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ABSTRACT 

This paper develops an analytical model for probabilistic area coverage in terms of the target detection 

probability. A decision fusion framework is utilized to infer the presence or absence of the target. 

Analytical results are derived for the target detection and false alarm probabilities in the presence of 

correlated sensor noise. The spatially correlated sensor observations are utilized to select a subset of 

sensors to meet the specified area coverage. Two new sensor selection schemes are proposed for 

maximizing information theoretic measures such as joint entropy. The sensor selection schemes are 

analyzed extensively based on simulations. The results show that the proposed sensor selection scheme 

outperforms two state-of-the-art sensor selection schemes: constrained random sensor selection and 

disjoint random sensor selection. 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) have been used for numerous applications such as military 

surveillance, environmental monitoring, intrusion detection and smart homes. In many of these 

applications, the sensors observe the physical space or phenomenon of interest, and report data 

to the fusion center. However, practical considerations require optimal use of limited resources 

such as bandwidth, energy, storage and computation/communication capabilities, while 

satisfactorily covering the region being monitored. Hence this paper addresses the probabilistic 

area coverage problem, in which it is necessary to determine a minimal subset of sensors 

sufficient to meet the prespecified area coverage criterion, using a probabilistic sensing model. 

In order to reduce (i) the amount of energy used for communication, and (ii) traffic flow to the 

fusion center (avoiding network congestion), an appropriate data delivery model must be 

chosen. Three important data delivery models are: continuous, event driven and query based 

[1]. In the continuous model, all sensors transmit their data periodically to the fusion center 

while in the event driven model, sensors report their sensed data only when a specific event 

occurs. In this paper, a query based data gathering model is considered where the fusion center 

periodically queries the sensors for data. 

Selection of sensors to be queried should be based on the fact that the observations of sensors in 

close spatial proximity are highly correlated, especially in densely deployed sensor networks. 

The degree of correlation increases with decrease in inter-sensor separation. Such spatial 

correlations can be exploited: the fusion center should collect data from well separated sensors, 

reducing the redundancy between the data collected from different sensors. Correlation among 

sensor observations can be caused by colored observation noise which arises in densely 
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deployed sensor networks. In many applications, the phenomenon to be measured by the 

sensors is subject to correlated ambient noise. 

This paper addresses two important questions for the area coverage problem: 

• What is the relationship between the number of sensors (M) and the probabilistic area 

coverage? 

• To meet a desired coverage, which M sensors should the fusion center select in each 

communication round? 

In order to answer these questions, the area coverage properties of sensor networks are 

investigated under the probabilistic sensing model. The main contributions of this paper are: 

• Development of a new model to quantify the area coverage of the sensor network in 

terms of real world applications such as target detection. 

• Development of new sensor selection schemes which select the most informative 

subset of sensors. 

The rest of the paper is organized as follows. Section 2 presents recent work on area coverage 

and sensor selection problems. Section 3 describes the area coverage problem and characterizes 

the area coverage in terms of distributed target detection. Section 4 formulates the sensor 

selection problem and describes the spatial correlation model. Section 5 describes different 

sensor selection schemes. 

Section 6 analyzes simulation results and Section 7 summarizes the contributions. 

2. RELATEDWORK 

2.1. Area Coverage Problem 

Coverage problems in sensor networks have been an active research area in the recent past. In 

area coverage problems, the main goal of the sensor network is to collectively monitor or cover 

a region of interest. Several algorithms have been developed for achieving the desired area 

coverage. Tian and Georganas [2] have proposed a node scheduling scheme to meet the area 

coverage requirement and to extend the lifetime of the network. Their scheme conserves energy 

by turning off the redundant sensors in the areas fully covered by the other sensors while 

guaranteeing area coverage. 

The coverage of a grid-based wireless sensor network has been studied by Shakkottai et al. [3]. 

They have considered the coverage and connectivity problem and derived necessary conditions 

on the sensing range and failure rate of the sensors to achieve the desired coverage. Choi et al. 

