, 4) and TS(t;) = (1, 3, 2, 4,
4). With TS(f) manipulated, , (or #3) and rwill conflict with each other, but actually their
relationship should be 7, (or ;) >¢. To detect such attacks, Py, can examine the timestamps of ¢
(site(f) = Py;) against Ty,[i, j] for Vj, where j € {1, 2, ..., Ni}Aj #(site(f) = Py;). If 3j such that
TS'(OIj1 <Tymli, jl, (Pin has known that P; has received the update ¢, with TS(t,) = T li, *1), Py
can be determined to be malicious. If Vje {1, 2, ..., Ni} Aj #i(site(t) = Py,), TS OIj1 2Tyl jl,
the timestamps of ¢ could either be manipulated or authentic. For example, Py ; has received both
1, and t; but has not propagated them to any other site yet, therefore, no other peer will have the
knowledge that P ; received t, and t;. The update #’s timestamps, (1, 3, 1, 5, 4), can be authentic (¢
isissued before the receipt of #, and #;) or can be manipulated as described above (i.e., ¢ isissued
after the receipt of #, and #; and the original 7S(r) = (1, 3, 3, 5, 4) is manipulated to 7S'(r) = (1, 3,
1, 5, 4)). If P,; keeps generating such timestamps, the system can potentially conflict all the
updates in the system and lead to a denial of service attack.

The successful implementation of the attack described above is due to the missing of the records
proving that #, and #; have been sent to Py 3 before ¢ is issued at Py 3. Thus, an extra data structure
is needed for the sending site to record the number of updatesthat have issued at the receiving site

9

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

Py, i.e. Ty i, i]. Such piece of information can be obtained through the acknowledge with the
latest update t, issued at Py, (TS(t:)[i] =T} [i, i]). Although P;; may acknowledge with an update
that is not the latest update issued locally, this can be detected or can be ignored by other non-
compromised peers as shown in Theorem 6. Since an update #; may be propagated to N,—1sites by
Py, a timestamp, RVj,(t;), with N, entries is sufficient to record such information. This
procedure is described in Fig.3 (b). The detection procedure is designed in the receiving part
described in Part A of the secured update receiving protocol shown in Fig. 8. Whenever a conflict
update fis identified (which is a rare event), Py, needs to examine the value of RV, (t)[site(?)]
and TS(#)[site()]. If RV, (t))[site(#)] <TS(7)[site(#)] (which means that #; has been received by
site(?) before ¢ is executed at site(r) and the relationship between #, and ¢ should be #;>1), then
site(r) can be identified as a malicious peer. It also indicates that a smaller RV, (#)[site(f)]
acknowledged by site(?) (e.g., Pi;) will be detected (note that site(?) e.g., Py;, cannot decrease its
own entry in a vector without detection as discussed in case 2). However, this works only if Py,
has propagated ¢, to site(?) (e.g., Pr;). Without the knowledge of the reception of ¢#, by site(z), after
a site Py, determines that #; and ¢ conflict with each other, Py, will launch the procedure to
resolve the conflicts. Therefore, the above detection procedure should be designed into the
conflicting resolve procedure at each siteP; ,, and the input should include the record of ¢ and all
such conflicting updates #, logged at Py, (who initializes the conflicting resolve procedure). A
part of the detection procedure is described in Part B of the secured update receiving protocol
shown in Fig. 8. In Theorem 5, we show that with all these detection procedure in place, the type
of attack described in case 4 can be detected and such malicious site Py; can be identified.

Theorem S. A peer P;; decreases the j" entry of TS(r) with site(r) =Py, and any inconsistency or
non-existent conflict introduced by ¢ will be detected by a legitimate receiving peer Py,, and the
malicious peer Py, can eventually be identified.

