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1. INTRODUCTION 

 
A  radio  labeling  is  an  assignment  of  labels,  traditionally  represented  byintegers, to the 

vertices of a graph.  Formally, for a given graph G = ( V, E )with V being the set of vertices and 

E being the set of edges, a radio label-ing is a function from the vertices of the graph to some 

subset of positiveintegers. 

 

For a set of given stations, the task is to assign to each city a channel, which is a non-negative 

integer, so that interference is prohibited and the span of the channel assigned is minimized. Hale 

was the first who proposed graph to model these channel assignment in 1980 [5]. Later in 2001 

Chartrand, Erwin, Zhang, and Harary were motivated by regulations for channel assignments of 

FM radio stations to introduce the radio labeling of graphs [1]. Usually, the level of interference 

between any two stations is closely related to the geographic locations of the station, the closer 

are the stations the stronger is the interference. Suppose we consider two levels of interference, 

major and minor. Major interference occurs between two very close stations; to avoid it, the 

channel assigned to a pair of very close 
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stations have to be at least two apart. Manor interference occurs between close stations; to avoid 

it, the channel assigned to a pair of close stations should  be different. To model this problem, we 

construct a graph G byrepresenting each station by a vertex and connecting two vertices by an 

edge if the geographical locations of the corresponding stations are very close. Two close stations 

are represented by, in the corresponding graph G, a pair of vertices that are distance two apart. 

 

For a simple graph G , let diam ( G ) denote the  diameter  of G which is themaximum shortest 

distance between two distinct vertices.  For any two vertices u and v in G , let d ( u, v ) denote the 

smallest distance between u andv .  Radio  labeling(multi-level  distance  labeling  or  distance  

labeling)  for G isa one-to-one mapping f : V ( G ) → Z+satisfying the condition 

 

d ( u, v ) + | f ( u ) - f ( v ) | ≥ 1 + diam ( G )                                       (1.1) 

 

for all u, v ∈ V ( G ).  The  span  of a labeling f is the maximum integer thatf maps  to  a  vertex  

of  a  graph G .  The  radio  number( rn ( G ))  of G is  thelowest span over all radio labelings of 

the graph.  We will refer to inequality(1.1) as the  radio  condition.  Note that this condition 

necessitates the useof distance integers, thus rn( G ) ≥ | V ( G ) | for all graphs G .  Radio 

labelingare sometimes referred to as multi-distance labeling and they are equivalentto k -labeling  

for k = diam ( G ).  In  this  paper  we  will  consider  simple  andundirected graph. 

 

2. Some Known Results  
 

In  this  section  we  recall  some  known  results  about  the  radio  number  ofgraphs.  Chartrand,  

Erwin,  and  Zhang  [1]  gave  the  upper  bound  for  theradio number of Path( Pn). 

 

Theorem 2.1.[1]  For  any  positive  integer n, 

 

 
 

wherePnis the Path on n vertices.  Moreover, the bound is sharp when2 ≤ n ≤ 5. 

The  exact  value  for  the  radio  number  of  Path  was  given  by  Liu,  and  Zhu[8]. 

 

Theorem 2.2. [8]  For  any n ≥ 4 , 

 

 
 

Also, Liu and Zhu [8] gave the radio number for Cycle(Cn). 

 

Theorem 2.3. [8]  LetCnbe  an n -vertex  Cycle.  For n ≥ 3  we  have 
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However Chartrand, Erwin, Harary, and Zhang [2] obtained different valuesthan Liu and Zhu [8].  

They found the lower and upper bound for the radionumber of Cycle(Cn). 

 

Theorem 2.4. [2]  For k ≥ 3 , 

 

 
 

Liu [7] gave the lower bound for the radio number of Tree(Tn). 

 

Theorem 2.5.[7]IfTnisann-vertexrootedtreewithdiameterd.Then 

 

rn(Tn)≥(n−1)(d+1)+1−2w(Tn), 

wherew(Tn)represent theweight. 
 
TheexactvaluefortheradionumberofHypercube(Qn)wasgivenbyR. KhennoufaandO.Togni[6]. 

Theorem 2.6.[6]Foranypositiveintegern≥1, 
 

 
 

M.M.Rivera,M.Tomova,C.Wyels,andA.Yeager[10] gavetheradio 

numberofCn_Cn,wheredenotetheCartesianproduct. 
 
Theorem 2.7.[10]Foranynon-negativeintegerk,wehave 
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In[3] C.Fernandez, A.Flores, M.Tomova, and C.Wyelsworkedon find- ingt he radionumber for 

Completegraph, Stargraph, Complete Bipartite graph, Wheelgraph and Geargraph. They have 

proved the following results: 

 
•rn(Kn)=n. 

 

•rn(Sn)=n+2. 

 

•rn(Km,n)=m+n+1. 

 

•rn(Wn)=n+2 for n≥5. 

 

•rn(Gn)=4n+2 for n≥4. 

 

M.T.RahimandI.Tomescu[9]investigatedtheradionumberofHelm 

graph(Hn).Theyprovedthefollowingresult. 

