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ABSTRACT 
Adaptability is a property related to engineering as well as to the execution of networked service systems. 
This publication considers issues of adaptability both within a general and a scoped view. The general 
view considers issues of adaptation at two levels: 1) System of entities, functions and adaptability types, 
and 2) Architectures supporting adaptability. Adaptability types defined are capability-related, 
functionality-related and context-related adaptation. The scoped view of the publication is focusing on 
capability-related adaptation. A dynamic goal-based policy ontology is presented. The adaptation 
functionality is realized by the combination of Extended Finite State Machines, Reasoning Machines and 
Learning Mechanisms. An example case demonstrating the use of a dynamic goal-based policy is 
presented. 

KEYWORDS 
Adaptable service systems, Adaptability types, Adaptability architecture, Capability-based adaptation, 
Goal-based policy ontology, Policy-based adaptation 

1. INTRODUCTION  
Networked service systems are considered. Services are realized by service components which 
by their inter-working constitutes a service system. Service components are executed as 
software components in nodes, which are physical processing units such as servers, routers, 
switches, PCs and mobile phones. A service framework is here defined as a system for the 
specification, management and execution of service systems.  

Adaptability can generally be defined as the ability of a system to fit to changed circumstances. 
Adaptability is generally realised by some closed feed-back loop. Fitting behavior can be of 
various types and can take place several levels. It is tendency, however, to denote many aspects 
of changes or “fitting behavior” as adaptation, without setting requirements to which changes 
that “qualifies” with changed circumstances. An autonomic service system is a specialization of 
an adaptable service system. Autonomic systems have ability to manage themselves and to 
adapt dynamically to changes in accordance with given objectives [1,2]. An autonomic system 
is constituted by distributed components denoted as autonomic elements.  

The contribution of this publication is a general concept framework for adaptable systems as 
well as a scoped framework for capability-related adaptation. Adaptable service systems are 
accordingly considered within a general view and within a scoped view. Within the general view 
various adaptability issues of networked service systems are considered at two levels. Entities, 
functions and adaptability types are considered at Level 1, Architectures supporting adaptability 
at Level 2. The adaptability types defined are capability-related, functionality-related and 
context-related adaptation. Within the scoped view, capability-related adaptation is focused. A 
goal-based policy ontology for capability-related adaptation is presented. The experience 
background for this publication is work with the TAPAS architecture and platform [3-5]. 
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Another important reference is the FOCALE architecture for autonomic networking [6]. Even if 
parts of this publication are inspired by TAPAS, the intention is to be rather generic.  

The rest of the publication is organized as follows. Section 2 considers related works. In Section 
3 important performance concepts related to capabilities and services are defined. Section 4-5 
presents the Level 1 and 2 issues as defined above. Section 4 presents entities and adaptability 
functions, while Section 5 presents adaptability types. Section 6 presents adaptability supporting 
architectures. In Section 7-8 capability-related adaptation is handled. Section 7 defines a goal-
based policy ontology, and Section 8 presents an example case demonstrating the use of this 
ontology. Summary and conclusions are presented in Section 9. 

 

2. RELATED WORKS 
In Section 1 and the Sections 3-7 some references to related works [1-21] are presented. In this 
Section additional references [22-28] are provided. Existing service system frameworks that 
support run-time self-management and adaptation can be classified according to how the 
management and adaptation functionalities are specified. Some works propose to use templates 
[22] or adaptation classes [23] for specification. However, such approach lacks flexibility. All 
possible adaptation cases must be known, and new adaptation cases require re-compilation. The 
architecture presented in this publication specifies the adaptability functionality based on 
Extended Finite State Machines, Reasoning Machines and Learning Mechanisms, to be 
dynamically modified during run-time. For Extended Finite State Machine specifications, an 
update of changes is done by deployment of the whole specification.  For Reasoning Machine 
and Learning Mechanism, only incremental changes of policies and goals are deployed. The 
complete policy and goal based functionality, however, need to be validated before deployment 
of the incremental changes.  
 
There are several works that use policies to specify the adaptation, such as [3, 4], [24], [25-28]. 
In [24] a framework that defines autonomic applications as dynamic composition of autonomic 
elements is described. Our approach as well as the approaches described in [3, 4, 25-28] go 
beyond by adding mechanisms to adapt policies or the way of using policies. Such policy 
adaptation can be grouped into three categories: 1) changing the policy parameters, considered 
in [3, 4, 25, 26]; 2) enabling/disabling a policy, found in [3, 4, 25]; 3) using techniques to select 
the most suitable policy and action; for instance, rewarding policies and their actions, presented 
in [27, 28]. Our approach is of category 1 and 3. Tesauro et al. [27] presented a hybrid 
reinforcement technique used for resource allocation in multi-application data centers. This 
technique is to select optimal policies that can maximize rewards. Mesnier et al. [28] used 
decision trees to select accurate policies in storage systems.  
 

