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ABSTRACT

The Random Walk with d Choice ( )RWC d is a recently proposed variation of the simple Random Walk

that first selects a subset of d neighbor nodes and then decides to move to the node which minimizes the
value of a certain parameter; this parameter captures the number of past visits of the walk to that node. In
this paper, we propose the Enhanced Random Walk with d Choice algorithm ( , )ERWC d h which first

selects a subset of d neighbor nodes and then decides to move to the node which minimizes a value H
defined at every node; this H value depends on a parameter h and captures information about past visits
of the walk to that node and - with a certain weight - to its neighbors. Simulations of the Enhanced Random
Walk with d Choice algorithm on various types of graphs indicate beneficial results with respect to Cover
Time and Load Balancing. The graph types used are the Random Geometric Graph, Torus, Grid,
Hypercube, Lollipop and Bernoulli.
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1. INTRODUCTION

Recently there is a growing interest in random walk-based algorithms, especially for a variety of
networking tasks (such as searching, routing, self stabilization and query processing in wireless
networks, peer-to-peer networks and other distributed systems [1,9]), due to its locality, simplicity,
low overhead and inherent robustness to structural changes. Many wireless and mobile networks
are subject to dramatic structural changes caused by sleep modes, channel fluctuations, mobility,
device failures and other factors. Topology driven algorithms are inappropriate for such networks,
as they incur high overhead to maintain up-to-date topology and routing information and also have
to provide recovery mechanisms for critical points of failure. By contrast, algorithms that require
no knowledge of network topology, such as random walks, are advantageous.

A random walk on a graph is the process of visiting the nodes of a graph in some sequential
random order. The simple random walk starts at some fixed node (with uniform probability among
all nodes in the network) and at each time step, it moves to a randomly chosen neighbor of the
currently visited node. The simple random walk is a totally uncontrolled process, which often
shows unwanted behavior, like frequent revisits of already covered nodes and substantial delays in
visiting the most isolated regions within a network.
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Motivated by the need to improve random walk-based performance over graphs, researchers have
proposed various methodologies, to reduce the Cover Time of a random walk. A recently proposed
methodology in [8] suggests that the use of multiple, parallel random walks starting from a fixed
vertex of the graph will speed up the cover process. The authors prove that running many random
walks in parallel yields a speed-up which is linear in the number of parallel walks. They also
demonstrate that an exponential speed-up is sometimes possible, but that some natural graphs
allow only a logarithmic speed-up.

A further methodology for reducing Cover Time on graphs is the use of the Power of Choice. The
essential idea behind the power of choice, is to make some decision process more efficient, by
selecting the best among a small number of randomly generated alternatives. The most basic
results [22] about the power of choice are as follows. Suppose that n balls are placed randomly
into n bins. Let the load of a bin be the number of balls in that bin after all balls have been
thrown. What is the maximum load over all bins once the process is terminated? It is well known

that, with high probability, the maximum load upon completion will be approximately
log

log log

n

n
.

We now state a surprising result proved in a seminal paper by Azar, Broder, Karlin, and Upfal
[11]. Suppose that the balls are placed sequentially so that for each ball we choose 2 bins
independently and uniformly at random and place the ball into the less full bin (breaking ties

arbitrarily). In this case, the maximum load drops to ( )log log
1

log 2

n
O+ with high probability. If each

ball has 2d ≥ choices instead, then the maximum load will be ( )log log
1

log

n
O

d
+ with high

probability. Having two choices hence yields a qualitatively different type of behavior from the
single choice case, leading to an exponential improvement in the maximum load; having more
than two choices further improves the maximum load by only a constant factor.

Chen Avin and Bhaskar Krishnamachari in their paper The power of choice in Random Walks:
An Empirical Study [6] proposed to combine random walk on a graph with the Power of Choice.
The Random Walk with d Choice algorithm ( )RWC d works in such a way that it selects d
neighbors uniformly at random and then chooses to step to the node u of the d neighbors that

minimizes the fraction
( ) 1

( )

tc u

u

+
, where ( )tc u is the number of visits of the random walk at time

t at node u and ( )u is the degree of node u .