Theorem 2.8.[9]LetHnbeaHelmgraph.Forn≥5wehave 

rn(Hn)=4n+2, 

wherendenotesthenumberofverticesinacycle. 

 

3.New  Result 
 

The radio number ofFlower Wheel graph(FWk): Inthissection wewillfind 

The radionumber of Flower Wheelgraph(FWk). First of all we will find the lowerbound by 

examining labels which have minimum distance between them. For an upperbound, we find a 

specific radiolabeling which gives us span equal to the lowerbound. FlowerWheelgraph consist of 

kdisjoint copies of Wheelgraph(Wn) meeting in a commonvertex (differentfromhub). The 

commonvertex of all the copies of Wheel is named as the centralvertex. Its clearthat 

FWkhas(t+3)k+1verticesanddiam(FWk)=4foralln≥ 5,where n is the number of vertices in 

onecopy of Wheelgraph. We denote the number of vertices (in one copyofwheel)which a renon-

adjacent to the central vertex by t. We consider the case when all the copies of Wheelgraph have same 

number of vertices. 
 

ThelabelingofFWk isdefinedasfollows:  

Toestablishtheradio numberofFWk wewillrefertoalabelingofthevertices{z,v1,v2,...,v2k, 

v2k+1,v2k+2,...,v3k,u1,u2,...,utk}ofFWk
thatdistinguishestheverticesbytheircharacteristics.The

centralvertexislabeledasz,theverticesadjacenttozarelabeledsequentiallyby{v1, v2, . . . , v2k , v2k+1, 

v2k+2, . . . , v3k } in clockwise direction.  From Figure 2 it is clear that firstly we label {v1, v2, 

. . . , v2k } where v1 is not the hub ver- tex, and after labeling these verticeswe label {v2k+1, 

v2k+2, . . . , v3k }(whichare actually the hub vertices).  Vertices which are not adjacent  to z are 

labeled sequentially by {u1, u2, . . . , utk} in clockwise direction. We specifyu1  adjacentto v1 

and v2k+1. The labeling of FW4 is shown in Figure 2. 
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First  of all we will  find the radio number of FWk .  Its a special case of FWk  whent = 0, where t 

is number of vertices(in one copy) which are non-adjacent to z. We can follow the above procedure 

to label the vertices of FWk . 

 

Theorem  3.1.For k ≥ 2, rn(FWk ) = 3k + 2. 

 

Proof.First  of all we will  find the lower bound for the radio number ofFWk . 

 

Lowerbound for rn(FWk ): Assume k ≥ 2.  Since diam(F Wk ) = 2,
soany radio labeling fof 

FWkmust satisfy the radio condition i.e. 

 

d(u, v) + |f (u) − f (v)| ≥ 1 + diam(F Wk ) ≥ 3 

 

hold for all distinct  u, v ∈V (FWk ).  To determine the lower bound wehave to count  theminimum 

number of restricted values associated with the vertices of FWk .  Let f (z) = a, where a ∈Z+.  

Since d(z, vi) = 1,where z = vifor 1 ≤ i ≤ 3k. The radio condition becomes 

 

d(z, vi) + |f (z) − f(vi)| ≥ 1 + diam(F Wk ), or 1 + |f (z) − f(vi)| ≥ 3,or  |f (z) − f(vi)| ≥ 

2. So, there existone restricted value associated withz. If d(vi, vj) ≤ 2, where 1 ≤ i, j ≤ 3k, then the 

radio condition becomes 

 

d(vi, vj) +|f(vi) − f(vj)| ≥ 1+diam(F Wk ), or 2+|f(vi) − f(vj)| ≥ 3,or |f(vi) − f(vj)| ≥ 1. So, 

we can assign the consecutive integers to the following sets {v1, v3, . . . , v2k−1},{v2, v4, . . . , 

v2k } and {v2k+1, v2k+2, . . . , v3k }respectively. Therefor, there exist no restricted value 

associated with vifor1 ≤ i ≤ 3k. Hence, there is only one restricted value associated with anylabel of 

FWk . Thus, rn(FWk )≥allowed values+restricted value 

  

Hence, rn(FWk ) ≥ 3k + 1 + 1 = 3k + 2. 

 

Upper  bound forrn(FWk ):If f is any radio labeling of FWk ; thenspan of this labeling will  

provide an upper bound for the radio numberof FWk .   In  order to  find an upper bound we  

define a radio labelingf : V (F Wk ) → Z+ as follows: 
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f (z) = 1,  

f(v2i−1) = 2 + i, for 1 ≤ i ≤ k, 
f(v2i) = 2 + k + i, for 1 ≤ i ≤ k, 
f(v2k+i) = 2(1 + k) + 

i, 

for 1 ≤ i ≤ k. 

 

 

 

Figure 1. Radio labeling of FW4 

 

Claim:The labeling f is a valid radio labeling. Wehave to show that the radio condition 

 

d(u, v) + |f (u) − f (v)| ≥ 1 + diam(F Wk ) ≥ 3  

 

holds for all distinct u, v ∈V (F Wk ).We will discuss twocases: 

 
Case1:Since d(z, vi) = 1, where 1 ≤  i ≤  3k and f (z) = 1, f(vi) ≥  3. The radio condition in this 

case will be 

 
d(z, vi) + |f (z) − f(vi)| ≥ 1 + |1 − 3|, or d(z, vi) + |f (z) − f(vi)| ≥ 3. 

