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ABSTRACT 

In operational networks, nodes are connected via multiple links for load sharing and redundancy. This is 

done to make sure that a failure of a link does not disconnect or isolate some parts of the network. 

However, link failures have an effect on routing, as the routers find alternate paths for the traffic 

originally flowing through the link which has failed. This effect is severe in case of failure of a critical 

link in the network, such as backbone links or the links carrying higher traffic loads. When routing is 

done using the Open Shortest Path First (OSPF) routing protocol, the original weight selection for the 

normal state topology may not be as efficient for the failure state. In this paper, we investigate the single 

link failure issue with an objective to find a weight setting which results in efficient routing in normal and 

failure states. We engineer Tabu Search Iterative heuristic using two different implementation strategies 

to solve the OSPF weight setting problem for link failure scenarios. We evaluate these heuristics and 

show through experimental results that both heuristics efficiently handle weight setting for the failure 

state. A comparison of both strategies is also presented. 
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1. INTRODUCTION 

OSPF is an intra-domain routing protocol that uses link weights to make routing decisions and 

compute the shortest paths. Different weight assignment strategies have been discussed in the 

literature [11] including the Unit OSPF, Inverse Capacity OSPF, Random OSPF etc. A better 

selection of the OSPF link weights can lead to efficient network utilization [1, 2]. Iterative 

heuristics have been extensively used [10, 3, 4] and implemented using different strategies to 

achieve this goal. 

Ericsson et al. [4] proposed a Genetic Algorithm and used the set of test problems considered in 

[11]. A hybrid GA was also proposed by them [5] which makes use of the dynamic shortest path 

algorithm to recompute shortest paths after the modification of link weights. Sridharan et al. [6] 

developed another heuristic for a slightly different version of the problem, in which the flow is 

split among a subset of the outgoing links on the shortest paths to the destination IP address. 

In this work, we have used a Tabu Search (TS) algorithm [7] to solve the OSPFWS problem. 

Tabu search is an iterative heuristic that has been applied for solving a range of combinatorial 

optimization problems in different fields. The detailed description and related references for 

tabu search can be found in [7]. 
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However, all strategies work on the assumption that the topology is fixed and there are no 

failures in the network. A network may experience a link failure resulting in a change in 

topology due to the loss of a link, when the network state changes (Failure State) due to link 

failure, the routing paths are also not the same as in the original state (Normal State). The 

optimized weights for the original topology and demand may no longer be good enough for the 

new topology with the failed link. The absence of the failed link causes the traffic which was 

originally flowing through this link to flow through other available links. The fact that the 

network was not optimized for these flows can result in an inefficient mapping of traffic on to 

available links. This may also cause congestion in some parts of the network, especially in the 

case of higher demands. 

One solution to this issue is to apply a new set of OSPF weights to links which optimize the new 

topology (Failure State). However, it is cumbersome to change the weights on each link in the 

entire topology and also not very practical in case of larger networks. One would suppose that 

once the set of OSPF weights have been fixed, the operator would not want to change these 

weights in order to adapt for such changes in the state of the network. Hence, it is required to 

adapt the original heuristic to optimize link weights taking into consideration single link failure 

scenarios. In other words it is required to find a set of weights that work for both the normal and 

failed state of the network without considerable degradation in performance in both states. 

Link failure scenarios require dealing with two states of a network. The first state where all 

links are functional is denoted as Normal state and the other state where a link has failed is 

denoted as Failure state. In this paper, which is an extension of Sqalli et al. [8], two different 

strategies are devised and implemented to address this issue. The first strategy viz. LinkFailure-

FT is similar to the approach adopted by Fortz and Thoroup [9] with some modifications. 

Another new strategy viz. LinkFailure-SS is proposed, where the weights are first optimized for 

the Failure state. Keeping these weights fixed, all combinations of weights are tried for the 

added link to find the best cost for the Normal state. Both strategies are discussed further in this 

paper. 

Similar problem has been attempted by Fortz and Thoroup [9]. In their approach, a set of links 

was considered as critical, and in each iteration one of these links was failed based on the 

maximum utilization among critical links. The cost of normal topology and the resulting failed 

topology was averaged and the search was driven to find a solution which minimizes the 

average cost. One of our implementations in this work is similar to this approach but with the 

modification that the link failed is always the one connected between nodes carrying the highest 

demand. This simulates the worst case scenario. 