3. CAPABILITY AND SERVICE PERFORMANCE CONCEPTS 
A capability is here defined as an inherent property of a node used as a basis to implement 
services. A service component may need capabilities to be allocated before deployment and 
instantiation. Capability types are classified as resources, functions and data. Resource 
examples are CPU, memory, transmission links, sensors and batteries. Within network 
management the concept managed objects is used. Managed objects such as MIB (Management 
Information Base) objects in SNMP [7] and CIM (Common Information Model) objects in 
WBEM (Web-based Enterprise Management) [8] are considered as capabilities. 

Capability parameter describes the characteristics of a capability type and can be classified as 
functionality, performance and inference parameters [9]. Functionality parameters define 
functionality features, performance parameters define performance measures and inference 
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parameters define logical relations to other capability types. Capability performance parameters 
can further be classified as: capacity parameters, state parameters and QoS parameters. 
Capability capacity parameters examples are transmission channel capacity, the number of 
streaming connections and CPU processing speed. Capability state parameters examples are 
number of connections, and the number that is waiting.  Capability QoS parameter examples are 
transfer time, throughput, utilization, availability and recovery time after errors. The services 
provided to the service user can in the same way as capabilities be described by functional and 
performance parameters. Service performance parameters are further classified as state and 
QoS parameters.�The capability and service performance provided at an observed time instance 
or during an observation time interval are denoted as inherent capability and service 
performance.    

Service level agreements (SLA) are agreements between the service users and the service 
provider.  The agreement can contain elements such as: required service functionalities and 
performance, payment for the service when the agreed performance is offered and penalty in 
case of reduced performance. �The service can be differentiated in various QoS classes. This 
QoS class will be reflected in the SLA. A service component can generally handle user services 
related to several QoS classes. 

 

4. ENTITIES AND FUNCTIONS 
4.1. Entities 

Entities related to the life-cycle of an adaptable service system are illustrated in Figure 1. The 
service framework is constituted by the Primary Service System itself, the Service Creation 
System, the Service Repository, and the Network and Service Management System. The 
environment is constituted by the administrative Service Provider and the Service User. The 
Primary Service System provides services to the Service Users, while the Network and Service 
Management System provides management services to the Primary Service System.  Both the 
Primary Service System and the Network and Service Management System are service systems 
according to the definitions in Section 1. The boundary between these systems highly depends 
on the nature of the primary service, the nature of the service management functionality, and 
how the various functions are realized in software components. Some management 
functionalities can be integrated in the software components executing the primary service 
functionality. In the figure this is denoted as delegated management. 

 

 

Figure 1.  Service life-cycle Entities  
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4.2. Functions 

The functionalities of the service framework entities are here grouped in the functionality 
groups: Service Creation, Node Configuration, Service Configuration, Service Provisioning, 
and Monitoring and Diagnosis as illustrated in Figure 2. This system of functionality groups and 
functions are parallel and continuous. The functions in the functionality groups are not 
necessarily single functions and can in some cases be considered as functionality sub-groups. 
With reference to Figure 1, Service Creation is done by the Service Creation Node 
Configuration, Service Configuration, Service Provisioning, and Monitoring and Diagnosis are 
done in cooperation between the Network and Service Management System and the Primary 
Service System. 

 

 
 

Figure 2.  Service Life-cycle Functionalities 
 
Concerning the sub-functionalities of Node Configuration, installation is the provision of the 
physical existence of the component, while registration is the logical registration of nodes and 
capability instances. The physical installation is done by humans, while the logical registration 
can be done by a service system. But this functionality will normally require cooperation with a 
monitoring function that can detect the physical presence of the component. Platform re-
installation can generally be the installation done after a failure of a node, but can also be the 
installation of a new version of the platform software.  
 
Concerning the sub-functionalities of Service Configuration, Service selection is primarily a 
function used in cases where change of context needs a new service. Capability configuration 
comprises Capability parameter configuration as well as Node selection. Capability parameter 
configuration is the validation and settings of node capability parameter values according to a 
capability parameter configuration specification. Node selection is the selection of node with 
respect to the required capability functionality and performance defined for the service. 
Capability usage allocation determines the usage of allocated capabilities. Service installation 
is the deployment of the service components constituting a service system. Service update is 
here indicated as a different function. This is because an update does not need to comprise a 
new complete installation of all service components constituting a service system. Instantiation 
starts the execution of the installed or updated service components. Service component (de-) 
registration is the (de-)registration of the service component instance in a system that provides 
an overview of the instantiated service component instances. Capability re-configuration can in 
general initiate the movement of service components. Service component movement is different 
from installation in general as it includes the movement of an instance of a service component 
with present states and local variable values 
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Service Provisioning comprises Normal service provisioning as well as Degraded service 
provisioning as realised by the Primary Service System as illustrated in Figure 1. Degraded here 
refers to degraded service and capability performance that require adaptation actions. With 
respect to Figure 2, adaptation actions can be Capability usage re-allocation only, but in more 
serious cases it can comprise Capability re-configuration, Capability usage re-allocation, 
Service component movement, Service component instantiation, as well as Service component 
de-registration and Service component registration. 
 
