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ABSTRACT 

This paper investigates the hybrid chaos synchronization of identical Arneodo systems (1981), identical 

Rössler systems (1976) and non-identical Arneodo and Rössler systems. In hybrid synchronization of 

chaotic systems, one part of the systems is synchronized, while the other part is anti-synchronized so that 

complete synchronization (CS) and anti-synchronization (AS) co-exist in the systems. The co-existence of 

CS and AS is very useful in secure communication and chaotic encryption schemes. Active nonlinear 

control method is used for hybrid synchronization of the Arneodo and Rössler systems and the 

synchronization results have been proved using Lyapunov stability theory. Since the Lyapunov exponents 

are not required for these calculations, the active control method is very effective and convenient to achieve 

hybrid synchronization of the Arneodo and Rössler systems. Numerical simulations are shown to verify the 

results. 
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1. INTRODUCTION 
 
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Chaos is an 

interesting nonlinear phenomenon and has been extensively and intensively studied in the last two 

decades [1-23]. Chaos theory has been applied in many scientific disciplines such as 

Mathematics, Computer Science, Microbiology, Biology, Ecology, Economics, Population 

Dynamics and Robotics. 

 

In 1990, Pecora and Carroll [2] introduced a method to synchronize two identical chaotic systems 

and showed that it was possible for some chaotic systems to be completely synchronized. From 

then on, chaos synchronization has been widely explored in a variety of fields including physical 

[3], chemical [4], ecological [5] systems, secure communications [6-7], etc. 
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In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

has been used. If a particular chaotic system is called the master or drive system and another 

chaotic system is called the slave or response system, then the idea of synchronization is to use 

the output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically.  

 

Since the seminal work by Pecora and Carroll [2], a variety of impressive approaches have been 

proposed for the synchronization of chaotic systems such as the sampled-data feedback 

synchronization method [8], OGY method [9], time-delay feedback method [10], backstepping 

method [11], adaptive design method [12], sliding mode control method [13], etc.  

 

So far, many types of synchronization phenomenon have been presented such as complete 

synchronization [2], phase synchronization [5, 14], generalized synchronization [7, 15], anti-

synchronization [16, 17], projective synchronization [18], generalized projective synchronization 

[19, 20], etc. 

 

Complete synchronization (CS) is characterized by the equality of state variables evolving in 

time, while anti-synchronization (AS) is characterized by the disappearance of the sum of 

relevant variables evolving in time. Projective synchronization (PS) is characterized by the fact 

that the master and slave systems could be synchronized up to a scaling factor, whereas in 

generalized projective synchronization (GPS), the responses of the synchronized dynamical states 

synchronize up to a constant scaling matrix .α It is easy to see that the complete synchronization 

(CS) and anti-synchronization (AS) are special cases of the generalized projective 

synchronization (GPS) where the scaling matrix Iα = and ,Iα = −  respectively. 

In hybrid synchronization of chaotic systems [20], one part of the system is synchronized and the 

other part is anti-synchronized so that the complete synchronization (CS) and anti-

synchronization (AS) coexist in the system. The coexistence of CS and AS is highly useful in 

secure communication and chaotic encryptation schemes. 

 

This paper is organized as follows. In Section 2, we derive results for the hybrid synchronization 

of identical Arneodo systems ([22], 1981). In Section 3, we derive results for the hybrid 

synchronization of identical Rössler systems ([23], 1976). In Section 4, we derive results for the 

hybrid synchronization of non-identical Arneodo and Rössler systems. The nonlinear controllers 

are derived using Lyapunov stability theory for the hybrid synchronization of the two chaotic 

systems. The proposed active control method is simple, effective and easy to implement in 

practical applications. Conclusions are contained in the final section. 

 

2. HYBRID SYNCHRONIZATION OF IDENTICAL QI SYSTEMS 
 
In this section, we consider the hybrid synchronization of identical Arneodo chaotic systems 

([22], 1981). 

 

 Thus, we consider the master system as the Arneodo dynamics described by 

        

1 2

2 3

2

3 1 2 3 1

x x

x x

x mx sx x x

=

=

= − − −

&

&

&

                                                                                          (1) 

where , ( 1, 2,3)ix i = are the state variables and ,s m are positive constants. 

The Arneodo system (1) is chaotic when 3.8s = and 7.5.m =  
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The chaotic attractor of the Arneodo system is shown in Figure 1. 

 

Figure 1. The Arneodo Chaotic Attractor 

We consider the Arneodo dynamics also as the slave system, which is described by   

              

1 2 1

2 3 2

2

3 1 2 3 1 3

y y u

y y u

y my sy y y u

= +

= +

= − − − +

&

&

&

                                                                          (2) 

where , ( 1, 2,3)iy i = are the state variables and , ( 1, 2,3)iu i = are the active controls. 