 

Hence, the radio condition is satisfied. 

 
Case2:Since d(vi, vj) ≤  2, where 1 ≤  i, j ≤  3k and f(vi) ≥  3.  The possible label difference for 

each pair will satisfy |f(vi)− f(vj)| ≥ 1. Theradio condition in this case will be 

 
d(vi, vj) + |f(vi) − f(vj)| ≥ 2 + 1, or d(vi, vj) + |f(vi) − f(vj)| ≥ 3. 

 

Hence, the radio condition is satisfied. 

These twocases establish the claim that f is a valid radio labeling of FWk . 

Thus, rn(FWk ) ≤ span(f ) = 3k + 2. 

From the lower and upper bound of rn(FWk ), we have 

rn(FWk ) = 3k + 2. 
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An example of radio labeling of FW4 is shown in Figure 1. 

In the next theorem we will find the lower bound for the radio number ofFWk . 

 

Theorem  3.2.For k ≥ 4 and n ≥ 5, 

rn(FWk ) ≥ tk+ 9k + 2, 

 

wherek is the number of copies of Wheel, n is the number of vertices in each copy of the Wheel and 

t be the number of vertices which are non-adjacent to the central vertex. 

Proof.Assume k ≥  4. Since diam(F Wk ) = 4, so any radio labeling f ofFWk  must satisfy the 

radio condition i.e. 

d(u, v) + |f (u) − f (v)| ≥ 5 

holds for all distinct u, v ∈V (F Wk ).  Now we count the total number ofrestricted values: 

 

Restricted  values associated with  any  label  of z:If  z is label asa i.e. f (z) = a, then as 

d(z, ui) = 2 for 1 ≤ i ≤ tk, where z = uifor all uinon-adjacent with z, the radio condition 

becomes 

d(z, ui)+|f(z)−f(ui)| ≥ 1+diam(F Wk ), or 2+|f(z)−f(ui)| ≥ 1+ 4, or |f (z) − f(ui)| ≥ 3. Hence, 

the number of restricted values associatedwith any label of z are 2. 

 

Restricted  value  associated with  any  label  of the  vertices non- adjacent to z:Since 

d(ui, uj) ≤ 4, when i = j and for all 1 ≤ i, j ≤ tk−1.The radio condition becomes 

 

d(ui, uj) + |f(ui) − f(uj)| ≥ 5,or 4 + |f(ui) − f(uj)| ≥ 5,or |f(ui) − f(uj)| ≥ 1. It means we can 

assign consecutive integers to ui,which implies that there are no restricted value associated with any 

labelof ui. 

 

Restricted  value associated with  any label of the vertex  utknon- adjacent to 

z:Suppose d(utk, vi) ≤ 3 for 1 ≤ i ≤ 3k, where utk= viandfor all viadjacent to z, the radio 

condition in this case will be 

 

d(utk, vi) + |f(utk) − f(vi)| ≥ 5,or 3 + |f(utk) − f(vi)| ≥ 5,or  |f(utk) − f(vi)| ≥ 2. So, there is 

only one restricted value corresponding to utk. 

 

Restricted  values associated with  any  label  of the  vertices  ad- jacent to the 

central vertex:Since videnote any vertex adjacent to z.If d(vi, vj) ≤ 2, when vi= vjfor 1 ≤ i, j 

≤ 3k. Then, the radio conditionbecomes 

d(vi, vj) + |f(vi) − f(vj)| ≥ 1 + 4,or 2 + |f(vi) − f(vj)| ≥ 5,or |f(vi) − f(vj)| ≥ 3. Therefore, 

restricted values associated with each label of viare2. Since we have two restricted values for each 

3k−1 vertices. Hence, the total restricted values in this case will be 2(3k − 1). 

 

 

 



International journal on applications of graph theory in wireless ad hoc networks and sensor networks 

(GRAPH-HOC) Vol.3, No.4, December 2011 

46 

n 

n 

n 

n 

7 

n 

n 

n 

n

 

Total number  of restricted  values associated with  any  label  of FWk : 

Total number of restricted values associated with any label of FWk  will be the sum of restricted 

value associated with z+ restricted value associated with ui+ restricted value associated with utk+ 

restricted value associatedwith vi= 2 + 0 + 1 + 2(3k − 1) = 6k + 1 

Hence, rn(F Wk ) ≥ allowed values + restricted values 

 

=(t + 3)k + 1 + 6k + 1, 

=tk + 9k + 2. 

Hence, we establish the lower bound for the radio number of FWk . 

 

 
 

Figure 2.Relabeling and Radio labeling of FW4 

 

Our next result will give the upper bound for the radio number of FWk . 

Theorem  3.3.For k ≥ 4 and n ≥ 5, rn(FWk ) ≤ tk+ 9k + 2. 