Concerning the sub-functionalities of Monitoring and Diagnosis, Node monitoring monitors the 
existence and liveness of nodes, Capability monitoring monitors the existence of capability 
types and the parameter values, and Service monitoring monitors the existence, liveness, 
functionality and performance of service components. Update monitoring is the monitoring for 
the existence of service system software updates in the service repository, Fault diagnosis 
detects failures related to nodes, capabilities and service components, and Performance 
diagnosis detects mismatch between required and inherent service and capability performance.  
 
Context is here related to the adaptability terrain, i.e. the environment in which the adaptable 
system operates. The terrain can be classified as physical or logical. Physical terrain context is 
defined by physical positions as well as the state of the terrain. Physical positions can be 
absolute position of the node executing the adaptable service system as well as positions 
relatively to other nodes and objects. State measures can be terrain type, temperature, 
concentration of gases, friction, fluidity, etc. A logical terrain is defined by logical positions 
and application layer associations between service components. Physical terrain examples can 
be streets, buildings on fire, collapsed buildings, water and nature. One adaptable system 
scenario is a robot snake [10] operating in a house on fire changing the movement type 
according to the terrain type as well as to blocked ways. Service examples are measurements, 
searching humans, video recording and the spraying of water. As nodes operating in a physical 
terrain also can have wire-less communication, they will both operate in a physical and logical 
terrain. One example service system is a robot soccer play where the various players in the team 
has roles and interact logically in addition to the behaviour defined from the monitoring made 
by physical sensors [11]. Context can also be defined to include capabilities, such as memory, 
CPU, battery, bandwidth as well as user preferences and profile [12]. User preferences and 
profile are here considered as data and are not visible in the functionality models presented. 

 

5. ADAPTABILITY TYPES 
Adaptability types are here classified as Capability-related, Functionality-related and Context-
related adaptation. Capability-related adaptation is here defined as the ability to adapt because 
of shortage of capabilities with appropriate logical functionality or overload or failure. 
Functionality-related adaptation is the ability to adapt to new functionality requirements, and 
Context-related adaptation is the ability to adapt to context changes as defined in Section 3.  

As capabilities are the basic fundament for the implementation of service systems, a needed 
property for any adaptability type is to be aware of node and capabilities and the ability to 
configure service systems according to the present availability of nodes and capabilities. This is 
denoted as basic capability awareness. The needed functionality is illustrated in Figure 3. In 
this case there is assumingly no failures and overload. Installation of new versions of the 
platform software is not part of the functionality considered in the architecture models presented 
in this publication. The functionalities needed for the various adaptability types are defined as 
follows:  
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Figure 3.  Basic Capability Awareness 

1) Capability-related adaptation�needs functionality as illustrated in Figure 4. The functionality 
needed for basic capability awareness is illustrated in grey. The added needed functionality 
needed is illustrated in blue. In addition to the Basic Capability Awareness Platform (re-) 
installation, Service component (de-) registration, Service component movement, Degraded 
service provisioning, Service monitoring, Fault diagnosis and Performance diagnosis is needed. 

 

 
 

Figure 4. Capability-Related Adaptation 
�

2) Functionality-related adaptation: In addition to the functionalities of Capability-related 
adaptation, the following functionality is needed: Service (re-) specification, Service (re-) 
integration, Service (re-) validaton, Service repository update, Update monotoring and Service 
updating. Fault and failure diagnosis are included for covering the cases where faults or 
performance leads to redesign of the service system software. Degraded service provisioning 
covers cases where new software needs capability re-configuration because of reduced 
performance. Service creation functionalities must have involvement by humans. The 
functionalities that can be automated are Service repository update and Service update [13].  
 
3) Context-related adaptation: In addition to Basic capability awareness the following 
functionality is needed: Service Monitoring, Context monitoring and Service Selection. 
Context-related adaptation is related to terrain as defined in Section 4. Context defined by 
physical position is used in a wide variety of commercial user services related to ticket sales, 
visiting touristic places, restaurant services etc. [12]. Context-related adaptation is to some 
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extension pre-programmed. Physical terrain adaptation is programmed mathematically. Logical 
adaptation is realized by client applications, i.e. client service components that flexibly are able 
to interwork with new server service components. Mostly user interaction is also needed to 
select among the available applications. 
 
6. ADAPTABILITY SUPPORTING ARCHITECTURES  

6.1. General 

The service framework is constituted by a computing architecture and a service functionality 
architecture. This is the same architecture structure as applied in TINA [14]. The computing 
architecture has concepts for the specification of service system behaviour. The architecture that 
describes the structure of services functionalities is denoted as service functionality architecture. 
An execution platform must support the concepts of the computing architecture and also provide 
management support for the service systems as illustrated in Figure 5. The management 
functionality which is a part of the service functionality architecture comprises both network 
and service management functionality. 
 