[4] have developed an energy conserving data gathering approach which characterizes the 

tradeoff between coverage and data reporting latency. 

S. Slijepcevic, and M. Potkonjak [5], and Cardei et al. [6] aim to achieve energy efficient area 

coverage by dividing the nodes in the sensor network into disjoint sets such that every set can 

uniquely provide area coverage. The sets are activated successively for area coverage. When a 

particular set is active, the other sets are in a sleep mode. 

In the point coverage problem, the objective is to cover a set of points in an area. Cardei and Du 

[7] address the point coverage problem in which a limited number of points with known 

locations need to be monitored. The proposed solution models disjoint sets as disjoint set 

covers such that every cover completely monitors all target points. The disjoint set cover 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011 

 

235 

 

problem is modeled as a mixed integer programming problem and solved using a polynomial 

time approximation algorithm. Liu et al. [8] have studied the coverage properties of large scale 

sensor networks. They have studied three fundamental coverage measures: area coverage, node 

coverage and detectability under the Boolean and the probabilistic sensing models. A recent 

survey on energy efficient area coverage problems is presented in [9]. 

Most of the work in area coverage problems mentioned above assume a binary sensing model 

in which the sensor readings have no associated uncertainty. These models assume that a sensor 

detects any object within its sensing range with probability 1. However the detection 

probability of a sensor depends on the distance between the sensor and the object within its 

sensing range. In addition, the sensor readings are uncertain and the coverage needs to be 

expressed in probabilistic terms. This paper addresses these issues by developing a new area 

coverage metric that quantifies the target detection and false alarm probabilities. In addition, 

this work also integrates the spatial correlation of sensor observations in to the distributed 

detection problem. Analytical results are derived for the target detection and false alarm 

probability in the presence of correlated Gaussian noise. 

2.2. Sensor Selection Problem 

In many sensor network applications, a selected set of sensors report data to the fusion center to 

conserve energy and bandwidth. Several algorithms have been proposed in the literature to 

solve the sensor selection problem. Wang et al. [10] have proposed an entropy based sensor 

selection heuristic for target localization problems in sensor networks. They have proposed a 

greedy sensor selection heuristic that selects the most informative sensor in each round that 

would yield the greatest reduction in the entropy of the target location distribution. Choi et al. 

[11] have proposed a constrained random sensor selection scheme (CROSS) which employs a 

Poisson sampling technique that maintains a certain minimum distance between the sampled 

sensors. The main goal of CROSS is to maximize the area coverage and reduce the overlap 

between sensing ranges of selected sensors. Their simulation results show that CROSS 

performs better than the disjoint random sensor selection scheme. Doherty et al. [12] have 

considered the scattered data selection for field reconstruction problem. They have proposed 

different sensor selection schemes such as hop based selection and extremum selection aimed at 

optimizing the energy efficiency of the network. 

The main drawback of the above mentioned schemes is the lack of a spatial correlation model, 

essential to capture the redundancy of the data collected by different sensors. The main goal of 

sensor selection is to maximize the information extracted from the selected sensors. Hence, a 

good sensor selection scheme should optimize information theoretic measures such as joint 

entropy of the observations collected from multiple sensors. This paper attempts to address 

these issues by developing sensor selection schemes based on an underlying spatial correlation 

model. Unlike prior work in area coverage problems, our approach solves the joint problem of 

sensor selection and area coverage under a probabilistic sensing model. 

3. PROBABILISTIC AREA COVERAGE 

This section describes the distributed target detection problem in the presence of correlated 

Gaussian noise. A decision fusion framework is utilized to solve the detection problem at the 

fusion center. Analytical expressions are derived for the target detection and false alarm 

probabilities and a new definition of area coverage is presented. 
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3.1. Location Model 

Consider a sensor network in which a total of N sensors are randomly deployed in a two 

dimensional geographical region. In harsh and unfriendly environments such as a battlefield, 

the sensors may be air-dropped. The region of interest is modeled as a square with area a2. The 

location of sensors are i.i.d and follow a uniform distribution given by 

 

 

 

 