Proof. If f is any radio labeling of FWk ; then span of this labeling will provide an upper bound 

for the radio number of FWk .  In order to find an upper bound firstly we define the position 

function p that renames the 
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Claim:The labeling f is a valid radio labeling. Wehave to show that the radio condition 

d(u, v) + |f (u) − f (v)| ≥ 1 + diam(F Wk ) ≥ 5  

must holds for all pair of vertices (u, v), where u = v. 

 

Case 1:Consider the pair (z, r), when z = r for all r ∈V (F Wk ).  Since 

 

d(z, r) ≤  2, p(z) = x0  and p(r)= xifor 1 ≤  i ≤  (t + 3)k.  Therefore,f(xi)≥  4 for all 1 ≤  i ≤  

(t + 3)k and f (z) = 1. So, the radio conditionbecomes 

 

d(z, r) + |f (z) − f(r)| ≥ 2 + |1 − 4|,or d(z, r) + |f (z) − f(r)| ≥ 5. 

Hence, the radio condition is satisfied. 

 

Case 2:Consider the pair of vertices (vi,vj), where 1 ≤  i, j ≤  3k.  Asd(vi, vj) ≤ 2, the label 

difference for each pair will be 

 

|f(vi)−f(vj)| = |f(xtk+i)−f(xtk+j)| = |tk+2+3(i−tk) −tk−2−3(j−tk)| 

|f(vi)− f(vj)| = 3|i− j| ≥ 3. The radio condition becomes 

 

d(vi, vj) + |f(vi) − f(vj)| ≥ 2 + 3 = 5. 

Hence, the radio condition is satisfied. 

 
Case 3:Since d(ui, uw ) ≤ 4 for 1 ≤ i, w ≤ tk, therefore 

|f(uj+t(i−1)) − f(uj+t(w−1))| = |f(xi+(j−1)k) − f(xw+(j−1)k)| 

= |3 + i + (j− 1)k− 3 − w − (j− 1)k| 
|f(ui)− f (uw )| = |i− w| ≥ 1.Hence, the radio condition becomes 

d(ui, uw ) + |f(ui) − f (uw )| ≥ 4 + 1 = 5. 

Hence, the radio condition is satisfied. 
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Case 4:Consider the pair (vi,uw ), where i = w.  As d(vi, uw ) ≤  3 for1 ≤  i ≤  3k and 1 ≤  w ≤  

tk. Wehave f (uw ) ∈{4,5, . . . , tk+ 3}andf(vi) ∈{tk + 5, tk+ 8, . . . , tk+ 9k + 2}.  The possible 

label difference foreach pairs are, 

 
|f(vi)− f (uw )| = |tk+ 5 − tk− 3| = 2, 

|f(vi)− f (uw )| = |tk+ 9k + 2 − 4| = tk+ 9k − 2. 

So, |f(vi)− f (uw )| ≥ 2. The radio condition becomes 

d(vi, uw ) + |f(vi) − f (uw )| ≥ 3 + 2 = 5. 

Hence, the radio condition is satisfied. These four cases establish the claim 

thatf is a valid radio labeling of FWk . 

Thus, rn(FWk ) ≤ span(f ) = tk+ 9k + 2. 

 

An example of radio labeling of FW4 is shown in Figure 2.  

Combing Theorem 3.2 and Theorem 3.3 we have. 

 

Theorem  3.4.The radio number of FWk  istk+ 9k + 2,when k ≥ 4 andn ≥ 5. 

Note:It is easy to see that  weget the same radio number of FWk  for k = 2 and k = 3 as given in 

Theorem 3.3 but we cannot follow the above procedure. 

 

The radio number of k-Wheel  graph(kW ): In thissection we will find the radio number of k-

Wheel graph(kW ) defined as follows: For k = 1 we have 1-Wheel graph which is isomorphic to 

Wheel graph and its radio number is given by [3], for k≥ 2 consider k concentric cycles of arbitrary 

length 
 
and join each vertex of the concentric cycles with the center(K1). The re- sulting graph denoted by 

kW is isomorphic to {C1C2 ·  ·  ·  Ck }+ K1,where K1 is a complete graph having one vertex. 

Itseasy to see that num

ber of vertices in kW  areli + 1, where l1  ≥  l2  ≥  ·  ·  ·   ≥  lk  denotethe length of the cycles 

Cifor 1 ≤ i ≤ k respectively and diam(kW ) = 2.The labeling of kW  is defined as follows: The 

central vertex(hub) is labeled as z, the vertices adjacent to the center are labeled sequentially 

by{v1,v2, . . . , vk}.We start labeling from the outer most cycle which

has largest length(l1).  An example for 3-Wheel graph(3W ) is shown inFigure 3. Wedenote 

number of concentric cycles by k.In the next theorem we will determine the lower bound for 

rn(kW). 

 

Theorem  3.5.For k ≥ 2, we havek 

Whereli are the length of concentric cycles. 
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Proof.Since diam(kW ) = 2 for any positive integer k. Wehave the radio condition d(u, v) + |f (u) 

− f (v)| ≥ 3 for all distinct u, v ∈V (kW ), where fis the radio labeling of kW . First of all we will 

count the minimum number of restricted labels which will eventually give us the lower bound for 

the radio number of kW . 