 

Figure 5. Functionality, Architecture and Platform 
 

6.2. Computing Architecture 

6.2.1. Service Layer and Physical Layer 

A computing architecture based on two abstraction layers is illustrated in Figure 6. These two 
layers are denoted as service layer and physical layer. This is a generalization of the three-layer 
TAPAS model [3]. Several architecture models with a variable number of layers have been 
proposed. In [15], a five-layer model is presented. 
 
The service layer defines the service constituted by service components. Leaf service 
components are realized by Actors. Actors are executed as operating system software 
components.  The service system is specified by EFSMs (Extended Finite State Machines), 
goals and policies. Actors are EFSM interpreting mechanisms. The service components are 
implemented by a combination of Actors, Reasoning Machine (RM) and Learning Mechanisms 
(LM). EFSMs can activate RM and LM, and the EFSM can use the RM to select appropriate 
actions in situation when strategic decisions are needed. RM and LM models will be described 
in Section 7.  
 
6.2.2. Service Component Features 

The service components have features in addition to the service behavior execution. The 
following features must be supported: i) Renewal of Service Component EFSM behavior 
specification ii) Renewal of Policy and Goal specifications, iii) Movement of Service 
component while preserving state, variables and messages, and iv) Management of Service 
component EFSM states.  
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These features need support of management functionality. During runtime new versions EFSM 
functionality, policy and goal specifications can be downloaded and instantiated. Service 
components can be moved by instantiating a new Actor in a new node. Some of the EFSM 
states are classified as stable states. A stable state is a state where the functionality of a service 
component can move safely and be re-instantiated. Re-instantiation includes the restoration of 
EFSM state, EFSM local variables, and queued messages.  
 
Actors can manage its EFSM states and local variables based on received EFSM input messages 
as well as responses from the Reasoning Machine. The generic Actor states are: {Initial, 
Normal, Degraded, Moving, Idle, Terminated}. A service component is instantiated in Initial 
state in a node where the required capability functionalities and performances are met. In 
Normal state services are provided with satisfactory performance. In Degraded state the 
performance is considered too low. Adaptation can be initiated to return to Normal state. In 
Moving state an Actor is moved and re-instantiated in a new node. In Idle state the execution of 
current EFSM specification is ended and allocated capabilities are released. From this state an 
Actor can be initiated as new service component in Initial State. 
 

 
 

Figure 6.  Computing Architecture 

 
6.2.3. Computing Architecture and Adaptability Features 

As previously stated, the adaptability functionality is realized by a combination of concepts and 
mechanisms of the computing architecture and supporting management functionality. The 
computing architecture has a service layer and a physical layer and has functionality and 
performance concepts both related to capability and service. This provides a basis for basic 
capability-related awareness, which is the basis for all adaptation types defined. The architecture 
further opens for service systems defined by flexible combination of EFSM-, goal-, and policy 
specifications combined with Learning Mechanisms. The two-layer architecture combined with 
the flexible Actor execution behaviour also makes adaptation during runtime possible. The 
model as defined, however, is open with respect to the goal and policy ontology applied and 
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also to the realization of Reasoning Machine and Learning Mechanism. This basic model should 
make it possible to define and implement all adaptation types as defined in Section 5.  
 
Concerning functionality-related adaptation, it is emphasized that is only the service 
configuration features of functionality-related adaptation that is feasible. Concerning context-
related adaptation the model is open to any use of sensor capabilities. This model is however a 
generic model. In specific application cases, refinement and elaboration is needed.  
 

6.3. Service Functionality Architecture 

The service functionality architecture consists of primary service functionalities and the 
management functionality components as illustrated in Figure 7. The following five repositories 
are defined: Service specification repository (SpcRep), Capability type repository (CapRep), 
Inherent capability and service repository (InhRep), Context repository (ConRep) and Platform 
repository (PltRep). SpcRep stores the services behavior specifications, SLAs and required 
capability functionality and performance specifications. CapRep stores the capability type 
concepts. Several languages are used for capability type definition. Examples are SNMP MIB-
objects defined by ASN.1 [7], WBEM CIM objects defined by XML [8] and NETCONF [16] 
objects based on YANG [17]. In TAPAS platform [5] capability ontology is represented by 
OWL [18] and OWL/XDD [19]. InhRep stores data about available nodes, capability instances 
and instantiated service components. This comprises the address of the Actor realizing the 
service component, service type reference, state of the Actor, and Capability and Service 
performance parameter values. ConRep stores predefined context states while PltRep stores 
programs needed to execute service functionality. With respect to the physical view of the 
computing architecture, PltRep comprises Actor, Reasoning Machine and Learning Mechanism 
software. 

�
Figure 7.  Service Functionality Architecture 

The functionality components as illustrated in Figure 7 implement functions for capability-
related, functionality-related and context-related adaptation as defined in Section 5. The 
functions Capability Configuration (CC), Capability Usage Allocation (CU), Service 
Component Movement (SM), Platform Installation (PI), Fault Diagnosis (FD) and Performance 
Diagnosis (PD) correspond directly to functions defined in Section 4. 

