
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

DOI : 10.5121/ijcnc.2012.4104 39

PARALLEL COMPUTATION OF CRC USING SPECIAL
GENERATOR POLYNOMIALS

Hamed Sheidaeian1 and Behrouz Zolfaghari2

1 Department of Engineering, Islamic Azad University, Garmsar Branch, Iran
hsheidaeian@iau-garmsar.ac.ir

2 Department of Computer Engineering, Amirkabir University, Tehran, Iran
zolfaghari@aut.ac.ir

ABSTRACT

CRC (Cyclic Redundancy Check) is an error detection method commonly used in data communication
systems, computer networks and storage environments. In this method, the transmitter divides the message
by an agreed upon polynomial called the generator and concatenates the calculated residue to the
message. The properties of the generator determine the range of errors which are detectable in the receiver
side. The division operation is currently performed using serial circuits called Linear Feedback Shift
Registers especially in the Ethernet network access protocol. Developing methods for parallel computation
of the residue makes CRC suitable for higher layer protocols and software applications. This paper studies
a case for parallel CRC computation using special generators which have special multiples called OZO
(One-Zero-One) polynomials are divisible. We first provide a systematic approach to finding such
polynomials and then design and evaluate the algorithm and the hardware required to perform the parallel
division.

KEYWORDS

Cyclic Redundancy Codes, parallel CRC, OZO polynomials

1. INTRODUCTION AND BASIC CONCEPTS

Before explaining the CRC and our proposed method, we need some basic concepts and some
preliminary discussions which are presented in the following:

Polynomial notation: is a common notation used in the literature for representing bit strings. For
example, the string 110111 is represented by the polynomial = + + + + 1. As seen
in the example, polynomials of degree n are the representative for a string which is n+ 1 bit long.
Thus polynomials of odd degrees (called odd polynomials) represent bit strings with even length
(called even strings) and vice versa.

OZO Polynomials: are polynomials having a form like = + 1. Such polynomials represent
bit strings like 100…001, hence the name OZO (One-Zero-One). If n is odd, the polynomial is
called an odd OZO. Similarly, the polynomial is called to be even if n is even.

Modulo-2 Addition and Subtraction: are performed without generating carry or borrow bits.
Modulo-2 addition and subtraction are both performed using logical XOR.
Modulo-2 multiplication: is performed through consequent shifts and modulo-2 additions.

mailto:hsheidaeian@iau-garmsar.ac
mailto:zolfaghari@aut.ac

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

40

Modulo-2 Division: is performed through consequently subtracting multiples of the divisor from
the dividend. The modulo-2 subtractions are continued until the degree of the residue becomes
smaller than that of the divisor. Figure 1 shows examples of modulo-2 addition/subtraction,
multiplication and division.

Figure 1: examples of modulo-2 addition/subtraction,
multiplication and division

Concatenation: If S1 and S2 are two bit strings of degrees m and n, we will have 1 2 =1. 2 + 2. Readers are referred to [7, 8] for more information regarding modulo-2
computations.

Cyclic Redundancy Code: The CRC works as follows. Whenever the sender has a message M
to send, it first concatenates n zero bits to the right of the massage, converting it to . 2 (n is
the length of an agreed-upon string called the generator subtracted by one. It is also the length of
the CRC. Especially the Ethernet protocol uses a 32-bit CRC [22]). The sender divides the
produced string (. 2) by the generator (G) in the next step and calculates the residue (=(. 2)). Then the residue is replaced for the n zero bits. The string is now converted to= = . 2 + (. 2) . The string = is transmitted instead of M. Figure 2
shows these steps.

The addition, multiplication and division operations are performed modulo-2 here. Since addition
and subtraction are the same in modulo-2 computations, we can think of as = =. 2 − (. 2) which is obviously divisible by G.

Figure 2: The transmitter side CRC Process

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

41

Figure 3: The Receiver side CRC Process

The receiver divides what it receives by G again and calculates the residue. If the receiver gets
exactly the string transmitted by the sender, the residue will obviously be equal to zero. Figure 3
shows this process. But if an error has occurred through the channel, we can model the error as a
string E added to [7, 8]. In such a case, the receiver receives + instead of . Since
is divisible to G, the calculated residue in this case will be equal to (+) = .
Applications of CRC [12, 17, 18, and 21] as well as developing methods for improving its
efficiency [13, 19, 20, and 23] have been research focus in recent years. CRC is traditionally
computed by serial circuits called LFSRs (Linear Feedback Shift Registers). An LFSR is a special
kind of shift register in which the output of the last flip flop is fed to the input of the first flip flop
through a number of XOR gates. Fig.4 shows a sample LFSR.