If the graph is regular, the walk steps to the least-visited neighbor; if not, the walk steps to the
node that is farthest away from its stationary distribution ( )u . For the complete graph the

analytical results show that the cover time of ( )RWC d is reduced by a factor of d , compared
with the cover time of the simple random walk.

For general graphs the lack of Markov property suggests that the analytical results may be harder
to obtain. The simulation-based study shows a consistent improvement in the cover time, cover
time distribution and the load balancing at cover time for different graphs and different sizes. A
surprising result is that for the 2 -dimensional torus, choice seems to improve the cover time and
the load on the most visited node by an unbounded factor. Specifically while the cover time of the

n nodes torus is known to be ( )2logn nΘ , the simulations showed that with 2d = , random
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walk with choice has lower cover time than the simple random walk on the hyper-cube, that is

known to have optimal cover time ( )logn nΘ .

In this paper we propose the Enhanced Random Walk with d Choice ( , )ERWC d h algorithm. (A

preliminary version of this work is in [4] and in [5]). We introduce, additionally to d , a new

parameter 1h > . Let ( )tH v be a value defined to node v at time t of the enhanced random walk

algorithm depending on parameter h as follows:

( )( ) number of visits at node  at time ttH v h v= ∗ +

( )                  number of visits at neighbors of node  at timev t

The main idea behind ( , )ERWC d h is to steer the course of the random walk using not only the
number of visits to the candidate node it is considering to move to (as it is the case with the

( )RWC d , but a more comprehensive metric that captures the level of past passage through the
broader region around the potential candidate node as well. This way, it is expected that the
random walk will avoid highly visited regions and, thus, it will be likely to enter less visited
regions incurring in less revisits to the nodes.

In order to represent the intensity of visits to a region, we introduce the idea of recording the "trail"
of a random walk through a region by increasing a counter of a visited node by 1h > and that of
its neighbors by 1 . The more frequent and the closer the passage of a random walk is to a certain
node, the higher the accumulated value of its counter, H , will be expected to be. By randomly
selecting d nodes, the random walk selects d potential directions to move to its next step. From
these d possibilities, the random walk will consider first the subset of nodes never visited before
and will select among them the one with the lowest value of H divided by the degree of the node;
if the latter subset is empty, it will select the neighbor (direction) with the lowest value of H
divided by the degree of the node. With these moving rules, the random walk is directed towards
the unvisited nodes from the selected d , which are located in the least visited region (lowest value
of H divided by the degree of the node); or else, it is directed towards the revisited node from the
selected d , which is located in the least visited region.

At any point in time t the enhanced random walk algorithm selects d neighbors uniformly at
random and then chooses to step to an unvisited node among them (if one exists). If all of the
selected d nodes have already been visited the random walk chooses to step to the node u of the

d neighbors than minimizes the fraction
( )

( )

tH u

u
, where ( )u is the degree of node u .

Our result, based on simulations, is that the Enhanced Random Walk with d Choice algorithm
outperforms the Random Walk with d Choice in the following ways:

1. For the Random Geometric, Grid and Torus graphs the performance improvement is in
both Cover Time and Load Balancing at Cover Time.

2. For the Hypercube, Lollipop and Bernoulli graphs the performance improvement is only at
Cover Time. For Lollipop graphs there is a small improvement in Load Balancing at
Cover Time. For Hypercube and Bernoulli graphs the Load Balancing of the Enhanced
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Random Walk with d Choice is worse by comparison with the Load Balancing of the
Random Walk with d Choice.

The rest of the paper is organized as follows: Section 2 gives background information and
definitions on graphs, random walk algorithms and the metrics of interest, associated with random
walks on graphs. Section 3 formally introduces the Enhanced Random Walk with d Choice
( ( , )ERWC d h ) algorithm. In Section 4 simulation results are presented for many types of graphs,
including Random Geometric Graph, Grid, Torus, HyperCube, Lollipop and Bernoulli.
Conclusions and Future Work are given in Section 5.

2. Background, Definitions and Metrics

Let ( ),G V E be an undirected graph with V the set of nodes and E the set of edges. Let V n=

and E m= . For v V∈ let ( ) { }| ( )N v u V uv E= ∈ ∈ be the set of neighbors of v and

( ) ( )v N v = the degree of v . A  - regular graph is a graph in which the degree of all nodes is

 .