Capability and Service Administration (CSA) performs Node (de-) registration, Capability (de-) 
registration and Service component (de-)registration. A view of InhRep is also provided. 
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Capability and Service Monitoring (CSM) performs Node, Capability and Service monitoring. 
The result of the monitoring is reported to CSA. Capability Configuration (CC) generates 
configuration plans for service components. A configuration plan defines the node for 
deployment and instantiation.  Capability Usage Allocation (CU) allocates capabilities in 
accordance with the present performance, SLAs and the optimization criteria chosen by the 
service provider. Service Installation and instantiation (SII) comprises deployment of EFSM, 
goal and policy specifications, as well as the execution of the configuration plan. Service 
Component Movement (SM) manages the ongoing sessions on behalf of a moving service 
component during movement. In TAPAS it forwards received messages after a service 
component is re-instantiated in a new location. SM will by broadcasting inform other service 
components of the “Moving” and “Normal” states of the moving component.  

Context Administration (CA) monitors context and initiates configuration of context-dependent 
application software. Platform Installation (PI) is bootstrap functionality installing needed 
platform software when nodes are (re-) started. Adaptation Administration (AA) plans and 
administers re-configuration initiated by non-wanted events or states during the normal service 
system execution. This can be initiated by FD, PD, CA, or by a human administrator. The re-
configuration can result in CU only, or the combination of CC and CU, including SM and SII.  

Primary service components basically implement the service provisioning as illustrated in 
Figure 2. There is, however, not always a clear boundary between primary service functionality 
and management functionality. Most primary service systems need capabilities and functionality 
components such as PD, CU and CC. Such functionalities can often be designed as part of the 
primary service system. 

 
7. A GOAL -BASED POLICY ONTOLOGY FOR CAPABILITY -RELATED 

ADAPTATION  
An ontology is a formal and explicit specification of a shared conceptualization [20], containing 
both object types and functions operating on instances of object types. We can define 
independent concepts and relational concepts.  Logic concepts can be defined by mathematical 
logics, e.g., if-then-else or by rules [9].  

7.1. A Static Model based on Reasoning Machine 

Figure 8 presents a goal-based policy ontology. At the top level we have goal, policy and 
inherent state. This model is denoted as static because there is no feed-back from a Learning 
Mechanism that rewards actions that have the ability to bring the system to states that complies 
with the defined goals. 

As a basis for the optimal adaptation, required performance as well as prices and penalty 
agreements defined in the SLAs must be taken into consideration.  Service income includes the 
estimated income paid by the users for using services in normal QoS conditions and the penalty 
cost paid back to the users when the service qualities and functionalities are lower than defined 
by SLA. In general, goal, policy and inherent state concepts have the SLA class as a parameter. 
The inherent states of the service components can comprise measures related to functionality, 
performance and income. The goal is defined by a goal expression and a weight. The goal 
expression defines a required system performance or service income measure. A goal example 
is: “Service response time of premium service SLA class < 2 secs”. The goal weight identifies a 
goal's importance. A goal can be associated with a set of policies. A policy is defined by 
conditions, constraints and actions. The condition defines the activation of the policy execution. 
The constraint restricts the usage of the policy, and is described by an expression of required 
and inherent functionality and performance of services and capabilities, required and inherent 
service incomes, available nodes and their capabilities, as well as system time. A policy 
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example related to the goal example given above is: “If CPU utilization > 95% and the time is 
between 18:00-24:00, ignore new service requests of users of ordinary SLA classes that request 
service time > 2 mins”. It is expressed with Conditions: CPU utilization > 95%, Constraints: 
system time between 18:00-24:00 and service time request > 2 minutes, and Actions: ignore 
new service requests of users of ordinary SLA classes. 
 

 
 

Figure 8.  A Static Goal-based Policy Ontology 

Table 1 lists notations used for capability, service and income concepts. The required capability 
functionality and performance are service component defined requirements. Required service 
functionality and performance are SLA defined requirements. 
 

Table 1.  Capability, service and income concepts notation 

Notation Description 
  � R Required capability performance set  
  � I Inherent capability performance set  
CR  Required capability functionality set  
CI  Inherent capability functionality set  

  � A,n Set of available capabilities in node n; n=[1, N] 
  � R Required service performance set  
  � I Inherent service performance set   
SR  Required service functionality set  
SI  Inherent service functionality set 

  IR Required service income 
  II Inherent service income 
 

An RM model R extended from [3, 4] is now defined as:    

R º  { Q, F , P, x }                                                                       (1) 
 

Here Q is a set of query expressions with variables, F  is a generic reasoning procedure, P is a 
set of policies and x is the data including the inherent states values. The expression (1) can be 
further elaborated as follows:  

x º  ( SI , � I, CI , � I, II, � A,n; n=[1, N])                                                                                 (2) 
P º  { p i }                                                                                                                         (3) 
pi º  (� i, Xi, Ai)                                                                       (4) 
� i º  Expression(SI , � I, CI , � I, II)                                                                                 (5) 
X i º  Expression(SR , � R, CR , � R, IR, SI , � I, CI , � I, II, � A,n; n=[1, N], G)   (6) 
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A policy pi has conditions � i, constraints Xi and actions Ai. The condition is an expression of the 
inherent states of relevant service components. The constraint is an expression of required 
functionality and performance of services and capabilities, required service incomes, relevant 
service components, available nodes and their capabilities, as well as the system clock time G. 