The rest of the paper is organized as follows; The OSPFWS problem statement and the cost 

functions proposed in the literature are presented in Section 2. The two Link Failure algorithms 

are discussed and analyzed in Section 3. This is followed by the experimental results including 

the comparison of both algorithms under Normal and Failure state in Section 4. Finally, we 

conclude in Section 5. 

2. PROBLEM STATEMENT AND COST FUNCTION  

The OSPF weight setting problem can be stated as follows: Given a directed network of nodes 

and arcs ),(= ANG , a demand matrix D , and capacity 
aC  for each arc Aa ∈ , determine a 

positive integer weight ][1, maxa ww ∈  for each arc Aa ∈  such that the objective function or 

cost function Φ  is minimized. When routing is done using OSPF the assigned link weights 

completely determine the shortest paths, and hence the traffic flows. Based on these traffic 
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flows the partial loads on each arc for a given destination are computed. This is done for all 

destination nodes. The aggregated partial loads for all destinations on a particular arc give the 

total load al  on that arc. The cost of sending traffic through this arc is given by )( aa lΦ . The 

cost value depends on the utilization of the arc and is given by the linear function proposed by 

Fortz and Thoroup. 
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The Fortz cost function is given in equation 2. 
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The objective is to minimize Φ , subject to these constraints: 
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In constraint 3, for traffic between source destination pair (s,t), 
),( ts

af  indicates the amount of 

traffic flow that goes over arc a. 

The detailed steps showing the formulation of this cost function can be found in the literature 

[11, 10]. 

3. LINK FAILURE  

Handling link failure scenarios requires dealing with two states of a network. In the Normal 

state, the topology is said to have 1+n  links. There exist a set of weights W which optimize the 

cost for this topology. The cost function for this is denoted by OHn 1)( +Φ , where OH stands for 

Original Heuristic and 1+n  indicates a topology with 1+n  links. In the case of failure, these 

weights for the new topology will result in another cost and is denoted by OHn 1)1]([ −+Φ . 

Here, 11][ −+n  indicates failure of link and topology change from 1+n  to n  links. The above 

functions are representative of the costs when the Normal state topology was optimized using 

the original heuristic. 

3.1. LinkFailure – FT 

In LinkFailure – FT strategy, to find optimum weights representing both the normal and the 

failed states, the idea is not to minimize the cost of each state individually but to minimize the 

combined or average cost of both states. 
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For a given solution or set of weights W for the Normal state, the cost is denoted by Φ (n+1) 

and for the Failure state with the same set of weights minus the failed link (W-a) the cost is 
`

Φ (n). The objective is to find the set of weights which minimizes the new cost function: 

AvgΦ  = 2

1/  ( Φ (n+1) + 
`

Φ (n))  (5) 

Starting with a random initial solution for the Normal state (
NormT ) the same set of weights, 

except the weight of the failed link, are transferred to the failed state (
FailT ) and both topologies 

find the shortest paths and the cost of the initial solution. Tabu Search is started on 
NormT  by 

making random moves, and every time the same move is again transferred to 
FailT . 

Both topologies find the shortest path and the corresponding cost after a move. The cost of the 

new solution for NormT  is denoted as Avgn 1)( +Φ  and the new cost of FailT  is denoted as 

Avgn)(Φ . The cost of the current solution AvgΦ  is the average of Avgn 1)( +Φ  and Avgn)(Φ . 

AvgΦ  = 2

1/  ( Avgn 1)( +Φ  + Avgn)(Φ )  (6) 

Here, Avgn 1)( +Φ  and Avgn)(Φ  indicate the cost of NormT  and FailT  respectively while 

optimizing the average cost function. We continue Tabu Search and compute the average cost 

for each iteration until the termination criteria is met. The set of weights which gives the least 

value of AvgΦ  is the best solution obtained by the new heuristic. Figure 1 shows the structure of 

the LinkFailure – FT algorithm. 