2.1 Random Walk on Graphs

Simple Random Walk. The Simple Random Walk ( SRW ) is a walk where the next node to visit
is chosen uniformly at random from the set of neighbors of a currently visited node. That is, when

the walk is at node v the probability to move in the next step to node u is
1

( , )
( )

P v u
v

= for

( , )v u E∈ and 0 otherwise. If { }: 0,1,2,....tv t = denotes the node visited by the SRW at step t

then the walk can be described with a Markov chain. The Simple Random Walk is attractive due to
its simplicity and robustness, yet it lacks in performance inducing high Cover Time and bad Load
Balancing.

Random Walk with d Choice. The Random Walk with d Choice, ( )RWC d has been

introduced in [6]. It is a walk whose next node to move is determined as follows: Let v denote the

node reached by the walk at time t ; let ( )tc v be the number of visits to node v until time t ; let

( )N v be the set of neighbor nodes connected to node v .

Algorithm 1 RWC(d) Algorithm: Upon visiting node v at time t , the ( )RWC d :

1. Selects d nodes from ( )N v independently and uniformly at random

2. Steps to node u that minimizes
( ) 1

( )

tc u

u

+
(breaking ties in an arbitrary way)

The Random Walk with Choice has been shown in [6] to improve the Cover Time without losing
the locality, simplicity and robustness of the random walk. This is an important goal, since it is
directly related to the performance and energy usage of any random walk-based mechanism in a
wireless network.
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Figure 1: Execution of the ( )RWC d algorithm on a test graph

Figure1 shows graphically the execution of the ( )RWC d algorithm with 2d = . Snapshots of the

algorithm execution are taken at time steps t and 1t + on an example graph. At time t the

random walk visits node B and then moves to node A at time 1t + . The associated values of (.)tc
are shown. The yellow (shadowed) nodes represent two randomly selected candidate neighbors
among which the selection for next movement of the random walk will be made.

2.2 Types of graphs used in simulation

We obtain simulations results for the types of graphs listed below:

1. Random Geometric Graph, ( , )G n r . Random Geometric Graphs ( , )G n r result from
placing n points uniformly at random on the unit square and connecting two nodes if and
only if their Euclidean distance is at most r . Let conr be the critical radius to guarantee

connectivity w.h.p. It is known that conr increases as
log n

n
Ο

 
 
 

[19]. Recently, it has

been proven that, when ( )conr r= Θ then w.h.p. ( , )G n r has optimal Cover Time

( log )n nΟ and optimal Partial Cover Time ( )nΟ [7] for the simple random walk. The
random geometric graphs have been widely used to model link connectivity and protocol
behavior in randomly deployed wireless networks.

2. Grid, 1 2( , )G n n . A 2 -dimensional Grid 1 2( , )G n n is a graph in which the vertices are

arranged on a rectangular 2 dimensional array with dimensions 1n and 2n . The total

number of nodes n is 1 2n n∗ . It is known to have non-optimal Cover Time 2( log )n nΘ
for the simple random walk  [14].

3. Torus, 1 2( , )T n n . A 2 -dimensional torus 1 2( , )T n n is a graph in which the vertices are

arranged on a Grid 1 2( , )G n n with the additional property that the vertices on opposite

sides of the boundaries of the Grid are connected. The number of nodes n is 1 2n n∗ . It is

known that has non-optimal Cover Time 2( log )n nΘ for the simple random walk [14].
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4. Hypercube graph, nH . The Hypercube graph with n nodes can be constructed by labeling

these nodes as 0,1,2,...,2 1n − and connecting them if their Hamming distance equals 1.

Hypercube graph is a 2log n -regular graph. nH is known to have optimal Cover Time

( log )n nΘ for simple random walks [23].

5. Lollipop, 1 2( , )L n n . The Lollipop graph can be created by joining a complete graph
1nK to

a boundary vertex of a path graph
2nP . The number of nodes n is 1 2n n+ . It is known to

have the worst case Cover Time of 3( )nΘ for the simple random walk [7].