3.2. Sensor Measurement Model 

In the binary sensor model, a sensor detects an object within its detection range with probability 

1, i.e., the sensor readings have no associated uncertainty. In addition, the binary model does 

not capture the degradation of a sensor’s sensing capability with the increase in distance 

between the sensor and the target. By contrast, this paper uses a realistic sensing model which 

explicitly characterizes the uncertainty in detection by any sensor. In this model, sensors 

perform detection by measuring the signal power emitted by the target. The energy of physical 

signals such as acoustic and electromagnetic signals attenuates with the distance from the signal 

source. Let di indicate the distance between sensor i and the target. The attenuated signal power 

si is given as 

 

 

where P0 is the power emitted by the target and g(.) is a decreasing function satisfying g(0)=1, 

g(∞)=0 and g(x)=φ(x-k ). In this work, an isotropic signal attenuation model is adopted where 

the signal decay function is modeled as 
 

 

 

 

 

where di is the distance between the target and local sensor i:  

 

 

 

 

and (xt, yt) are the co-ordinates of the target. The signal decay exponent n can takes values 

between 2 and 3. In this work, n is set to 2. 

3.3. Distributed Target Detection 

The distributed detection problem has been studied widely for the case where the observations 

are conditionally independent given either hypothesis (target present or absent). There has not 

been much work in the area of distributed detection in the presence of correlated sensor 

measurements. In [13], the authors have solved the problem of detecting a constant signal in the 

presence of correlated zero mean Gaussian noise. In this section, the results in [13] are used to 

obtain new analytical expressions for the target detection and false alarm probabilities. 

Depending on the hypothesis that the target is absent (H0) or present (H1), the measurement at 

sensor i denoted as yi is given as, 
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where si is the signal power defined in equation (2) and {ni} are dependent zero mean Gaussian 

noise with unit variance. In our model, the correlation coefficient between any two sensor 

observations decreases geometrically with increase in distance between the sensors. This model 

has (1) been widely adopted in the literature to capture the redundancy in the observations of 

spatially close sensors [13-15]. The observation noise at any two sensors i and j has a 

covariance function given by 

 

 

 

 

where ρ is the correlation coefficient, dij is the distance between sensors i and j, and σ is the 

standard deviation of the noise which is assumed to be unity. 

Each sensor compares the measurement yi to a threshold τ to make a decision about the 

presence or absence of the target. The false alarm probability at a local sensor is 
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where Q(.) is the complementary distribution function of the standard Gaussian: 

 

 

 

 

 

The probability of detection at sensor i is given as 

 

 

 

 

 

 

3.4. Decision Fusion 

In decision fusion, each sensor compares its measurement to a threshold to arrive at a local 

decision about the presence of a target. The sensors transmit the local decisions to the fusion 

center. The fusion center compares the sum of local decisions to another threshold to arrive at a 

global decision. 
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This model is widely used in the literature to compute the global target detection probability 

[16, 17]. We denote the binary data sent from local sensor i as Ii, i=1,2….,N. Since the local 

sensors transmit only binary data, the fusion center does not have the knowledge of detection 

probabilities at local sensors. In the absence of this information, the fusion center treats the 

to a threshold γ to arrive at a decisions from the sensors equally and compares  

global decision. 

3.4.1. Calculation of Pf 

The probability of false alarm at the fusion center is given by Pf = Prob [Λ ≥ γ | H0 ]. Since the 

local decisions at the sensors are correlated, analytical expression for the distribution of Λ is 

intractable. The results derived in [13] can be used to approximate the distribution of Λ. A 

central limit theorem for a sequence of correlated random variables in which the past and 

distance future (10) are asymptotically independent is described in [13]. According to our 

correlation model in equation (6), ρij →0 as dij →∞. Hence, the central limit theorem described 

in [13] can be used to approximate Λ using a Gaussian distribution. Assuming that the number 

of sensors is large, Λ follows a Gaussian distribution with mean Np fa and variance   

Utilizing the results in [13] for  we have, 

 

 

 

 

Hence, the global probability of false alarm is given as 

 