A reasoning procedure is applied to select appropriate actions with maximum accumulated 
rewards. It is based on Equivalent transformation (ET) [21], which solves a given problem by 
finding values for the variables of the queries. The conditions, constraints and actions can have 
variables. The result of the reasoning procedure can, in addition to actions, give instantiated 
variables. 

7.2. A Dynamic Model based on a Learning Mechanism 

The static model presented in the previous subsection can be made dynamic by introducing a 
Learning Mechanism (LM) and by adding the parameters Accumulated Reward and Operation 
Cost in the model as illustrated in Figure 9. 

 
 

Figure 9. Making a Dynamic Goal-based Policy Ontology. 

The proposed LM model gives rewards to actions to be selected by RM. The reward is measure 
for the ability to move towards a state with goal performance and income measures. The 
rewards will be accumulated over a period of time. The LM model L is defined as: 

L º  { W, L , Y, z }                                                                                                     (7) 
 
where W is a set of goals, L  is a generic rewarding procedure, Y is a reward database storing 
the accumulated rewards of actions, and z is the LM data including the inherent states from  this 
service component as well as other service components. We further have: 
 

z º  ( SI , � I, CI , � I, II)                                                                                     (8) 
W º  { gk }                                                                                                       (9) 
gk º  (dk, wk)                                                                                  (10) 

 
A goal gk has goal expression dk and weight wk. The sum of the goal weights is equal to 1. At 
time t, the rewarding procedure will calculate the reward of an action ai, which was applied at 
time t-1 as: 
 

reward(ai,ik,t-1,dk) = (D(ik,t,ik,t-1)/D(dk,ik,t-1)) * wk - cost(ai)                                        (11) 
 
where ik,t-1 and ik,t are an inherent state measure before and after applying the action for an 
monitoring interval [t-1, t], ik Î  z and dk is an associated goal required measures. D(ik,t,ik,t-1) is the 
difference between ik,t and ik,t-1. D(dk,ik,t-1) is the difference between dk and ik,t-1. wk is the goal 
weight and cost(ai) is the operation cost of ai. The measure accumulated_reward(ai,ik,t-1,dk), is 
then the sum of the rewards of an action ai for an inherent state measure ik,t-1 and a goal measure 
dk. Equation (2) is accordingly modified as follows to include the reward database Y:  

 
x º  ( SI , � I, CI , � I, II, Y , � A,n; n=[1, N])      (2’) 
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8. CASE STUDY  
An example music video streaming system is presented with the intention to demonstrate the 
Reasoning Machine and Learning Mechanism behaviour models as presented in Section 7. The 
streaming system is illustrated in Figure 10. The streaming case is the same as applied in a 
previous work [4]. The goal-based policy and the Learning Mechanism, however, were not 
applied in [4].  

The system is constituted by the following service components implementing the service 
functionalities as defined in Section 6:  Capability and Service Administration (CSA), 
Capability and Service Monitoring (CSM), Fault Diagnosis (FD), Capability Configuration 
(CC), Service Installation and Instantiation (II ), Service Component Movement (SM) and 
Primary Service Components (PSC).  
 

 
 

Figure 10. An Example Streaming System 

In accordance with the previous discussion of boundary between primary service functionality 
and service management functionality, Capability Usage Allocation as well as Performance 
Diagnosis as defined in Section 4, is now realized by PSCs. The PSCs are Streaming Client 
(STC), Streaming Manager (STM) and Streaming Server (STS). An STS, executing on a media 
streaming server (MS), streams the music video files to STCs. STM will accept the streaming 
requests on behalf of STSs. STM will decide which STS that can serve the requests, or STM 
may put them in waiting queues. STM can also instantiate a new STS in an available MS 
without executing STS.  

An STC is associated with an SLA class, which defines required streaming throughput, price 
for the service and service provider penalties if the agreed QoS cannot be met. Two SLA 
classes are applied: premium (P) and ordinary (O). An STC is denoted by its SLA class as STCP 
or STCO. Each SLA class has different required throughput (X); the STCP required throughput 
(XP) can be 1Mbps or 600Kbps for high-resolution and degraded fair-resolution videos, while 
the STCO required throughput (XO) is 500Kbps for low-resolution videos. The MS’s required 
access link capacity (CR,AL) is set to 100 Mbps. The number of STCs that can use the service at a 
time is limited by the MS access link capacity. When the required streaming throughput cannot 
be provided, a STC needs to wait until some streaming connections have finished. An STCO can 
be disconnected, while an STCP may have to degrade the video resolution. The service 
provider will pay penalties in case of waiting and disconnection of the STC.  