6. Bernoulli Graph, ( , )B n p . The Bernoulli graph ( , )B n p (a.k.a. Erdős-Rényi graph) is a

random graph with n nodes in which each edge (out of
2

n 
  

possible edges) is chosen

independently at random with an edge probability ( )p n [10]. These graphs were first
offered by Gilbert [18 ] and have been thoroughly investigated since the seminal work of
Erdős and Rényi [15,12]. It has been shown that ( , )G n r and ( , )B n p graphs have
closely related critical connectivity thresholds for the radius and the edge probability. In

particular if
log2 n nr p

n




+
= = then both graphs are connected w.h.p. if and only if

n → +∞ and disconnected w.h.p. if and only if n → −∞ [24,19,15,12]. We denote by

conp the critical edge probability to guarantee connectivity w.h.p.

2.3 Metrics

In this subsection, we present a set of performance metrics associated with random walks on
graphs. These metrics are later used to validate the performance of the proposed algorithm.
The metrics of interest are:

1. Cover Time ( )CT . The Cover Time gC of a graph G is the maximum (over all starting

nodes v ) expected time taken by a random walk on G to visit all nodes in G . Formally,
for v V∈ let vC be the expected number of steps for the simple random walk starting at v

to visit all nodes in G , and the Cover Time of G is maxg v
v V

C C
∈

= . The Cover Time of

graphs have been widely investigated [21,2,14,13,3,25,7,20]. It has been shown by Feige

in [16,17] that for simple random walks ( ) ( ) 4 31 (1) log 1 (1)
27

o n n C o ng+ < < + . Results for

the Cover Time of specific graphs vary from optimal cover time ( log )n nΘ associated

with the complete graph, to the worse case 3( )nΘ associated with the lollipop graph. The
best known cases correspond to dense, highly connected graphs; on the other hand, when
connectivity decreases and bottlenecks exist in the graph, the Cover Time increases.

2. Maximum Node Load ( )NNL . We use it to measure Load Balancing at Cover Time. For

every node v V∈ let vNL be the expected number of visits by the random walk to node v

of the undirected graph ( , )G V E at Cover Time. It is obvious that 1NL v Vv ≥ ∀ ∈ .The

Maximum Node Load is the infinity norm of the expected number of visits to every node
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at Cover Time. Formally: max v
v V

MNL NL NL
∞ ∈

= = . It is a metric representing how

well the visits of the random walk are distributed over the nodes of the graph. The reason
we use Maximum Node Load value as a metric of Load Balancing is that the decrease of
Maximum Node Load value leads to better Load Balancing. This is an important metric
primarily for nodes cooperating in wireless networks due to energy consumption
limitations of these nodes. Each visit to a node is associated with a fixed energy amount
required to handle transmission and reception of the random walk agent. At the same time,
it is evident that the Maximum Node Load metric is representative of the energy depletion
in the network. It is expected that the more uniformly distributed the visits of the random
walk over the nodes of the network, the more uniform is energy expenditure on behalf of
each node.

3. Enhanced Random Walk with d Choice.

In this section we first introduce the ( , )ERWC d h algorithm. Next we show, by using an example,

an advantage of the ( , )ERWC d h over the ( )RWC d , and finally we give a method to estimate a

good h value, which is a significant parameter that dominates the behaviour of the ( , )ERWC d h .

3.1 Description of the ERWC(d,h).

In the Enhanced Random Walk with d Choice, ( , )ERWC d h , the next node to move to is

determined as follows: Let 1h > be an integer.  Let v be the node visited by the walk at time t ;

let ( )tc v be the number of visits to node v until time t ; let ( )N v be the set of neighbor nodes to
node v .

Now we define ( )tH v as follows: ( )
( )

( ) ( ) ( )t t t

u N v

H v c v h c u
∈

= ∗ + ∑

Algorithm 2 ERWC(d,h) Algorithm: Upon visiting node v at time t , the ( , )ERWC d h :

1. Selects d nodes from ( )N v independently and uniformly at random. Let ( , )M v d
denote the selected set of neighbors of v , ( , ) ( )M v d N v⊆ .