 

Restricted   value  associated with  z:Let  us takef (z)  = b,  whereb ∈Z+. Since d(z, vj) = 1 for 

all z = vj, where 1 ≤ j ≤ li, then b+ 1is the restricted label associated with z. 

 

Restricted  value associated with  vj:As d(vj, vw) ≤ 2 for all vj= vw,where 1 ≤ j, w ≤li, we 

will have two cases. 

 

When  l1  = l2  = · · ·  = lk:There exist no restricted value  associatedwith vj, where 1 ≤ j ≤li 

i.e. we can assign theconsecutive integersto vj. 

 

When  l1  ≥  l2  ≥  · · ·  ≥  lk:There exist no restricted value  associatedwith vj, where 1 ≤ j ≤ li 

i.e. we can assign theconsecutive integersto vj. 

 

So, there exist only one restricted value associated with any label of kW . 

The total number of allowed labels are, 

 

li+ 1 f or  l1 = l2 = · · · = lkandl1 ≥ l2 ≥ · · · ≥ lk.

Hence, the radio number of kW ≥ allowed values + restricted value 

 

i.e. rn(kW ) ≥  

 

whichestablish the lower bound for rn(kW). 

Our next theorem will give the upper bound for rn(kW). 

 

Theorem  3.6.For k ≥ 2, we have 

 
whereli are the length of the concentric cycles. 

Proof.We will define our radio labeling f :V (kW ) → Z+ which will havea minimum span = 

 
kli + 2 is defined  as follows: 

 

Step1: We start labeling from the central vertex z. Let f (z) = 1. 

 

Step2:  After labeling z we move to vj, where 1 ≤  j ≤ li.  We canstart labeling from any 

vjletf(vj) = 3. In order to label vjwe will considerthose vertices which has distance twobetween 

them i.e. if d(vj, vw) = 2,where 1 ≤ j, w ≤ li and j = w then we can assign consecutive integerto 

vjand vw  so that the radio condition is satisfied.  For k = 3 the radio 

labeling of kW defined above is illustrated in Figure 3. 
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Figure 3. Radio labeling of 3W 

 

Claim:f is a radio labeling.  We  must show that  the radio conditiond(u, v) + |f (u) − f (v)|  ≥  

diam(G) + 1 ≥  3 holds for all pair of vertices(u, v)(where u = v). We will have two cases: 

 

Case 1:Consider the pair (z, vj), where z = vjfor 1 ≤  j ≤ li.Since d(z, vj) = 1, f (z) = 1 and 

f(vj) ≥ 3 for all 1 ≤ j ≤ li. Examining the label difference for each pair, we have |f (z) − f(vj)| ≥ 

2.So, the radio condition becomes d(z, vj)+|f(z)−f(vj)| ≥ 1+ 2 = 3. Hence,the radio condition is 

satisfied in this case. 

 

Case 2:Consider the pair (vj, vw),  where (j= w)  and 1 ≤   j, w  ≤i=1li. Since f(vj)≥ 3 and 

d(vj, vw) ≤ 2. So, the label difference will be|f(vj)− f (vw )| ≥ 1 for all distinct vj, vw. The radio 

condition for such pairof vertices becomes d(vj, vw) + |f(vj) − f (vw )|  ≥  2 + 1 = 3.  Hence, 

theradio condition is satisfied. 

These twocases establish  the claim that f is a valid radio labeling of kW .Thus, rn(kW ) ≤ span(f ) 

= li + 2. 

 

Note:In Figure 3 when l1 = l2 = l3 = 4 we start labeling from v6  i.e. f(v6) = 3.  After labeling 

v6  we move to v1  because d(v6, v1) = 2 so, we can assign the consecutive integer to v1 i.e. f(v1) = 

4. After labeling v1 we move to v8 because d(v8, v1) = 2 so, we can assign the consecutive integer to 

v8 i.e. f(v8) = 5. We continue in the same way and label all the vertices of kW . Similarly, when 

l1 = 6, l2 = 4 and l3 = 3 we start labeling from v10 i.e. f(v10)= 3. After labeling v10 we move 

to v6 because d(v10, v6) = 2 so, we can assign the consecutive integer to v6  i.e. f(v6) = 4. After 

labeling v6 we move to v11 because d(v11, v6) = 2 so, we can assign the consecutive integer to v11  

i.e. f(v11) = 5. We continue in the same way and label all the vertices of kW. 
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Theorem  3.7.If kW is a k-Wheel graph, then 

 

 
 

whereli are the length of the concentric cycles.  

Proof.Follows from Theorem 3.5 and Theorem 3.6. 

 
The radio number  ofJoint-Wheel graph(W Hn): Joint-Wheel graph (W Hn) is defined  as 

follows: It consist two disjointcopies of Wheel which are joined by an edge between two  rim 
vertices.  It is easy to note that WHn has 2n + 2 vertices and 4n + 1 edges, where n is the number 

of rimvertices in one copy of the Wheel graph.  Itseasy to see that  for n ≥  4,diam(W Hn) = 5. 