3.2. Performance Evaluation of LinkFailure – FT 

The performance of this strategy can be evaluated by comparing the cost obtained for NormT  and 

FailT  using this heuristic with that of the original. The difference between the costs of the 

original and the new heuristic would indicate a gain or loss in the solution quality. For NormT , 

this difference would be:  

Normδ  = OHn 1)( +Φ  - Avgn 1)( +Φ  (7) 

Optimizing weights using the original heuristic is expected to give a better cost than optimizing 

for average cost. Hence, the value of Normδ  is expected to be negative, indicating a loss in 

solution quality in the Normal state. A smaller Normδ value or a value close to zero would 

indicate that the heuristic is performing well in the Normal state. 

In the case of the Failure state the cost difference would be indicated as: 

Failδ  = OHn 1)1]([ −+Φ  - Avgn)(Φ  (8) 

The purpose of optimizing the weights for link failure is to achieve a better cost in case of a 

Failure state than would have been achieved with the original heuristic. Hence, Failδ  must be a 
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positive value indicating an improvement in the solution quality. A larger 
Failδ  value would 

indicate that the new heuristic is performing well in the case of a Failure state. Hence, a 

combination of smaller 
Normδ  value and larger 

Failδ  value would be an ideal case indicating 

minimal loss in the case of the Normal state and significant improvement in the case of the 

Failure state. 

    Algorithm: LinkFailure-FT  

0S : initial solution.  

S : solution.  

bS : best solution.  

a : failed arc.  

iW : Weight of arc i.  

NormT : Normal state.  

FailT : Failure state.  

Begin 

     NormT :  

1.  Generate 0S ;  

2.  Transfer { 0S - a} to FailT ;  

3.  Compute Avgn 1)( +Φ ;  

      FailT : 

4.   Compute Avgn)(Φ ;  

   do  

      NormT :  

5a.   Move(i, iW );  

6a.   Compute Avgn 1)( +Φ ; 

      FailT :  

5b.  Move(i, iW );  

6b.  Compute Avgn)(Φ ;  

7.  AvgΦ  = 2

1 /  ( Avgn 1)( +Φ  + Avgn)(Φ ;  

   While (Termination criteria is not met)  

8. bS  = S for min( AvgΦ ); 

  End  

Figure 1: Structure of the LinkFailure – FT algorithm. 

3.3. LinkFailure – SS 

In the previous strategy, we have tried to optimize weights for the average cost of NormT and 

FailT . In this section, we propose another strategy which optimizes weights for FailT  and finds 

the best solution for NormT  by keeping the weights obtained from FailT  unchanged and trying all 

possible weights for the one additional link. The test cases and benchmark topologies used were 

the same as for the previous strategy. 
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We start with a random initial solution for 
FailT  and find the shortest paths and corresponding 

cost for this solution. Tabu Search is started on 
FailT  by making random moves and after each 

move, the shortest paths and corresponding cost are computed. The cost of the new solution for 

FailT  is denoted as 
OHn)(Φ  which indicates that the cost is for the topology with n  links 

optimized using the original heuristic. Once the termination criterion is met, we obtain the best 

solution for FailT  and compute its best cost. 

The final n  weights are transferred to 
NormT . The weight on the additional (n+1

th)  link is 

assigned values from 1 to 20. For each weight iW , the cost of the 
th

i  solution is computed. The 

twenty costs obtained are compared to find the best solution for NormT . This is denoted by 

201)]([ +Φ OHn  which indicates that the cost is for topology with 1+n  links where n  links are 

optimized using the original heuristic and one additional link is optimized by finding the best 

solution from the twenty possible combinations. Figure 2 shows the structure of the LinkFailure 

– SS algorithm 

Algorithm: LinkFailure-SS 

0S : initial solution.  

S : solution.  

bS : best solution.  

a : failed arc.  

iW : Weight of arc i.  

NormT : Normal state.  

FailT : Failure state.  

  Begin 

      
FailT :  

1.  Generate 
0S ;  

2.  Compute 
OHn)(0Φ ;  

   do  

3.   Move(i, iW );  

4.   Compute OHn)(Φ ; 

   While (Termination criteria is not met)  

 5. bS  = S for min( OHn)(Φ ); 

 6.  Transfer bS  to NormT ;  

    NormT :  

 7.  Compute an 1)( +Φ ; for a={1, 2, ..., 20}  

 8.  201)]([ +Φ OHn  = min( an 1)( +Φ ); 

 9. bS  = S for 201)]([ +Φ OHn ; 

  End 

Figure 2:Structure of the LinkFailure-SS algorithm. 
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3.4. Performance Evaluation of LinkFailure – SS 

Similar to the FT approach, the performance of this strategy can be evaluated by comparing the 

cost obtained for 
NormT  and 

FailT  using the SS heuristic with that of the original heuristic (OH). 