2. Modify ( , )M v d as follows:

•
,         ( , ) and ( ) 0

( , )
( , ) remains the same otherwise

tu u M v d c u
M v d

M v d

 ∀ ∈ =
=  

 

3. Steps to node ( , )u M v d∈ that minimizes
( )

( )

tH u

u
(breaking ties in an arbitrary way)

4. ( ) ( ) 1t tc u c u= + , ( ) ( )t tH u H u h= + , and ( ) ( ) 1t tH k H k= + , ( ) { )k N v u∀ ∈ − .
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Figure 2: Execution of the ( , )ERWC d h algorithm on a test graph.

Figure 2 shows graphically the execution of the ( , )ERWC d h algorithm at two consecutive time

steps t , 1t + n an example graph. The random walk visits node B at time t and moves to node A
at time 1t + . The respective H values for all nodes of the graph before and after the walk visits
node A are given according to the ( , )ERWC d h algorithm. Each node visited by the random walk

increases its H value by h , whereas the neighbors of that node increase their H by 1.

3.2 An advantage of the ERWC(d,h).

Now we show, by using an example, an advantage of the ( , )ERWC d h algorithm next movement

selection over the ( )RWC d algorithm.

Figure 3: Subgraph of a graph.

Figure 3 shows graphically a subgraph of a graph in which all nodes with white interior color are
unvisited and nodes B , C have 0 of 17 and 3 of 6 unvisited neighbors respectively. Let us
assume that the random walk is at node A at time t . The yellow (shadowed) nodes B and C
represent two candidate neighbors among which the selection for next movement of the random
walk will be made. Let us also assume for the number of visits at nodes A , B and C that

( ) 1tc A = , ( ) 1tc B ≥ and ( ) 1tc C ≥ . We denote by , 1,2,...,16ix i = all neighbors of B except
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node A and by , 1,2,...,5jy j = all neighbors of B except node A . To make some calculation we

assume that 2h = , ( ) 1,  1,2,...,16t
ic x i= = and that only two of the jy nodes are visited once.

It is obvious that the next move should be to node C because all nodes in the neighborhood of B
are visited and 3 of 6 nodes in the neighborhood of C are unvisited. Now we examine in our
example, the conditions under which the ( , )ERWC d h steps to C while at the same time the

( )RWC d steps to B , in order to show that the next movement selection of the ( , )ERWC d h is

better than that of the ( )RWC d .

A. We assume that ( ) ( )t tc B c C> , and ( ) 1tc C ≥

i. RWC(d). The ( )RWC d ignores the information that all the neighborhood of B is visited and

surely steps to B if ( )( ) 1 ( ) 1 ( )
( ) ( ) 1 1

( ) ( ) ( )

t t
t tc B c C B

c B c C
B C C


  

 + +< ⇔ < + − 
 

In our example we have
( ) 17

2.83
( ) 6

B

C




= =

Therefore the walk surely steps to B when ( )( ) ( ) 1 2.83 1 2.83 ( ) 1.83t t tc B c C c C< + − = +

Now by using the above inequality we can make some calculations:

1. If we set, for example, ( ) 1tc C = then it follows that ( ) 4.66tc B < thus ( ) 4tc B ≤ . By

assumption we have that ( ) ( ) 1t tc B c C> ≥ thus ( ) ( ) 1t tc B c C> ≥ . Therefore if

2 ( ) 4tc B≤ ≤ the walk surely moves to node B .

2. If we set ( ) 2tc C = then it follows that ( ) 7.49tc B < thus ( ) 7tc B ≤ . Therefore if

3 ( ) 7tc B≤ ≤ the walk surely moves to node B .

ii. ERWC(d,h). Are there any cases in which the ( , )ERWC d h surely moves to C while at the

same time the ( )RWC d steps surely to B ? We showed, for example, that when 2 ( ) 4tc B≤ ≤
and ( ) 1tc C = the ( )RWC d steps surely to B . We have to examine the behavior of the

( , )ERWC d h for the same values of ( )tc B and ( )tc C . We start first with ( ) 2tc B = to make

some calculations and after that we examine the case of ( ) 3, 4tc B = . The ( , )ERWC d h will

surely move to C if
( ) ( )

( ) ( )

t tH C H B

C B 
< .

In our example ( ) 6C = and ( ) 17B = .