 

The labeling of Joint-Wheel is defined as follows: 

 

To establish the radio number of Joint-Wheel we will define a labeling for the vertices of WHn 

that distinguishes the vertices by their characteristics. The hub vertices are labeled as z1 and z2, the 

vertices adjacent to z1 and z2are labeled sequentially by {v1, v2, . . . , vn} in counterclockwise 

directionand by {u1, u2, . . . , un} in clockwise direction respectively. Wespecify 

thatv1,vn−1are adjacent to vn and u1, un−1are adjacent to un, also vn andun are the end 

vertices of the bridge(between twocopies of Wheel graph). 

 

 

Theorem  3.8.For every n ≥ 10, 
rn(WHn) ≥ 4n + 7. 

 

Proof. Since diam(W Hn)  = 5, we must show that  the radio conditiond(u, v) + |f (u) − f (v)|  ≥  

6 holds for every twodistinct  vertices u, v ∈V (W Hn). We start labeling from the vertices v2 and 

u2. If we assume thatf(v2)= a and f (u2 ) = a+1. Then it may be noted that whenever we assign 

an integer to one copy of Wheelwe must assign the next possible integerto the second copy of Wheel. 

We will discuss even and odd cases separately. 

 
When  nis even:Since we start labeling from v2  and u2  i.e. f(v2) = aand f (u2 ) = a + 1. So, 

there exist no restricted value associated with v2. After labeling u2 we move to vi,where 1 ≤ i ≤ n 

and i = 2, if f(vn) = a+ 4then there exist two restricted values associated with u2.  After 

assigning label to vn we label u3  i.e. f (u3 ) = a + 7. So, there are two restricted val- ues 

associated with vn. Following in the similar way we can see that there exist two restricted values 

associated with each vertex of the following set{u2,vn, v3, un, u4}. 

 

Consider the pair (v2i+2,u2j−1).Since d(v2i+2, u2j−1) ≤ 5, where 2 ≤ i ≤, 1 ≤ j ≤  2and j 

= 2. If f(v6)= b(the value of b must be great thanpreviously assign integer) then f (u1 ) = b + 2 

i.e.  b + 1 is the restrictedvalue for the remaining viand uj, where 3 ≤  i ≤   and 3 ≤  j ≤   n. 
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n−1
2

2n−1

2
n−1 ..

 

So, there exist one restricted value associated with v6. Now we will moveto the first copy of wheel. 

After  labelingf (u1 ) = b + 2 we  assign  b + 4to v8 i.e. there exist one restricted value associated  

ithu1. Following inthe similar way we can see that there exist one restricted value associatedwith  

eachv2i+2and u2j−1, where 2 and j = 2.Therefor, total number of restricted values associated 

with v2i+2areand restricted values associated with u2j−1are. Similarly we consider 

the pair of vertices restricted values associated with  u2j+2are 

Since d(un−2, z1) = 4, the radio condition becomes 

d(un−2, z1) + |f(un−2) − f(z1)| ≥ 6,  or  |f(un−2) − f(z1)| ≥ 2, 

 
whichimplies that there exist two restricted values associated with un−2. If z1  is labeled as c(the 

value of c must be great than previously assigninteger), then any positive value from the set {c+ 

1, c + 2}assigned to z2will not satisfy the radio condition which is defined above for the pair of 

vertices(z1, z2). So, there are two restricted values associated with z1. 

 

Therefor, the total number of restricted values will be the sum of restricted values associated with 
{u2,vn, v3, un, u4}+ restricted values associated with 

v2i+2+restricted values associated with u2j−1+ restricted values associated with 

v2i−1+restricted values associated with u2j+2+restricted values asso- ciated with 

un−2+restricted values associated with z1 

 
When  nis odd: Since we start labeling from v2 and u2 i.e. f(v2) = a andf (u2 ) = a + 1. So, there 

exist no restricted value associated with v2.After labeling u2 we move to vi,where 1 ≤ i ≤ n and i 

= 2, if f(vn) = a+ 4 thenthere exist two restricted values associated with u2. After assigning label 

to vn  welabel u3  i.e.  f (u3 ) = a + 7.  So, there are tworestricted values associated with  vn.  

Following in the similar way we can see  that  there exist two restricted values associated with each 

vertex of the following set{u2, vn, v3, un, u4}. 