For the hybrid synchronization of the identical Arneodo systems (1) and (2), the 

synchronization errors are defined as  

                  

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= +

= −

                               (3) 

A simple calculation yields the error dynamics as 
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1 2 2 1

2 3 3 2

2 2

3 1 2 3 2 1 1 3

2

2

2

e e x u

e e x u

e me se e sx y x u

= − +

= + +

= − − + − + +

&

&

&

       (4) 

We consider the active nonlinear controller defined by 

1 2 2 1 1

2 3 3 2 2

2 2

3 1 2 2 1 1

2

2

2

u e x k e

u e x k e

u me se sx y x

= − + −

= − − −

= − + − + −

      (5) 

where 
1k and 

2k are positive constants. 

Substitution of (5) into (4) yields the linear error dynamics 

1 1 1

2 2 2

3 3

e k e

e k e

e e

= −

= −

= −

&

&

&

         (6) 

We consider the candidate Lyapunov function defined by 

( )2 2 2

1 2 3

1 1
( ) ,

2 2

T
V e e e e e e= = + +       (7) 

which is a positive definite function on 3.R  

Differentiating (7) along the trajectories of the system (6), we get 

  2 2 2

1 1 2 2 3( )V e k e k e e= − − −&  

which is a negative definite function on 3
R since 1k and 2k are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (6) is globally exponentially 

stable. Hence, we obtain the following result. 

Theorem 1. The identical Arneodo systems (1) and (2) are globally and exponentially 

hybrid synchronized with the active nonlinear controller (5).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (1) and (2) with the nonlinear controller (5). 

The parameters of the identical Arneodo systems (1) and (2) are selected as 3.8s = and 

7.5m = so that the systems exhibit chaotic behaviour. Also, we take 1 3k =  and 2 3.k =  

The initial values for the master system (1) are taken as 
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1 2 3(0) 10,   (0) 5,   (0) 12x x x= = − =  

The initial values for the slave system (2) are taken as 

  1 2 3(0) 5,   (0) 3,   (0) 4y y y= = = −  

Figure 2 exhibits the hybrid synchronization of the chaotic systems (1) and (2).   

Figure 2. Hybrid Synchronization of the Identical Arneodo Systems 

 

3. HYBRID SYNCHRONIZATION OF IDENTICAL RÖSSLER SYSTEMS 
 
In this section, we consider the hybrid synchronization of identical Rössler systems ([23], 1976).  

 

Thus, we consider the master system as the  Rössler dynamics described by 

  

1 2 3

2 1 2

3 1 3( )

x x x

x x ax

x b x c x

= − −

= +

= + −

&

&

&

         (8) 

where , ( 1, 2,3)ix i = are the state variables and , ,a b c are positive constants.  

The system (8) is chaotic, when the parameter values are taken as 0.2,  0.2a b= = and 5.7.c =  
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Figure 3. The Rössler Chaotic Attractor 

 

Figure 3 depicts the strange attractor of the Rössler system (8). 

We consider the controlled Rössler dynamics also as the slave system, which is described by 

1 2 3 1

2 1 2 2

3 1 3 3( )

y y y u

y y ay u

y b y c y u

= − − +

= + +

= + − +

&

&

&

       (9) 

where , ( 1, 2,3)iy i = are the state variables and , ( 1, 2,3)iu i = are the active controls. 

For the hybrid synchronization of the identical Rössler systems (8) and (9), the 

synchronization errors are defined as  

  

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= +

= −

         (10) 

A simple calculation yields the error dynamics as 
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1 2 3 2 1

2 1 2 1 2

3 3 1 3 1 3 3

2

2

e e e x u

e e ae x u

e ce y y x x u

= − − + +

= + + +

= − + − +

&

&

&

        (11) 

We consider the active nonlinear controller defined by 

1 2 3 2 1 1

2 1 2 1 2 2

3 1 3 1 3

2

2

u e e x k e

u e ae x k e

u y y x x

= + − −

= − − − −

= − +

       (12) 

where 
1k and 

2k are positive constants. 

Substitution of (12) into (11) yields the linear error dynamics 

 

1 1 1

2 2 2

3 3

e k e

e k e

e ce

= −

= −

= −

&

&

&

          (13) 

We consider the candidate Lyapunov function defined by 

  ( )2 2 2

1 2 3

1 1
( )

2 2

T
V e e e e e e= = + +         (14) 

which is a positive definite function on 3.R  

Differentiating (14) along the trajectories of the system (13), we get 

  2 2 2

1 1 2 2 3( ) ,V e k e k e ce= − − −&  

which is a negative definite function on 3.R   

Thus, by Lyapunov stability theory [24], the error dynamics (13) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 2. The identical Rössler systems (8) and (9) are globally and exponentially 

hybrid synchronized with the active nonlinear controller (12).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (8) and (9) with the nonlinear controller (12). 