The difference between costs of the original and the new heuristic would indicate a gain or loss 

in the solution quality. For NormT  this difference would be:  

Normδ = OHn 1)( +Φ  - 201)]([ +Φ OHn   (9) 

In the case of the Failure state, the original heuristic will end up with a cost OHn 1)1]([ −+Φ  

and the SS heuristic with a cost of OHn)(Φ . Hence, the cost difference would be indicated as: 

Failδ  = OHn 1)1]([ −+Φ  - OHn)(Φ   (10) 

In the SS approach, the weights are optimized for FailT  and are expected to achieve a better cost 

in the case of a link failure than would have been achieved with the original heuristic. Hence, 

Failδ  must be a positive value indicating an improvement in the solution quality. 

3.5. FT versus SS 

In the case of LinkFailure-FT, we simultaneously optimize two states of a network viz. NormT  

and FailT , whereas in LinkFailure-SS we only optimize FailT  and then try the best possible 

weight for the one additional link to optimize NormT . Hence, the SS approach has a faster 

convergence when compared to FT; which is a major factor when dealing with larger networks 

and higher demands. 

As discussed earlier, SS is optimized for the Failure state and hence should not only give better 

solution when compared to OH but also should perform better than FT in the Failure state. In 

the FT approach, the weights are selected to optimize the average cost and not the best cost for 

individual states. Any heuristic, to be acceptable, must not degrade the performance of the 

network in the Normal state. In other words it should result in a solution quality as close to the 

Original Heuristic (OH) as possible. 

4. RESULTS  

In this section, we present the experimental results for the two heuristics mentioned in the 

previous section. The benchmarks used for the evaluation of the original heuristic for no failure 

case [12, 11] were also used for the link failure case. Due to the change in topology (different 

number of links) in the two states, the original test case would represent only one of the states 

and a modified test case would represent the other state. 

Representing the failed state with a modified test case would require deletion of the 

corresponding link entries from the files representing the graph and capacity of links. This could 

also result in a disconnection of the graph. To avoid this, we represented the Failure state with 

the original test cases. To represent the Normal state, we add an additional link between two 

nodes 1n  and 2n . The nodes selected were the ones with the highest demand between them in 

the demand matrix. Failing this particular link which is directly connected between the two 

nodes having the highest demand between them would cause the worst effect on the network. 
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Hence, if our heuristic is able to optimize weights for the worst case scenario then it is expected 

to be robust. 

The notations used to denote Cost in the Normal and Failure state are shown below: 

NFT  
NSS  

NOH  

avgN 1)( +Φ  201)]([ +Φ N  ohN 1)( +Φ  

 

FFT  FSS  FOH  

avgN )(Φ  ohN )(Φ  ohN 1)1]([ −+Φ  

 

4.1. FT versus OH 

Experimental results for the two strategies implemented for the single link failure scenario are 

presented in this section. The individual performance of each strategy can be evaluated by 

comparing its results in Normal and Failure States to the Original Heuristic. 

Table 1 shows the Cost values obtained using FT Strategy and OH for five different demands 

using the test case h100N360a. From the table, it can be seen that in the Normal state the Cost 

of FT is marginally higher than OH, which can be seen in the Normδ  column which shows the 

Cost difference for the two strategies in the Normal State. Negative values indicate a loss. As 

expected, there is some loss in the Normal State. In the Failure State, for all demands except 

Demand-9, the FT Cost is less than the OH Cost as indicated by a positive value in the column 

Failδ . Hence, there is some gain in the Failure State. The overall gain or loss is indicated in the 

columnδ . 

The value of Normδ  is more than the value of Failδ  for higher demands D11, D12 which implies 

that the margin of loss in Normal state is more than the gain in the Failure State for this case at 

higher demands. Results also show an overall gain for the two demands D8 and D10. 