 

Consider the pair (v2i+2,u2j−1). Since d(v2i+2, u2j−1) ≤ 5, where 2 ≤ i ≤than previously 

assign integer) then f (u1 ) = b+ 2 i.e. b+ 1 is the restrictedvalue for the remaining viand uj, 

where 3 ≤  i ≤ and 3 ≤  j ≤ so, there exist one restricted value associated with v6. Now we will 

moveto the first copy of wheel. After labeling f (u1 )= b + 2 we assign  b + 4 tov8 i.e. there exist 

one restricted value associated with u1. Following in thesimilar way we can see that there exist one 

restricted value associated witheach v2i+2andu2j−1, where 2 ≤ i ≤and j = 2. Therefor, total  

number of restricted values associated with  v2i+2are andrestricted values associated with 

u2j−1are2   . Similarly we consider thepair of vertices (v2i−1, u2j+2), where 1 ≤ i ≤2 and i = 

2, 2 ≤ j ≤applying the above procedure we can found the restricted values associatedwith 

v2i−1and u2j+2.  Therefor, total number of restricted values associatedwith  v2i−1are  and 

restricted values associated with  u2j+2are 
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Since d(un−1, z1) = 3, the radio condition becomes 

 

d(un−1, z1) + |f(un−1) − f(z1)| ≥ 6,  or  |f(un−1) − f(z1)| ≥ 3, 

 
whichimplies that there exist two restricted values associated with un−1. If z1  is labeled as c(the 

value of c must be great than previously assigninteger), then any positive value from the set {c+ 

1, c + 2}assigned to z2will not satisfy the radio condition which is defined above for the pair of 

 
vertices(z1, z2). So, there are two restricted values associated with z1. 

Therefor, the total number of restricted values will be the sum of restricted values associated with 

{u2, vn, v3, un, u4}+ restricted values associated withv2i+2+restricted values associated with 

u2j−1+ restricted values associated with v2i−1+restricted values associated with 

u2j+2+restricted values asso- ciated with un−1+restricted values associated with z1 

 

 

 

 
Hence, rn(WHn) ≥ allowedvalues+restricted values 

 
= 2n + 2 + 2n + 5, rn(WHn) ≥ 4n + 7. 

 

Theorem  3.9.For n ≥ 10, 

rn(WHn) ≤ 4n + 7. 

 

Proof.We provide a radio labeling f of WHn for n ≥ 10. The span of thislabeling will provide an 

upper bound for the radio number of WHn.Starting with  any copy of the Wheelsubgraph of 

WHn.  Radio labelingf :V (W Hn) → Z+ is defined  as follows: 

 

When  nis even: 

 

 
 

When  nis even: 
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Figure 4 

 

 

Examples of radio labeling(as define in Theorem 3.9) for n = 10 and n = 11 are shown in Figure 4. 

Claim:  The labeling f is a valid radio labeling i.e. the radio condition 

 
d(u, v) + |f (u) − f (v)| ≥ 1 + diam(W Hn) ≥ 6 

must holds for all distinct pairs of vertices of WHn.  We will discuss two cases for n. 

 

When  nis even: 
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Case 1:In this case we  consider the pairs of vertices (vi, vj), (ui, uj), where 1 ≤   i, j ≤   n. 

Consider the pair (vi, vj).   As d(vi, vj)  ≤   2 andf(vi) ∈{1,5, 9, 15, 19, . . . , 2n+3, 2n+7, 2n+11, 

. . . , 4n− 1}.  The possible label difference for each pair will satisfy |f(vi)− f(vj)| ≥ 4. So, the 

radiocondition becomes 

 

d(vi, vj) + |f(vi) − f(vj)| ≥ 2 + 4,  or  d(vi, vj) + |f(vi) − f(vj)| ≥ 6. 

 

Hence, the radio condition is satisfied. Similarly we can check the radio condition for the pair of 

vertices (ui,uj). 

 
Case 2:In this case we  consider the pairs of vertices (z1, z2), (z1, vi), (z1, ui), (z2, vi) and (z2, 

ui), where 1 ≤ i ≤ n.we will check the radio condition for (z1, z2), (z1, vi) and (z1, ui). 

 
Subcase 2.1:Consider the pair (z1,z2).  Since d(z1, z2) = 3, the radio condition becomes 

 

d(z1, z2) + |f(z1) − f(z2)| = 3 + |4n + 4 − 4n − 7| = 6. 

 

Subcase 2.2:Consider the pair (z1,vi), where z1 = vi. As d(z1, vi) = 1 for1 ≤ i ≤ n. Since 

f(vi)∈{1,5, 9, 15, 19, . . . , 2n+3,2n+7,2n+11,. . . , 4n−1}and f(z1) = 4n + 4.So, the radio 

condition becomes 

 

d(z1, vi)+|f(z1)−f(vi)| ≥ 1+|4n+4−4n+1|,ord(z1, vi)+|f(z1)−f(vi)| ≥ 6. 

 

Subcase 2.3:Consider the pair (z1,ui), where z1 = ui. As d(z1, ui) ≤ 4 for1 ≤ i ≤ n. Since 

f(ui)∈{2,8, 12, 16, 21, 25, . . . , 2n+13,2n+17,. . . , 4n+1}and f(z1) = 4n + 4.So, the radio 

condition becomes 

 

d(z1, ui)+|f(z1)−f(ui)| ≥ 4+|4n+4−4n−1|,  or d(z1, ui)+|f(z1)−f(ui)| ≥ 7, 

or  d(z1, ui) + |f(z1) − f(ui)| ≥ 6. 

 

Hence, the radio condition is satisfied in subcase 2.1, 2.2 and 2.3. Similarly 
we can check the radio condition for the pairs of vertices (z2, vi) and (z2, ui). 