The penalty and price functions are given in Table 2. A cost unit is the price paid by an 
ordinary client for one second streaming of the rate 500Kpbs. The price function for 
using the service is M(SLA_Class,X) (cost units/second). The penalty function for 
waiting is PWAIT(SLA_Class) (cost units/second), and the penalty function for 
disconnection is PDISC(SLA_Class) (cost units/connection). 
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Table 2.  Prices and penalty functions 

  STCO 

(XO=500Kbps) 
STCP 

 (XP=600Kbps) 
STCP 

    (XP=1Mbps) 

  M(SLA_Class,X)/s 1 1.875 2 

  PWAIT(SLA_Class)/s                  5 10 10 

PDISC(SLA_Class)/Connection 10 - - 
 

The complete set of actions A = {aD, aB, aN, aI, aR, aT, aM} and a subset Á=A–{aM}.The action aD 

disconnects the ordinary clients, aB decreases the throughput of the premium clients. The action 
aN instantiates a MS, aI instantiates a new STS, aR disconnects a MS, aT terminates an STS and 
aM moves connected client sessions from an STS to another STS. These actions are selected by 
the Reasoning Machine of STM. STM executes aN, aI, aR and aT, while STM suggests aD, aB and 
aM to STSs.  
 
The considered capability is the MS access link. The required and inherent capability 
performance sets are denoted as � R º  {CR,AL} and � I º  {C I,AL}, where CR,AL is the required 
access link capacity, and CI,AL is the available access link capacity. The inherent service 
performance set � I consists of the number of connected and waiting premium and ordinary 
clients (NCon,P, NCon,O, NWait,P, NWait,O), the number of disconnected ordinary clients (NDisc,O), the 
number of MS (NNode), the service time and waiting time of premium and ordinary clients 
(TServ,P, TServ,O, TWait,P, TWait,O). These values as well as the inherent service income (II) are 
observed per a monitoring interval � . The service income is defined as: 
 

I I = M(STCO,XO)*T Serv,O + M(STCP,XP)*T Serv,P – 
           PWAIT(STCO)*T Wait,O – PWAIT(STCP)*T Wait,P – PDISC(STCO)*NDisc,O – PSer*NNode* �    (13) 
 
where PSer is the cost function for adding a new MS which is 150 units/second per node, while 
M(SLA_Class,X), PWAIT(SLA_Class) and PDISC(SLA_Class) are as already defined in Table 2. 

 

8.1. RM and LM Specification 

In this case study, STM plays an important role. Its RM specification is defined as follows: 
 

RSTM º  { QSTM, F , PSTM, xSTM }                                                              (14) 
 
PSTM consists of five policies (p1-p5) as presented in Appendix.  The LM applied by STM is 
defined as follows: 

 
LSTM º  { WSTM, L , Y STM, zSTM }                                                                   (15) 
WSTM º  { g1, g2}                                                                                              (16) 
g1 º  (d1: IR > 0, w1: 0.8)                                                                                            (17) 
g2 º  (d2: TWait < � , w2: 0.2)                                                                                (18) 

 
Here IR is the required service income, and TWait is the sum of the waiting time of premium and 
ordinary clients. These goals are set in order to gain high income and to avoid high waiting 
time. The policies p1-p5 can be used when the required service income is not met, while the 
policies p1-p3 are used when the waiting time is higher than expected. 
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8.2. Experiments and Results 

The measures considered are accumulated service income and the accumulated waiting time. 
The streaming request arrivals are modelled as a Poisson process with an arrival intensity 
parameter � SLA_Class. The duration of streaming connections dSLA_Class is constant and is set to 10 
minutes. The traffic per MS access link �  is defined as: 

 

�  = ((� P*dP*X P) + (� O*dO*X O))/ (NNode*CI,AL)                                                     (19) 

 
The monitoring interval �  is 1 minute. The STCs will stop waiting, and there is no penalty for 
waiting after 10 minutes. The number of available MS = 3. Initially, only one STS in one MS is 
instantiated. Three cases are considered: 

I. The complete set of actions A is used,  
II.  The action subset Á is used.  

III.  Action set is A as in Case I, but no Learning Mechanism is used.  
 

 
 

Figure 11.  Accumulated service income. 

Figure 11 and 12 show the accumulated service income and the accumulated waiting time of 
three cases I, II and III. The traffics offered are a function of time. The time with �  at a fixed 
level, denoted as the �  period, is set to 30 minutes. �  varies from 0.2 to 1.2. � P is set to 50% of 
the total arrival intensity. 
 