The parameters of the identical  Rössler systems (8) and (9) are selected as 

           0.2,  0.2,  5.7a b c= = =  
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so that the systems (8) and (9) exhibit  chaotic behaviour.  

We take the gains as  

1 3k = and 2 3.k =  

The initial values for the master system (8) are taken as 

    1 2 3(0) 6,   (0) 15,   (0) 12x x x= = =  

The initial values for the slave system (9) are taken as 

  1 2 3(0) 1,   (0) 10,  (0) 3y y y= = =  

Figure 4 exhibits the hybrid synchronization of the Rössler chaotic systems (8) and (9). 

Figure 4. Hybrid Synchronization of the Identical Rössler Systems 

4. HYBRID SYNCHRONIZATION OF ARNEODO AND RÖSSLER SYSTEMS 
 
In this section, we consider the hybrid synchronization of non-identical Arneodo and Rössler 

systems. We take the Arneodo system as the master system and the Rössler system as the slave 

system in the hybrid synchronization of non-identical chaotic systems. 

 

Thus, we consider the master system as the Arneodo dynamics described by 
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1 2

2 3

2

3 1 2 3 1

x x

x x

x mx sx x x

=

=

= − − −

&

&

&

         (15) 

where , ( 1, 2,3)ix i = are the state variables and ,s m are positive constants.  

We consider the Rössler system as the slave system, which is described by   

   

1 2 3 1

2 1 2 2

3 1 3 3
( )

y y y u

y y ay u

y b y c y u

= − − +

= + +

= + − +

&

&

&

        (16) 

where , ( 1, 2,3)iy i = are the state variables, , ,a b c are positive constants and , ( 1, 2,3)iu i = are 

the active controls. 

For the hybrid synchronization of the chaotic systems (15) and (16), the synchronization errors 

are defined as  

 

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= +

= −

           (17) 

A simple calculation yields the error dynamics as 

 

1 2 3 1

2 1 1 3 2 2

2

3 3 1 2 3 1 1 3 3(1 )

e e y u

e e x x ay u

e b ce mx sx c x x y y u

= − − +

= + + + +

= − − + + − + + +

&

&

&

     (18) 

We consider the nonlinear controller defined by 

  

1 2 3 1 1

2 1 1 3 2 2 2

2

3 1 2 3 1 1 3(1 )

u e y k e

u e x x ay k e

u b mx sx c x x y y

= + −

= − − − − −

= − + − − − − −

      (19) 

where 1k and 2k are positive constants. 

Substitution of (19) into (18) yields the linear error dynamics 

   

1 1 1

2 2 2

3 3

e k e

e k e

e ce

= −

= −

= −

&

&

&

             (20) 

We consider the candidate Lyapunov function defined by 
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 ( )2 2 2

1 2 3

1 1
( ) ,

2 2

T
V e e e e e e= = + +          (21) 

which is a positive definite function on 
3.R  

Differentiating (21) along the trajectories of the system (20), we get 

 
2 2 2

1 1 2 2 3( ) ,V e k e k e ce= − − −&        (22) 

which is a negative definite function on 
3.R   

Thus, by Lyapunov stability theory [24], the error dynamics (20) is globally exponentially stable. 

Hence, we obtain the following result. 

 

Theorem 3. The non-identical Arneodo system (15) and Rössler system (16) are globally and 

exponentially hybrid synchronized with the active nonlinear controller (19).    � 

 

Numerical Simulations 
 
For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (15) and (16) with the nonlinear controller (19). 

The parameters of the Arneodo system (15) are chosen as 3.8s = and 7.5.m =  

The parameters of the Rössler system (16) are chosen as 0.2,  0.2a b= = and 5.7.c =  

We take the gains as 
1 3k = and 

2 3.k =  

The initial values for the master system (15) are taken as 

       1 2 3(0) 2,   (0) 10,   (0) 5x x x= = =  

The initial values for the slave system (16) are taken as 

      1 2 3(0) 16,   (0) 3,   (0) 11y y y= = =  

 Figure 5 exhibits the hybrid synchronization of the chaotic systems (15) and (16).   
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Figure 5. Hybrid Synchronization of Arneodo and Rössler Systems 

 

3. CONCLUSIONS 
 
In this paper, active control method has been deployed to achieve hybrid chaos synchronization of 

the following chaotic systems: 

 

(A) Two identical Arneodo systems (1981) 

(B) Two identical Rössler systems (1976) 

(C) Non-identical Arneodo and Rössler systems. 

 

The synchronization results were derived using active control method and were established using 

Lyapunov stability theory.  Since Lyapunov exponents are not required for these calculations, the 

proposed active control method is effective and convenient to achieve hybrid synchronization of 

the chaotic systems as mentioned in the three cases, (A)-(C). Numerical simulations have been 

given to demonstrate the effectiveness of the proposed hybrid synchronization schemes. 
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