 

 

 

3.4.2. Calculation of Pd 

The detection probabilities at the local sensors are correlated and not identical since pdi 

at sensor i is a function of the distance di as shown in equation (10). If the number of sensors are 

sufficiently large, the results derived in [13] show that Λ follows a Gaussian distribution with 

mean µ and variance  where 

 

 

 

 

 

 

 

Since, pdi is a function of the sensor and target locations, when N is large, the summation in 

equation (13) can be approximated as 
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The sensor locations follow a uniform distribution as described in equation (1). Hence, we have 

 

 

 

 

where 

 

 

 

 

Similarly, the summation in equation (14) can be approximated as 

 

 

 

 

 

The global detection probability at the fusion center is given by 

 

 

 

 

The location of the target (xt, yt) is a random variable. Under the assumption that there is no 

prior information about the likelihood of the target location, a uniform distribution captures the 

uncertainty in the target location. Hence the average global detection probability at the fusion 

center is given by 

 

 

 

 

3.5. Area Coverage 

In surveillance applications, the probability of false alarm together with the target detection 

probability characterizes the sensing quality provided by the network. For large scale networks, 

the area coverage can be characterized in terms of the detection probability. This paper presents 

a new concept of coverage called the (ε, λ) coverage. 

Definition: (ε, λ) coverage: Given two constants ε and λ, a target appearing at a point p in the 

surveillance region is covered if the global detection probability and false alarm probability at 

point p satisfy, 

              Pdav ≥ λ and Pf = ε                    (20) 

Mission critical applications require a very low false alarm rate and a high detection 

probability. For instance, the coverage requirements can be specified as ε=5% and λ=80%. 

The coverage is closely related to the number of sensors in the network. For a given ε and local 

sensor false alarm probability pfa, the threshold γ can be computed using equation (12). We can 

then compute the global detection probability using equations (18) and (19). 
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4. THE SENSOR SELECTION PROBLEM 

If the desired (ε, λ) coverage is specified by a design expert, we can compute the required 

number of sensors (M) which should report data employing the analytical relation derived in the 

previous section. For the sensor selection problem, we consider large-scale sensor networks in 

which the number of sensors deployed N>>M. However, M sensors are sufficient to achieve the 

required coverage. Now, we are ready to answer another important question: which M sensors 

should report data in each data-gathering round? This section addresses this issue by 

formulating and solving the sensor selection problem. 

Given a set of sensors A={S1,S2,…SN}, the goal of sensor selection is to select the most 

informative subset of sensors of cardinality M in each communication round. Hence the 

objective is to obtain a set of sensors B* of cardinality M such that 

B
*
 = argmax H(B)                                       (21) 

                                           B⊂ A  

where H(B) denotes the joint entropy of the variables in B. In dense sensor networks, the data 

collected by sensors in close spatial proximity are strongly correlated with each other. The 

spatial correlation model described in equation (6) can be used to design a strategy for selecting 

sensors which are far apart from each other. The next section describes the information 

theoretic measure used to characterize the quality of data collected by the sensors. 

4.1. Differential Entropy 

Differential entropy has been widely used to characterize the total amount of uncorrelated data 

generated by a set of sensors [14], [17-21]. A measure of the total amount of information 

gathered by the sensors is given by the differential entropy of the multivariate Gaussian 

distribution. According to the target detection model discussed in section 3.3, the measurements 

at different sensors Y=[y1, y2, …,yN] form a multivariate Gaussian distribution. For an M-

dimensional multivariate Gaussian random variable Y, the differential entropy is 

 

 

 

where det(K) indicates the determinant of the covariance matrix. According to the correlation 

model defined in equation (6), the noise covariance matrix is given as 

 

 

 

 

 

 

 

 

 

 

We assume that the noise variance is unity, N is the total number of sensors and ρij is the 

covariance of measurement noise at sensors i and j defined in equation (6). 
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The information transmitted by the sensors to the fusion enter is dependent on the specific 

application in hand. For instance, in acoustic target detection and localization, sensors transmit 

acoustic samples and the extracted target signature to the fusion center. We assume each sensor 

quantizes its samples independently into a g bit data packet. The discrete joint entropy 

associated with the quantized samples of M sensors is given by 

           H(Y)=h(Y)+gM                            (24) 

Since transmission of raw data consumes bandwidth and energy, it is imperative to select the 

most informative sensors for data transmission. The next section describes two new sensor 

selections schemes for optimizing the information theoretic metric – joint entropy defined in 

equation (24). 