5

1

( ) ( ( ) ) ( ) ( ) 5t t t t
i

j

H C c C h c A c y
=

= ∗ + + =∑ ,
16

1

( ) ( ( ) ) ( ) ( ) 21t t t t
i

i

H B c B h c A c x
=

= ∗ + + =∑
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Thus
5 21

6 17
< and therefore the ( , )ERWC d h will surely move to C in this case. In our example

all of the , 1,2,...,16ix i = nodes are visited once. We can have a better estimate about the

minimum number of the ix nodes that need to be visited once by the ( , )ERWC d h in order to

surely step to C when ( ) 2tc B = . Let denote by X the number of the ix nodes that are visited

once, 1 16X≤ ≤ . We have
1

( ) ( ( ) ) ( ) ( ) 5
X

t t t t
i

i

H B c B h c A c x X
=

= ∗ + + = +∑

Then the ( , )ERWC d h surely moves to C if
5 5

9.16
6 17

X
X

+
< ⇔ > . Thus if 10X ≥ the

( , )ERWC d h will always move to C .

It is easy to check that for the other values of ( ) 3, 4tc B = the ( )tH B value increases, so the

( , )ERWC d h will surely move to C for lesser minimum values of X .

B. We assume that ( ) ( )t tc B c C≤ , and ( ) 1tc B ≥ . In a similar way we can prove that in this

case the ( )RWC d walk will never step to C in contrast with the ( , )ERWC d h which will step to

C under certain conditions.

We showed by using this example, that there are many cases in which the ( , )ERWC d h will

move to C , while at the same time the ( )RWC d always moves to B , leading the ( , )ERWC d h
to better next movement selection in comparison with the ( )RWC d .

Our main goal in this paper is to reduce the Cover Time, so it is important to find out a good h
value that minimize the ( , )ERWC d h Cover Time for all graph types instances with the same
number of nodes.

3.3 Estimation of a good h value that minimizes the Cover Time for the ERWC(d,h).

The ( , )ERWC d h algorithm uses the H value at graph nodes, which highly depends on the h
parameter, in order to make decisions about subsequent random walk movements.

In order to calculate ( )tH u we have to calculate first a good value for h , which minimize the

( , )ERWC d h Cover Time for all graph types instances with the same number of nodes.

Solving such a problem requires us to find an analytical function for describing ( , )ERWC d h
Cover Time with respect to parameter h , choice d and graph type instance. However, such an
analytical function is hard to find.

Instead we propose an experimental way to find a good h value for the ( , )ERWC d h that

minimizes the Cover Time in a specific range of h values.
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Given a graph instance ( , )G V E and a random walk algorithm, let vNS be the number steps

needed by the random walk algorithm to cover G starting at node v , let ( )c u be the number of

visits to node u , for each u V∈ , when the random walk algorithm covers G .

The Cover Time is max( )v
v V

CT NS
∈

= and the Maximum Node Load is max( ( ))
u V

MNL c u
∈

= at

Cover Time.
Now we determine a simple method for finding a good h value for the ( , )ERWC d h algorithm
which minimize Cover Time.

Let d be the choice, n V= , and N be the number of graph instances. Given a graph type and

fixed d , n , N . We calculate for each 2,3,....,100h = using N graph

instances ,  1, 2,...,iG i N= the mean Cover Time
1

( ) /
N

h i
i

mCT CT N
=

= ∑ . From these mean Cover

Times we find a good h value as the value resulting in lowest mean Cover Time i.e.

2,...,100
min ( )hgood h

h
mCT mCT

=
= .

Figure 4:  Mean Cover Time for different h on RGG G(900, 2 conr )

Figure 4 shows an example of finding a good value for h on 200N = instances of Random
Geometric Graphs with 900n = and  2conr r= . The mean Cover Time of the ( 2, )ERWC d h=
algorithm on this graph is shown for all values of [2,100]h ∈ . A good value for h is 4 that is

clearly in the region of low h values because large values of h lead to possible bottlenecks and to
the increase of Cover Time.

Graph Type Number of Nodes Good h Value
RGG, 2 conr 900 4

Torus 900 3
Grid 900 2
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Bernoulli, 2 conp 900 7

Hypercube 256 3
Lollipop 100 3

Table 1: Results for good h that minimize the Cover Time on various types of graphs

Table 1 shows good h values calculated for all graph types and sizes used in this paper.