Table 1: Cost Comparison FT versus OH in Normal and Failure State for h100N360a Network. 

D 
NFT  NOH  Nδ  FFT  FOH  Fδ  δ  

D8 1.313 1.320 0.006 1.336 2.743 1.406 1.413 

D9 1.482 1.448 -0.033 1.538 1.494 -0.044 -0.077 

D10 2.096 1.985 -0.111 2.315 5.711 3.396 3.285 

D11 4.498 4.369 -0.129 6.017 6.057 0.040 -0.089 

D12 17.973 14.076 -3.897 24.398 25.487 1.089 -2.809 
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4.2. SS versus OH 

Table 2 shows similar comparison for the SS Strategy. Even in this case, the values of Normδ  for 

SS are marginally higher than those of OH, and the values of Failδ  for SS are well below those 

of OH for all five demands shown in the table. This shows that there is a slight loss in the 

Normal State and a significant improvement in the Failure State. There is an overall gain as 

indicated by a positive values in the last column δ . Hence, there is an improvement in 

performance due to the use of SS strategy compared to OH. 

Table 2: Cost Comparison SS versus OH in Normal and Failure State for h100N360a Network. 

D 
NSS  NOH  Nδ  FSS  FOH  Fδ  δ  

D8 1.329 1.320 -0.009 1.343 2.743 1.399 1.390 

D9 1.480 1.448 -0.032 1.487 1.494 0.007 -0.025 

D10 1.986 1.985 -0.001 2.010 5.711 3.701 3.700 

D11 4.389 4.369 -0.019 5.330 6.057 0.727 0.708 

D12 14.316 14.076 -0.240 18.158 25.487 7.329 7.089 

 

4.3. FT versus SS 

We have seen that both strategies are performing better than the Original Heuristic in the Failure 

state while OH has slightly better results for the Normal state. We now compare the SS and FT 

results to show which of the two heuristics performs better. The comparison is shown in Table 

3. 

In the Normal state, for the demands D8 - D10 both strategies have almost the same cost values 

with marginal differences in favour of SS. For the highest demand D12, SS clearly performs 

better than FT. Overall, for the Normal State, it can be said that SS performs better than FT for 

this test case. For the Failure State, SS clearly outperforms FT for all demands. This is expected 

as the strategy is specifically designed to optimize weights for the Failure State or in other 

words to minimize the Failure State Cost. Hence, SS is always expected to produce better 

results for a Failure State. The overall comparison shows superiority of SS over FT for this test 

case. Comparison of all three strategies for this test case is presented below. 

Table 3: Cost Comparison FT versus SS in Normal and Failure State for h100N360a Network. 

Demand 
NFT

 NSS
 FFT  FSS  

D8 1.31326 1.32905 1.33621 1.34312 

D9 1.48152 1.48005 1.53819 1.48682 

D10 2.09604 1.98619 2.31527 2.01001 

D11 4.49806 4.38878 6.01734 5.33037 

D12 17.9732 14.3157 24.3984 18.1582 

 

4.4. OH versus FT versus SS 

Figure 3 shows the graph with the Cost comparison of all the three heuristics in the Normal state 

and in Figure 4 for the Failure State for the h100N360a Network. 

In Figure 3, it can be seen that OH has the best Cost in the Normal state which is very closely 

matched by SS. FT comparatively has the worst Cost in the Normal state. In the Failure state SS 
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outperforms both FT and OH as seen in Figure 4. Hence, SS has proved to be having a marginal 

loss (negligible in the case of lower demands) in the Normal state and a significant gain in the 

case of Failure, which is the ideal requirement for these types of problems. 

Experiments were conducted for five more test cases and are presented in the following figures 

for both the normal and failure states. All these figures provide a comparison for all three 

algorithms, i.e., FT, SS, and OH. A summary of the results obtained is presented at the end of 

this section. 

 

Figure 3: Cost Comparison FT, SS and OH in the Normal state for h100N360a Network. 

 

Figure 4: Cost Comparison FT, SS and OH in the Failure state for h100N360a Network. 

Figure 5 shows the graph with the Cost comparison of all the three heuristics in the Normal state 

and in Figure 6 for the Failure State for the r50N228a Network. 