Proof: Suppose that there exists an update #; such that #,<>t, then TS(#)[i] <TS()[i] Adle {1, 2,
oy Ni}, TS(O[I] <TS(t1)[1]. However, the manipulation as case 4 will not change this fact and it
will not introduce any undetected inconsistency into the system. Suppose that the manipulated
update ¢ with TS{7) as case 4 conflicts with ¢, and TS(z,) 2TS(@) (f TS(t)) <>TS() v TS(?)
2> TS(t,), the manipulation as case 4 does not introduce any inconsistency or conflict. Since it is
impossible to have f;<>t if site(?) = site(¢;), then consider site(r) # site(¢,). Since TS(t) 2>TS(®),
then #, must be propagated to Py; by at least one peer Py ,, le {1, 2, ..., Ny}Al #, and TS(#))[i]
<TS(¥) [i] ATS(t)[n] <TS(®)[n], ne {1, 2, ..., Ny}an #. Based on the secured update sending
protocol described in Fig. 3 (b), at site Py, it will be true that RV, (r)[i] <TS(»)[i] since t;>¢. In
Part A of the secure update receiving protocol, Py, calls the detection procedure defined in the
algorithm malicious_detected(r(t), Py;) described in Part B of the secure update receiving
protocol for each peer includingpeerPy, the inconsistency or conflict introduced by the
manipulatedrwill be detected and Py; will be identified as the malicious peer.€

Theorem 6. Upon receiving an update propagation message including update #,, if Py;
acknowledges with an update #, that is not the latest update issued locally and manipulates the
update ¢ as case 4 so that TS(¢t;)) <>TS (), it will be detected by another non-compromised
peerPy .

Proof: Known from the proof in Theorem 5, the introduced conflict between can be detected by a
peer Py, by asking site P to evaluate whether RV, (#)[{] <TS()[i]. if TS(t;) <>TS (¢) and TS(¢,)
2>TS(1), then RV, (t)[i] <TS(9)[i] will be true. If P; had acknowledged with an update 7, that is not
the latest update issued locally, then RV, (#)[i] will be assigned with T:S(#)[i] and became
RV (t)[i] , since we know that TS()[i] <RVi(t)[i], it will be followed that RV ,(#)[i]
<RV, (t)[i] <TS()[i], then P;; will be identified as a malicious peer. €

10

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

Now consider case 5, which is any combination of the above 4 cases. If there is any manipulation
of update atPy; as case 1 and case 3, it will create miss of update ¢, that r immediate succeeds
(i.e., t{ =) or concurrent. If site(s) = site(r,) =Py, to fill in the missing of #,, Py, needs to wait for
another update 1, executed locally, and manipulates 7S(z,) to TS {t,) =TS(z,). Since t,>t>1, and
the execution at another peer Py, is t,>t, then the difference between WS(f).value and
WS’(f).value will be detected byP,,, and P; will be identified a malicious. If site(t;) # site(?)
=P, ;,then the miss of #, cannot be made up and it will be detected byPy,,, and Py; will be identified
a malicious. If an update ¢ is manipulated by Py; as case 2 combined with or without case 4, any
inconsistency or non-existent conflict introduced by this type of attack will be detected by P, as
shown in Theorem 3. For any entry of 7S(¢) is manipulated by Py; using the method shown in
case 4, then it will be detected by using the detection procedure described above, i.e., evaluating
the relationship between RV, (#;)[i] and TS(#)[i] for every update ¢ that ¢ conflicts with. If any #
that P,; has received before ¢, then the sending peer P;; can detect the manipulation. Thus,
manipulating more entries of 7S(f) by P,; will only increase the opportunity to be detected by
other peers.

Now we consider attack method (d), i.e., manipulating timetable. We first discuss some attacks
that are related to the attack method (d). If Py keeps locally issued update for a long time before
propagate to other sites, then it will increase the opportunity to conflict with the updates issued at
other sites. To deal with this issue, one choice for the protocol is to require each site send out
updates periodically. Therefore, other peers will send updates to P;; which cannot hide its most
recent update as shown in Theorem 5 and a simple detection procedure can identify this attack. A
compromised peer P;;may repeatedly send out the same update record r(f) to some peers, which
may introduce traffic to the system. To precisely detect this type of attack, we can require each
sending site to first check RV, (¢)[m] for each update record r(¢) to see if it has been sent toPy,.
Also, each update record r(f) at receiving site Py, can use a data structure SVj,,(?) to record the
send peer ID P, Note that SV,,(f) can be a simple integer with each bit representing the
corresponding peer ID. If bit i is 1, then P has sent r(¢) to Py, and any receiving of r(¢) from Py,
Py, can identify P;; as a malicious site.

A compromised peer P;; may provide false information about the reception of updates at other
site P;; by modifying the 7™ row of the timetable Ty If Ty ilj, *] is decreased, then other sites may
be informed to send out some updates to Py; that P;; has already received from others. This will
only introduce limited extra traffic into the system since Pj; may know that P,; has a