This paper proposes a novel method for parallel computation of CRC using mathematical
properties of a special category of generator polynomials called ODPs (OZO Dividing
Polynomials). ODPs are polynomials having multiples of form 100…001. The latter form of
polynomials is called OZO (One-Zero-One). We demonstrate that if the generator is selected
from this category, the CRC can be calculated by parallel circuits with minor hardware
requirements. Zolfaghari, et al. [7, 8] introduced OZOs and ODPs. They developed a systematic
method for constructing ODP polynomials. The rest of this paper is organized as follows. Section
2 presents some preliminary discussions, section 3 examines related works and section 4 presents
the proposed method. Section 5 is dedicated to conclusions and further works.

Figure 4: A sample LFSR

2. PRELIMINARY DISCUSSIONS

The main idea behind our proposed approach is performing a number of operations (each of
which takes a cycle in the traditional modulo-2 division circuits) in a single cycle. We use the
properties of OZO strings to achieve this goal in this paper. Let us clarify the approach by an
example. Suppose that the divisor is G=1111. This string is an ODP. In fact, if we multiply this
string by 11 we will get G'=1111.11=10001. It is easy to see that G' is an m=5 bits long multiple
of G. Thus every string can be divided by G through subtracting multiples of G' from the
dividend. Figure 5 shows two steps such a division. The two steps shown in this figure convert 4
consequent bits from the left of the dividend to zero. These steps take 4 cycles by an LFSR. Our
approach performs the operations of these two steps in a single cycle.

Let us see how the approach works. The dividend D is n=10 bits long in this example. A close
look shows that in the first step, the leftmost 1 of the divisor (′) has been put under the
leftmost 1 of the dividend ().This causes the bit () to be inverted (XORed with 1).

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

42

Meanwhile, has been converted from 1 to 0. This step has not affected , , .
The reason is that the corresponding bits of ′ are equal to 0. Now let us look at the second step.
In this step, ′ has been put under and has been XORed with 1. In this step,
has been converted from 1 to 0. We can summarize the operations performed in the 2 steps (4
cycles) as follows. For each − < < − 1 if = 1 then is converted to 0 and

is XORed with 1 (XORed with). In other words, if we divide D into m-1 bit segments,
the segment before the last has been XORed with the last segment and the last segment has been
converted to 0. This process has reduced the length of D by m-1. Going on this procedure until
the length of D is decreased less than that of G will lead to the residue remaining t the last step.

Figure 5: Two steps of division by an OZO divisor

3. RELATED WORKS

Improving the performance of CRC computations has been the topic for a lot of research in recent
years [1-6]. But the most relevant category of related works are those which have proposed
parallel algorithms for calculating CRC. A number of works in this category are introduced in
below.

Nguyen [9] argued that CRC has notable error detection capabilities but its calculation is slow in
contrast to other error detection methods and the reason is that it depends on sequential
polynomial division operations. He attempted to find CRCs that can be calculated fast. He found
such CRCs and also proposed a method for calculating them. In his method CRC can be
calculated without the need for table lookup. His method can totally avoid polynomial divisions
or reduce the number of them.

Youngju, et al. [11] proposed a software parallel method for calculating CRC and named it N-
byte RCC (Repetition of Computation and Combination). Their method depends on dividing the
message to 4-bit chunks and table lookup. This method can be implemented using any off-the-
shelf processor. They tested their method on 1-star NOCs and single Bus architectures.

Kounavis, et al. [10, 15] proposed a frame fork for designing a family of parallel CRC algorithms.
They showed that algorithms designed in this framework can reduce the memory required for
calculating CRC and make it convenient for different computer system architectures. They
claimed that these algorithms can be implemented in software using any general purpose
processor and without the need for any extra special hardware.

Zhanqi, et al. [14] presented a parallel algorithm for CRC calculation based on mathematical
equations which can be implemented for different generator polynomials. They claimed that their
algorithms are quite convenient for hardware implementation. They implemented their algorithm
in hardware and achieved the input data rate of 21 Gbs. They showed the efficiency of their
algorithm for 10G Ethernet as well as ATM. Ji, et al. [16] presented a method based on Galois

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

43

Fields multiplication and accumulation operations for CRC calculation. This method can gain
unlimited speedup over serial methods and lookup-driven methods but increase area due to the
need for GFMAC (Galois Field Multiplication and Accumulation) modules. Their method can
calculate CRC in two or three cycles for every message length. They implemented their method
using a reconfigurable processor to which the instructions required to perform a number of
simultaneous GFMAC operations can be added. A sample implementation of this method which
uses 4 GMAC modules can calculate 32-bit CRC for a 16-bye message in two or three cycles.