5. SENSOR SELECTION SCHEMES 

In this section, two new sensor selection schemes are described: distance based sensor selection 

and entropy based sensor selection. The extent of correlation in the data observed by different 

sensors is a function of the distance between them. Intuitively, sensors that are far apart will 

have maximum uncorrelated information about the target. Hence, the distance based selection 

scheme selects sensors which are as far apart from each other as possible. The entropy based 

sensor selection scheme instead iteratively selects a sensor that can add the maximum 

information, given the sensors selected so far. 

In both the sensor selection schemes, the fusion center selects the first sensor as the one with 

highest detected signal power, which is in close proximity to the target. This approach is also 

very useful in dynamic problems such as target tracking where the sensor measurement 

information such as location and velocity of the target changes with time. Hence, at each 

sensor, the amount of detected signal power from the target varies with time. The sensors 

transmit the detected signal power (not the raw measurement data) to the fusion center as a pre 

selection step. This avoids transmission of raw data such as target signatures to the fusion 

center and therefore saves limited bandwidth and prolongs battery lifetime for the sensors. 

After selecting the first sensor, the two selection schemes differ in the heuristic employed for 

selecting the remaining M-1 sensors. It is interesting to note that two sensors in close spatial 

proximity could have high detected signal power if both sensors are close to the target. Hence 

the detected signal power alone cannot characterize the amount of uncorrelated data in the 

sensors. The proposed schemes are centralized where the fusion center performs the necessary 

computations to select the sensors. The sensor selection schemes are based on the following 

assumptions: 

• N sensors are deployed randomly (uniform distribution) in the sensor field. 

• The fusion center has no energy constraints and has the pre-determined knowledge of 

the geographical locations (eg: through GPS interfaces) of all the sensors. 

Although the proposed sensor selection schemes are designed for area coverage, they can be 

readily extended to dynamic problems such as target localization and tracking. In such cases, 

the entropy based information measure is calculated using the expected posterior distribution of 

the state to be estimated. The proposed sensor selection schemes can be used to query sensors 

for detailed information about the target such as target signatures and direction of arrival 

information. The sensor selection schemes select M sensors in each communication round. 
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Depending on the application at hand, the number of communication rounds can be determined 

by a higher level quality of service parameter such as the estimation error. 

5.1. Distance Based Sensor Selection Scheme 

The Max-Min distance based sensor selection scheme is described below in Figure 1; where Fc 

denotes the fusion center, and M denotes the number of sensors to be chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Algorithm describing the distance based sensor selection process in a communication 

round 

 

5.2. Entropy Based Sensor Selection Scheme 

The goal of the entropy based sensor selection algorithm is to select M sensors with maximum 

discrete joint entropy in each communication round. In each round, a greedy approach is used 

to select M sensors. Figure 2 describes the algorithm, differing from the previous algorithm in 

Step 4. The discrete joint entropy is computed using equation (24). 
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Figure 2. Algorithm describing the entropy based sensor selection process in a communication 

round 

The greedy heuristic selects the next sensor as the one which has maximum discrete joint 

entropy with the sensors selected so far. This approach can be shown to have an approximation 

property, as described below. Functions which satisfy the diminishing returns property, defined 

as F(B∪X)-F(B) ≥ F(A∪X)-F(A) ; B⊂ A, are called submodular functions as described in [21]. 

The discrete joint entropy is a strictly non-decreasing submodular function which can 

effectively measure the total information contained in a set of random variables. We now 

summarize the theoretical results in [22] about a greedy algorithm for optimization of non-

decreasing submodular functions. 