 

Case 3:Finally,  consider(vi, uj),where 1 ≤  i, j ≤  n.  As d(vi, uj) ≤  5we have f(vi) ∈{1,5, 9, 15, 

19, . . . , 2n + 3, 2n + 7, 2n + 11, . . . , 4n − 1}and f(ui) ∈{2,8, 12, 16, 21, 25, . . . , 2n + 13, 2n + 

17, . . . , 4n + 1}.  The labeldif- ferencefor each pair will satisfy |f(vi)− f(uj)| ≥ 1.So, the radio 

conditionbecomes 

 

 

When  nis odd: 

d(vi, uj) + |f(vi) − f(uj)| ≥ 5 + 1 = 6. 
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Case 1:In this case we consider the pairs of vertices (vi, vj) and (ui, uj),where 1 ≤  i, j ≤  n. 

Consider the pair (vi, vj), where 1 ≤  i, j ≤  n. Asd(vi, vj) ≤ 2 and f(vi) ∈{1,5, 9, 15, 19, . . . , 

2n+5, 2n+9, 2n+13, . . . , 4n−1}.The possible label difference for each pair will satisfy 
|f(vi)−f(vj)| ≥ 4.So, the radio condition becomes 

 

d(vi, vj) + |f(vi) − f(vj)| ≥ 2 + 4 = 6. 

 

Hence, the radio condition is satisfied in this case. Similarly we can check the radio condition for the 
pair of vertices (ui,uj) for 1 ≤ i, j ≤ n. 

 

Case 2:In this case we  consider the pairs of vertices (z1, z2), (z1, vi), (z1, ui), (z2, vi) and (z2, 

ui), where 1 ≤  i ≤  n. We  will  check the  radiocondition for (z1, z2), (z1, vi) and (z1, ui). 

 

Subcase 2.1:Consider the pair (z1,z2).  Since f(z1)= 4n + 4, f(z2) =4n + 7 and d(z1, z2) = 

3.So, the radio condition becomes 

 

d(z1, z2) + |f(z1) − f(z2)| = 3 + |4n + 4 − 4n − 7| = 6. 

 

Subcase 2.2:Consider the pair (z1,vi), where z1 = vi. As d(z1, vi) = 1 for1 ≤ i ≤ n.Since 

f(vi)∈{1,5, 9, 15, 19, . . . , 2n+5,2n+9,2n+13,. . . , 4n−1}and f(z1) = 4n + 4.So, the radio 

condition becomes 

 

d(z1, vi)+|f(z1)−f(vi)| ≥ 1+|4n+4−4n+1|,ord(z1, vi)+|f(z1)−f(vi)| ≥ 1+5, or  d(z1, vi) + 

|f(z1) − f(vi)| ≥ 6. 

 

Subcase 2.3:Consider the pair (z1,ui), where z1 = ui. As d(z1, ui) ≤ 4 for1 ≤ i ≤ n.Since 

f(ui)∈{2,8, 12, 16, 21, 25, . . . , 2n+11, 2n+15, . . . , 4n+1}and f(z1) = 4n + 4.So, the radio 

condition becomes 

 
d(z1, ui)+|f(z1)−f(ui)| ≥ 4+|4n+4−4n−1|,  or d(z1, ui)+|f(z1)−f(ui)| ≥ 7, or  d(z1, ui) + 

|f(z1) − f(ui)| ≥ 6. 

 

Hence, the radio condition is satisfied in subcase 2.1, 2.2 and 2.3. Similarly 

we can check the radio condition for the pairs of vertices (z2, vi) and (z2, ui). 

 

Case 3:Finally,  consider(vi, uj) for 1 ≤  i, j ≤  n.   As d(vi, uj)  ≤  5. Wehave f(vi)∈{1,5, 9, 15, 

19, . . . , 2n + 5, 2n + 9, 2n + 13, . . . , 4n − 1}and f(ui) ∈{2,8, 12, 16, 21, 25, . . . , 2n + 11, 2n + 

15, . . . , 4n + 1}.  The possible difference of labels for each pair will satisfy |f(vi)− f(uj)| ≥ 1. The 

radiocondition becomes 

 
d(vi, uj) + |f(vi) − f(uj)| ≥ 5 + 1,  or  d(vi, uj) − |f(vi) − f(uj)| ≥ 6. 

 

Hence, the radio condition is satisfied in this case. 
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n 

 

These three cases(for n is even and odd) establish the claim that  f is a valid radio labeling of 
WHn. Thus, rn(WHn) ≤ span(f ) = 4n + 7. 

 

Note:  For n = 3, diameter of WH3  is 3. It is easy to find that the radio number of WH3  is 12. 

For 4 ≤ n ≤ 9, the rn(WHn) cannot be found usingthe above procedure.  Itseasy to see that for 3 ≤ n 

≤ 9, we have 
 

Theorem  3.10.For n ≥ 10 the radio number of Joint Wheel graph(WHn)is 

rn(WHn) = 4n + 7. 

Proof.Follows from Theorem 3.8 and Theorem 3.9. 

 

Open problem:Investigate the rn(FWk ) when the copies of Wheel graphhasdifferent number of 

vertices. 
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