4. THE PROPOSED APPROACH

According to the discussions presented in section 2, our proposed approach works as follows.
Suppose we are going to divide an n bit dividend by an m bit divisor and calculate the residue.
The dividend is first partitioned into m-1 bit segments. Then in each step, the segment before the
last is XORed with the last segment and the last segment is truncated from the dividend. The
division is finished when only one segment remains from the dividend. Figure 6 shows the block
diagram of the circuit which implements our approach for a 64 bit dividend and a 9 bit divisor.

As shown in Fig. 6-a, this circuit is constructed from two registers R and S. S contains the last 8
bit segment and R contains the remaining 58 bits. Both registers are built using D flip flops. The
functions of R and S each include 2-cycle periods. In the first period, the leftmost segment of R is
XORed with S. In this half cycle, S remains unchanged. This is called the XOR half cycle. In the
second half cycle, S is loaded with the leftmost segment of R. In this step, each flip flop i of R is
loaded with output of flip flop number i-8. This is called the shift half cycle.

Figure 6.a: The shift registers

Figure 6.b: Feeding D flip flop number i from R

Figure 6.c: The circuit producing signal P

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

44

Figure 6.d: Feeding D flip flop number i from R

Fig. 6-b shows how D flip flop number I from R is fed. The signal P and the MUX allow the flip
flop to function as needed for the division. During the XOR half cycle, each flip flop is loaded
with the output of the XOR gate. During the shift half cycle, each flip flop is loaded with the
output of another flip flop. Fig. 6-c shows the circuit producing the signal P which is built using a
T flip flop. Fig. 6-d shows the feeding of flip flops of S. During the shift half cycle, these flip
flops are loaded with corresponding flip flops of R. During the XOR half cycle, these flip flops
remain unchanged.

The division takes − 1 − 1 = () cycles using the proposed approach while it takes n

cycles using the traditional LFSR structure. In other words this circuit accomplishes the division= () = ()() times faster than its equivalent LFSR. We refer to T as the PIR

(Performance Improvement Ratio). Now let us examine the impacts on m and n on the PIR.

Equation 1 gives the derivative of T to n.= ()(()) < 0 Equation 1

This means that the PIR decreases with the increase of n. But the limit of T when n approaches
infinity is equal to m-1. This means that the minimum of the PIR will be equal to m-1.
Equation 2 gives the derivative of T to n.

= −(− (− 1)) < 0 Equation 2

Again T is decreased with the increase of m. But here we should take into consideration that m
cannot grow larger than n. We have coded this circuit with VHDL for a 24 bit dividend and 9 bit
divisor. The division takes 2 cycles in this case. Fig. 7 shows the outputs of the circuit after the
first and the second cycles.

5. CONCLUSION AND FURTHER WORKS

The CRC computation is traditionally implemented using sequential circuits called LFSRs. These
circuits divide an n bit dividend by an m bit divisor in n cycles regardless of the size of the
divisor. This paper showed that if the divisor is selected from a special family of strings called
ODPs, the division can be implemented using a parallel circuit which takes − 1 − 1 to

accomplish the division. This circuit works = ()() times faster than its corresponding

LFSR. We designed the parallel circuit and coded with VHDL and reported the outputs of the
circuit for a sample division. This work can be continued with designing parallel circuits for other
families of divisors.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

45

Figure 7-a: The output after the first cycle

Figure 7-b: The output after the second cycle

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

46

REFERENCES

[1] Ustunel E., Hokelek I., Ileri O., Arslan H., Joint optimum message length and generator polynomial
selection in cyclic redundancy check (CRC) coding, In Proceedings of 2011 IEEE 19th Conference on
Signal Processing and Communications Applications (SIU), pp. 222 – 225, 2011

[2] Akagic A., Amano H., Performance evaluation of multiple lookup tables algorithms for generating
CRC on an FPGA, In Proceedings of 2011 1st International Symposium on Access Spaces (ISAS), pp.
164 – 169, 2011

[3] Grymel M., Furber S.B., A Novel Programmable Parallel CRC Circuit, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Volume 19, Issue: 10, pp. 1898 – 1902, 2011

[4] Moon Jinyeong, Kih Joong Sik, Fast parallel CRC & DBI calculation for high-speed memories:
GDDR5 and DDR4, In Proceedings of 2011 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 317 – 320, 2011

[5] Yanbin Zhang, Error correction application of CRC in the RFID system, In Proceedings of 2011
International Conference on Business Management and Electronic Information (BMEI),pp. 443-446,
2011

[6] Fouad, Marwa, Elsaddik, Abdulmotaleb, Using cyclic redundancy check to eliminate key storage for
revocable iris templates, In Proceedin gs of 2011 24th Canadian Conference on Electrical and
Computer Engineering (CCECE), pp. 117-120, 2011