1. The greedy algorithm guarantees an (1-1/e) approximation of the optimal solution with high 

confidence. In other words, the greedy algorithm obtains a set that is at most (1-1/e) worse than 

the optimal set. 

2. There exists no polynomial time algorithm that can provide an approximation better than   

(1-1/e) unless P=NP. 

3. The greedy algorithm obtains a set B⊆ A of size M with computational complexity of 

O(M|A|) function evaluations. 

Since discrete joint entropy is a non-decreasing submodular function, the entropy based sensor 

selection scheme guarantees a (1-1/e) approximation of the optimal solution with a 

computational complexity of O(M|A|) . 

5.3. CROSS and DRS 

We compare our new sensor selection schemes with two state of the art sensor selection 

schemes described in [11]: constrained random sensor selection (CROSS) and disjoint random 

sensor selection (DRS). The CROSS scheme randomly selects M sensors in each data gathering 

round while maintaining a minimum distance between any pair of selected M sensors. The 

desired minimum distance is computed based on the assumption that sensors detect the target 

within their sensing range with probability 1. In our work, the sensing model is probabilistic. 
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Hence, to adapt CROSS for our model, we approximate the sensing range dmin as the distance 

where the detection probability at a sensor is 0.9. The desired minimum distance dmin is then 

computed using equation (10) . Hence, the selected M sensors cover the sensing area filled with 

non-overlapping circles with radius dmin. 

In DRS scheme, the fusion center randomly selects M sensors in each data reporting round. 

DRS maintains a reporting cycle C which indicates the periodicity of a sensor to report data to 

the fusion center. The reporting cycle C contain reporting rounds. The fusion  

center randomly selects a reporting round for each sensor from δ rounds within C and keeps the 

selected round as the reporting round for that sensor. 

6. SIMULATION RESULTS 

We used Matlab for our simulations. Our sensor selection algorithms involve computation of 

joint entropy which requires evaluation of the determinant of the covariance matrix. These 

computations are well supported in Matlab environment. We also implemented CROSS and 

DRS schemes in Matlab. Extensive Matlab simulations were performed on a sensor field of 

area 25 × 25 m2. The sensors were randomly deployed with uniform distribution as described in 

equation (1). The rest of the section is organized as follows. Section 6.1 analyzes the variation 

of area coverage with the number of sensors. Section 6.2 presents the performance comparison 

of different sensor selection schemes for different values of the correlation coefficient. 

6.1. Analysis of Area Coverage 

This section analyzes the impact of the number of sensors on the (ε, λ) coverage. For the target 

detection model, we set n=2 and P0=100. We assume that the noise variance is unity and the 

correlation coefficient ρ=0.5. Figure 3 shows the variation of area coverage (detection 

probability λ) with the number of sensors for ε=5%. The figure shows that the detection 

probability increases with the number of sensors. When the number of sensors is large, the 

detection probability converges to 1. If the desires area coverage is specified by the user in 

terms of ε and λ, Figure 3 can be used to determine the number of sensors (M) that should 

report data to the fusion center. Similar results were obtained for other values of the correlation 

coefficient ρ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of detection probability with the number of sensors for ε=0.05, P0=100 and 

n=2. 
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6.2. Performance Comparison of Sensor Selection Schemes 

In this section, the sensor field is assumed to be densely deployed with N=500 sensors and the 

fusion center selects a subset of M sensors to meet a specified coverage. For the target detection 

model, we set n=2, P0=100 and assume that the noise variance is unity. We assume that each 

sensor quantizes its samples into a 6 bit data packet. We compare the performance of the 

proposed sensor selection schemes with CROSS and DRS described in [11]. 

Figures 4-6 show the performance comparison of different sensor selection schemes in terms of 

discrete joint entropy, for different values of the correlation coefficient ρ. The number of 

selected sensors (M) correspond to a specific value of target detection probability λ for ε= 5%. 