The brown line in these figures shows the variation of � . In Case I, the system learned that {aM, 
aT and aR}, which move connected STC sessions, terminate an STS and disconnect a MS 
consecutively, is efficient to adapt the system when �  drops and then the required service 
income is not met. As a result, Case I could produce the highest accumulated service income 
and the lowest accumulated waiting time. For the last case, the actions were selected randomly 
and they were not appropriate to the states of unwanted service income and the waiting time. 
So, the accumulated service income of Case III was the lowest, while the accumulated waiting 
time was the highest. So the Learning Mechanism applied has positive influence on both service 
income and waiting time. 
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Figure 12. Accumulated waiting time. 

 
9. SUMMARY AND CONCLUSIONS 
Issues of adaptability of networked service systems both within a general and a scoped view 
have been presented. The general view considers issues of adaptation at two levels: 1) System 
of entities and functionalities related to the service system life-cycle, and adaptability types with 
required adaptability functionality, and 2) Architectures supporting adaptability. The 
adaptability types defined are capability-related, functionality-related and context-related 
adaptation. The architecture supporting adaptability is constituted by a computing architecture 
and service functionality architecture. The computing architecture has two layers represented by 
a service layer and a physical layer. The adaptability functionality is realized by Actors 
interpreting EFSM specifications supported by a Reasoning Machine and a Learning 
Mechanism. The presented computing architecture has functionality and performance concepts 
both related to capability and service. This provides a basis for basic capability-related 
awareness, which is the basis for all adaptation types as defined in Section 5. The architecture 
further opens for service systems defined by flexible combination of EFSM-, goal-, and policy 
specifications combined with Learning Mechanisms. The two-level architecture combined with 
the flexible Actor execution behavior also makes adaptation during runtime possible. This basic 
model should make it possible to define and implement all adaptation functionalities as defined 
in Section 5. In specific application cases, refinement and elaboration is needed.  
 
The scoped view considers capability-related adaptation. A goal-based policy ontology was 
presented. It is realized by EFSMs, Reasoning Machine and Learning Mechanism. Finally a 
case study was presented to demonstrate the use and efficiency of the goal-based policy 
ontology as well as its realization by concrete policies and learning algorithm. Performance 
measures considered are service income and waiting time. For the considered cases, the 
Learning Mechanism has positive influence on the performance measures considered. 
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APPENDIX: POLICY SPECIFICATIONS  

The five policies (p1-p5) used in the case study are specified by OWL [18] and OWL/XDD [19]. 
Variables are integrated with ordinary OWL elements and are prefixed with $. 
 

 p1  

Conditions: $II <= 0 or $TWait >= � ,  
Constraints: PWAIT(STCO) < PWAIT(STCP), 
Actions: {aD}  
Operation Cost: aD costs PDISC(STCO) units. 
This policy can be read as:  aD should be used to disconnect a list of STCO when PWAIT(STCO) < 
PWAIT(STCP), and the number of STCO being disconnected is calculated from XP,1Mbps * $NWait,P / 
XO.      

 p2  

Conditions: $II <= 0 or $TWait >= � ,  
Constraints: PWAIT(STCO) > M(STCP,XP,1Mbps)-M(STCP,XP,600Kbps), 
Actions: {aB},  
Operation Cost: aB costs M(STCP,XP,1Mbps) - M(STCP,XP,600Kbps) 
This policy can be read as: aB should be used to decrease the throughput of a list of STCP when 
PWAIT(STCO) > 
M(STCP,XP,1Mbps) - M(STCP,XP,600Kbps), and the number of STCP to decrease the throughput is 
calculated from XO * $NWait,O  / (XP,1Mbps - XP,600Kbps). 

 p3  

Conditions: $II <= 0 or $TWait >= � ,  
Constraints: (XP, 1Mbps * $NWait,P  + XO * $NWait,O) / CR,AL > 0.1, 
Actions: {aN, aI},   
Operation Cost: The actions {aN, aI} cost PSer * �  
This policy can be read as: aN and aI should be used to instantiate a MS and to instantiate a new 
STS consecutively, when (XP, 1Mbps * $NWait,P  + XO * $NWait,O) / CR,AL > 0.1.  

 p4 

Conditions: $II <= 0,  
Constraints: (XP, 1Mbps * $NWait,P  + XO * $NWait,O) / CR,AL < 0.1, 
Actions: {aT, aR},   
Operation Cost: The actions {aT, aR} cost PDISC(STCO) + PWAIT(STCP) – PSer * �    
This policy can be read as: aT and aR should be used to terminate an STS and to disconnect a MS 
consecutively, when (XP, 1Mbps * $NWait,P  + XO * $NWait,O) / CR,AL < 0.1.  

 p5  

Conditions: $II <= 0,  
Constraints: (XP, 1Mbps * $NWait,P  + XO * $NWait,O) / CR,AL < 0.1, 
Actions: {aM, aT, aR},  
Operation Cost: These actions {aM, aT, aR} make profit PSer * �  
This policy can be read as: aM, aT and aR should be used to move connected STC sessions, to 
terminate an STS and to disconnect a MS consecutively, when (XP, 1Mbps * $NWait,P  + XO * 
$NWait,O) / CR,AL < 0.1.  
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