[7] Behrouz Zolfaghari, Saadat Pour Mozaffari, Haleh Karkhane, A Systematic Approach to the Selection
of CRC Generators to Detect Burst Errors in Ethernet Networks, IEEE International conference of
Intelligent Network and Computing (ICINC 2010), Kuala Lumpur, Malaysia, November 2010

[8] Behrouz Zolfaghari, Hamed Sheidaeian, Saadat Pour Mozaffari, Systematic Selection of CRC
Generator Polynomials to Detect Double Bit Errors in Ethernet Networks, 3rd International Conference
on Computer Networks & Communications, Ankara, Turkey, 2011

[9] G.D. Nguyen, Fast CRCs, IEEE Transactions on, Vo. 58, No. 10, pp. 1321 – 1331, Oct. 2009
[10] Kounavis, Michael E. Berry, Frank L, Novel Table Lookup-Based Algorithms for High-Performance

CRC Generation, IEEE Transactions on Computers, Vol.57, No 11, Nov. 2008
[11] Youngju Do, Sung-Rok Yoon, Taekyu Kim, Kwang Eui Pyun, Sin-Chong Park, High-Speed Parallel

Architecture for Software-Based CRC, In Proceedings of International Conference on Consumer
Communications and Networking (CCNC 2008), Las Vegas, NV, 10-12 Jan. 2008

[12] Iaodong Deng, Mengtian Rong, Tao Liu, Yong Yuan, Dan Yu, Segmented Cyclic Redundancy Check:
A Data Protection Scheme for Fast Reading RFID Tag's Memory, In Proceedings of IEEE Wireless
Communications & Networking Conference (WCNC 2008), pp. 1576-1581, March 31 2008 - April 3
2008, Las Vegas, Nevada, USA

[13] Walma Mathys, Pipelined Cyclic Redundancy Check (CRC) Calculation, In Proceedings of
International Conference on Computer Communications and Networks, 2007 ICCCN 2007, In
Proceedings of 16th International Conference on, pp 365-370, 13-16 August 2007. I. S.

[14] Xu Zhanqi, Yi Kechu, and Liu Zengji, A universal algorithm for parallel CRC computation and its
implementation, Journal of Electronics (China), Vol. 23, No. 4, July, 2006

[15] Kounavis M.E., Berry F.L., A systematic approach to building high performance software-based
CRC generators, In Proceedings of 10th IEEE Symposium on Computers and Communications (ISCC
2005), pp. 855-862, 2005

[16] Ji, H.M. Killian, E., Fast parallel CRC algorithm and implementation on a configurable processor, In
Proceedings of 2002 IEEE International Conference on Communications (ICC 2002), pp. 1813-1817,
2002

[17] Jacobs and C. P. Bean, Fine particles, thin films and exchange anisotropy, in Magnetism, vol. III, G. T.
Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350

[18] Ahmad, A. and Hayat, L., Algorithmic Polynomial Selection Procedure for Cyclic Redundancy Check
for the use of High Speed Embedded Networking Devices, In Proceedings of International Conference
on Computer and Communication Engineering 2008 (ICCCE’08), Kuala Lumpur, Malaysia - on 13-15
May, 2008

[19] Yun Pana, Ning Ge, Zaiwang Dong, CRC Look-up Table Optimization for Single-Bit Error
Correction, Tsinghua University Journal of Science & Technology, Tsinghua Science & Technology,
Vol. 12, Issue 5, pp. 620-623, October 2007

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

47

[20] Raman Assaf, Tyszberowicz Shmuel, The EasyCRC Tool, In Proceedings of 2007 International
Conference on Software Engineering Advances (ICSEA 2007), pp. 25-31, August 2007

[21] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989
[22] Liu Zhanli, Liang Xiao, Zhao Chunming, Wang Jing, CRC-Aided Turbo Equalization For MIMO

Frequency Selective Fading Channels, Journal of Electronics(China), Vol. 24, Issue 1, pp. 69-74, 2007
[23]Andrew. S. Tanenbaum, David J. Wetherall, Computer Networks, Prentice Hall,5th Edition, 2010

Authors

Hamed Sheidaeian has M.S. degree in computer engineering from Sharif University of
Technology and is a faculty member of engineering department in Islamic Azad
University, Garmsar Branch. His research areas include multimedia systems, computer
graphic visualization, data communication and computer networks.

Behrouz Zolfaghari is a Ph.D. student in computer engineering at Amirkabir University
of Technology (AUT), Tehran, Iran. He has published six journal papers and 16
conference papers by far. His research areas include image processing, computer
architecture and computer networks.