The figures show that entropy based sensor selection scheme outperforms the other sensor 

selection methods for different values of ρ. The advantages of entropy based and distance based 

sensor selection scheme are evident for higher values of ρ as shown in Figures 4-6. As the 

sensor data becomes highly correlated, the entropy and distance based sensor selection schemes 

select the most informative subset of sensors significantly outperforming CROSS and DRS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Performance comparison of sensor selection schemes for ρ=0.2 
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Figure 5. Performance comparison of sensor selection schemes for ρ=0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Performance comparison of sensor selection schemes for ρ=0.8 
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The above results clearly indicate that the entropy based sensor selection scheme performs the 

best for various values of M and ρ. The distance based selection performs a little worse than the 

entropy based scheme but much better than DRS and CROSS. 

Table I shows the percent improvement in discrete joint entropy of the entropy based sensor 

selection scheme when compared to CROSS for different values of M and ρ. We use equation 

(24) to compute the discrete joint entropy of the data collected by the selected sensors. We then 

evaluate the percent improvement in the discrete joint entropy. The results show that for a given 

M, the percent improvement increases with increase in ρ. This shows that for heavily correlated 

data, entropy based sensor selection offers a significant advantage. 

Table 1. Percent improvement in discrete joint entropy: comparison of entropy based sensor 

selection and CROSS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results show that the entropy based sensor selection scheme achieves the best 

performance for different values of M (area coverage) and ρ. The distance based selection 

performs a little worse than the entropy based sensor selection. However, both the distance 

based and entropy based sensor selection schemes outperform CROSS and DRS. 

The new schemes incur additional computational effort. For an M value of 200, the 

computational times required by DRS and CROSS were 3 seconds per communication round, 

on an Intel Pentium 4 processor (3.2 GHz, 2 GB RAM). The distance based sensor selection 

requires on an average 5 seconds per communication round while the entropy based sensor 

selection requires a relatively higher computational time of 8 seconds per communication 

round. Simulation results showed that the computational effort comparisons for different 

schemes were similar for other values of M and ρ. However, the advantages of the 

improvement in discrete joint entropy showed in Table I outweigh the additional computational 

cost. 

7. CONCLUSIONS 

This paper has proposed a new model for quantifying the area coverage in terms of the target 

detection and false alarm probabilities. Analytical solutions were developed for the distributed 

detection problem in the presence of correlated sensor noise. The mathematical analysis of the 

target detection and false alarm probabilities at the fusion center were challenging since the 

sensor decisions are correlated. However, assuming that the number of sensors is large, the 

central limit theorem was used to derive expressions for the global target detection and false 
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alarm probabilities. The results derived showed that the target detection probability, false alarm 

rate, and the area coverage were functions of the correlation coefficient. 

In the second part of the paper, the sensor selection problem was formulated and solved using 

information theoretic measures such as discrete joint entropy. Two new sensor selection 

schemes were proposed for selecting the minimum number of sensors that achieve the desired 

target detection probability, selecting sensors which are as far apart from each other as possible. 

Extensive simulations were performed to compare different sensor selections schemes for 

various values of M and ρ. Simulation results showed that the entropy based and the distance 

based sensor selection schemes outperform CROSS and DRS. The performance improvement 

of the entropy based sensor selection was more evident for higher values of the correlation 

coefficient. Future work will examine the utility of other information theoretic measures such 

as K-L distance and mutual information for sensor selection problems. 

REFERENCES 

[1]     S. Tilak, N.B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wireless micro-sensor network 

models,” ACM Mobile Computing and Communications Review, vol.6, pp. 28-36, 2002. 

[2]    D. Tian, and N. D. Georganas, “A coverage-preserving node scheduling scheme for large wireless 

sensor networks,” Proc. 1st ACM Workshop on Wireless Sensor networks and Applications, 2002. 

[3]  S. Shakkottai, R. Srikant, and N.Shroff, “Unreliable sensor grids: coverage, connectivity and 

diameter,” Proc. INFOCOM, pp. 1073-1083, 2003. 