In Figure 5, it can be seen that both SS and FT show comparable results in the Normal state. In 

the Failure state, SS outperforms both FT and OH as seen in Figure 6. 
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Figure 5: Comparison of FT, SS, and OH in the Normal state for r50N228a Network. 

 

Figure 6: Comparison of FT, SS, and OH in the Failure state for r50N228a Network. 

Figure 7 shows the graph with the Cost comparison of all the three heuristics in the Normal state 

and in Figure 8 for the Failure State for the r100N503a Network. 

In Figure 7, it can be seen that both SS and FT show comparable results in the Normal state. In 

the Failure state, SS outperforms both FT and OH as seen in Figure 8. 

 

Figure 7: Comparison of FT, SS, and OH in the Normal state for r100N503a Network. 
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Figure 8: Comparison of FT, SS, and OH in the Failure state for r100N503a Network. 

Figure 9 shows the graph with the Cost comparison of all the three heuristics in the Normal state 

and in Figure 10 for the Failure State for the w50N169a Network. 

In Figure 9, it can be seen that all strategies perform equally well in the Normal state for all 

demands. In the Failure state, similarly all strategies perform equally well for all demands as 

seen in Figure 10. This indicates that a link failure does not have significant effect on network 

performance for this test case. 

 

Figure 9: Comparison of FT, SS, and OH in the Normal state for w50N169a Network. 
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Figure 10: Comparison of FT, SS, and OH in the Failure state for w50N169a Network. 

Figure 11 shows the graph with the Cost comparison of all the three heuristics in the Normal 

state and in Figure 12 for the Failure State for the w100N476a Network. 

In Figure 11, it can be seen that all strategies perform equally well in the Normal state for all 

demands. In the Failure state, similarly all strategies perform equally well for all demands as 

seen in Figure 12. This indicates that a link failure does not have significant effect on network 

performance for this test case. 

 

Figure 11: Comparison of FT, SS, and OH in the Normal state for w100N476a Network. 

 

 

Figure 12: Comparison of FT, SS, and OH in the Failure state for w100N476a Network. 
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Figure 13 shows the graph with the Cost comparison of all the three heuristics in the Normal 

state and in Figure 14 for the Failure State for the h50N148a Network. 

In Figure 13, it can be seen that OH has the best Cost in the Normal state which is very closely 

matched by SS. FT comparatively has the worst Cost in the Normal state. In the Failure state SS 

outperforms both FT and OH as seen in Figure 14. 

 

Figure 13: Comparison of FT, SS, and OH in the Normal state for h50N148a Network. 

 

Figure 14:  Comparison of FT, SS, and OH in the Failure state for h50N148a Network. 

4.5. Summary of Results 

In all the test cases, SS achieves the best results for the Failure state ( Failδ ) and also for the 

overall improvement (δ ). SS is followed by FT in the Failure state, which performs better than 

OH. In the Normal state, SS performs slightly better than FT for the two test cases h50N148a 

and h100N360a and has comparable results for the two cases r100N503a and r50N228a. For the 

two Waxman graphs, w50N169a and w100N476a, all strategies perform equally well in Normal 

and Failure state for all demands. This indicates that a link failure does not have significant 

effect on network performance for these two cases. Finally, it can also be observed that for 

lower demands (Demand-8, Demand-9), the results are almost the same for all the six test cases. 

This indicates that, if the load on the network is low, there is minimum effect of the link failure 
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on the network performance and the original heuristic itself is efficient enough to handle single 

link failures. 

5. CONCLUSIONS 

The single link failure issue in OSPF routing was addressed in this work to find a weight setting 

for the links which results in efficient routing in normal and failure states. Two new heuristics 

based on Tabu Search were proposed in this paper, namely LinkFailure-SS and LinkFailure-FT. 

Both heuristics were evaluated and they both produced better results when compared to the 

original heuristic in the Failure state. In addition, the SS approach is found to give better results 

than the FT approach in both normal and failure states. Therefore, it can be concluded that the 

SS approach is an efficient way to tackle single link failure issues. It was also shown through 

experimental results that at lower demands and traffic loads the effect of link failure on network 

performance is less and the original heuristic can also handle single link failures if the traffic 

load on the network is low. 
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