[4]   W. Choi and S. K. Das, “Trade-off Between Coverage and Data Reporting Latency for Energy- 

Conserving data gathering in wireless sensor networks,” Proc. International conference on mobile 

ad hoc and sensor systems, 2004. 

[5]    S. Slijepcevic, and M. Potkonjak, “Power efficient organization of wireless sensor networks”, Proc. 

IEEE International conference on Communications, pp. 472-476, 2001. 

[6]    M .Cardei, D. MacCallum, X. Cheng, M. Min, X. Jia, D. Li, and D. Z. Du, “Wireless sensor 

networks with energy efficient organization,” Journal of Interconnection Networks, vol. 3, no. 3-4, 

pp. 213-229, 2002. 

[7]   M. Cardei, and D.Z. Du, “Improving wireless sensor network lifetime through power aware 

organization,” ACM Wireless Networks, 11(3):333-340, 2005. 

[8]     B. Liu, and D. Towsley, “A study of the coverage of large-scale sensor networks,” Proc. first IEEE 

International conference on mobile ad hoc and sensor systems, Oct. 2004. 

[9]    M. Cardei and J. Wu, “Energy efficient coverage problems in wireless ad hoc sensor networks,” 

Computer Communications , vol. 29, no. 4, pp. 413-420, 2006. 

[10]  H. Wang, K. Yao, G. Pottie, and D. Estrin, “Entropy-based Sensor Selection Heuristic for 

Localization,” ACM-IEEE third international symposium on information processing in sensor 

networks (IPSN), Berkeley CA, April 26-27, 2004. 

[11]   W. Choi and S.K. Das, CROSS: “A probabilistic constrained random sensor selection scheme in 

wireless sensor networks,” Performance Evaluation, vol.66, no. 12, pp. 754-772, 2009. 

[12]   L. Doherty and K.S.J. Pister, “Scattered data selection for dense sensor networks,” Proc. Third 

international symposium on information processing in sensor networks, pp. 369-378, 2004. 

[13]  V. Aalo and R. Viswanathan, “Asymptotic performance of a distributed detection system in 

Gaussian noise,” IEEE Trans. on Signal Processing, vol. 40, no.1, Jan. 1992. 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011 

 

249 

 

[14]   Y. Zhang, M. Ramkumar, and N. Memon, “Information flow based routing algorithms for wireless 

sensor networks,” Proc. IEEE Global Telecommunications Conf. (GLOBECOM’04), vol. 2, pp. 

742-747, Nov. 2004. 

[15]   J. F. Chamberland and V. V. Veeravalli. “Decentralized detection in wireless sensor systems with 

dependent observations,” Proc. International conference on computing, communications and 

control technologies, Aug. 2004. 

[16]   R. Niu, P.K. Varshney, M. H. Moore and D. Kalmer “Decision fusion in a wireless sensor network 

with a large number of sensors,” Proc. 7th IEEE International Conference on Information Fusion 

(ICIF ’04), Stockholm, Sweden, June–July 2004. 

[17]   R. Niu and P.K. Varshney, “Distributed detection and fusion in a large wireless sensor network of 

random size,” EURASIP Journal on wireless communications and networking, vol. 4, 2005, pp. 

462-472. 

[18]   S. Pattem, B. Krishnamachari and R. Govindan, “The impact of spatial correlation on routing with 

compression in wireless sensor networks,” ACM Trans. on sensor networks, vol. 4, no.4, Aug. 

2008. 

[19]   S. Coleri and P. Varaiya, “Fault tolerance and energy efficiency of data aggregation schemes for 

sensor networks,” Proc. IEEE Vehicular Technology Conference, Sept. 2004. 

[20]    T.M. Cover and J.A. Thomas, Elements of Information Theory. Wiley 1991. 

[21]  D. Ganesan, R. Cristescu, and B. Beferull-Lozano, “Power efficient sensor placement and 

transmission structure for data gathering under distortion constraints,” Proc. third international 

symposium on information processing in sensor networks, April 2004. 

[22]  G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of the approximations for maximizing  

submodular set functions,” Mathematical Programming , vol. 14, pp. 265-294, 1978. 