4 Experimental results

In this section, we present comparative results for the performance of the ( , )ERWC d h and

( )RWC d algorithms on various types of graphs (Random Geometric Graph, Torus, Grid,
Hypercube, Lollipop, Bernoulli) with respect to Cover Time and  Load Balancing at Cover Time.

We obtain experimental results in the following way: Let d be the choice, n V= , N be the

number of graph instances and h be a previously calculated good value if the algorithm is the
( , )ERWC d h . Given a graph type, an ( , )ERWC d h or ( )RWC d algorithm and fixed d , n ,

N , h then for each graph instance ,  1,...,iG i N= we obtain the iCT , and iMNL , using the

same N graph instances of a graph type.

In the next step we compare these results in order to establish the performance improvement of the
( , )ERWC d h algorithm over the ( )RWC d algorithm.

To compare the Cover Time results iCT we use the following statistical values:

min 1,...,
min ( )i

i N
CT CT

=
= , max

1,...,
max ( )i
i N

CT CT
=

= ,
1

( ) /
N

mean i
i

CT CT N
=

= ∑ ,

1,...,
( )median i

i N
CT median CT

=
= , ( )2

1

1 N

std i mean
i

CT CT CT
N =

= −∑

Furthermore, to compare the Maximum Node Load results we use the same statistical values.

We get simulation results for ( , )ERWC d h and ( )RWC d , using the appropriate good h value
for the enhanced random walk algorithm, on:

1. Random geometric graphs, ( , )G n r for 100, 400,900,1600n = , radius

1.1 , 2 ,  3con con conr r r r= and for 2,3d = .

2. Grid graphs 1 2( , )G n n with n nodes, where 1 2n n n= = and 1 2n n n= ∗ for

100, 400,900,1600n = and for 2,3d = .

3. Torus graphs 1 2( , )T n n with n nodes, where 1 2n n n= = and 1 2n n n= ∗ for

100,400,900,1600n = and for 2,3d = .

4. Hypercube graphs nH with n nodes, for 256,1024n = and for 2,3d = .
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5. Lollipop graphs 1 2( , )L n n with n nodes, where 1 2 2
nn n= = and 1 2n n n= + for

100, 400,900,1600n = and for 2d = .

6. Bernoulli graphs, ( , )B n p for 100, 400,900,1600n = , radius 1.1 , 2p ,  3con con conp p p=
and for 2,3d = .

In this paper we present only a representative subset of the results in order to show the
performance improvement of the ( , )ERWC d h algorithms over the ( )RWC d algorithms.

4.1 Experimental results for RGG

This subsection presents simulation results for ( 2, 4)ERWC d h= = and ( 2)RWC d =
algorithms on Random Geometric Graphs ( , 2 )conG n r with 900n = and 500N = .

We obtain our results iCT , iMNL , where 1, 2,...,i N= , for both algorithms using the same N
instances of Random Geometric Graphs.

Figure 4.1: Results for the Cover Time metric for
(2, 4)ERWC and (2)RWC on RGG

Figure 4.2: Results for the Maximum Node Load
metric for (2, 4)ERWC and (2)RWC on

RGG

Figure 4.1 is a diagram of sorted iCT results for the Cover Time metric. It can be seen that

(2, 4)ERWC algorithm outperforms (2)RWC throughout the whole range of graph instances

used in our simulations. One can thus verify that a random walk using the (2, 4)ERWC algorithm

requires a lower average number of steps to fully cover the RGG .

This is an important result because it can be directly associated with reduced energy expenditures
required by a wireless network to support the random walk.
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Figure 4.2 shows the sorted iMNL results for the Maximum Node Load at Cover Time for both

algorithms. We can see that the (2, 4)ERWC algorithm is significantly better than the (2)RWC
algorithm with respect to Maximum Node Load. The numerical results, along with percentage
reductions for both algorithms are presented in Table 2.

Statistics
minCT maxCT meanCT medianCT stdCT

(2)RWC 9036 66352 16896 15751.0 5737.5
(2, 4)ERWC 6505 50195 10437 9711.5 3432.0

Reduction (%) 28% 24% 38%

minMNL maxMNL meanMNL medianMNL stdMNL
(2)RWC 19 144 32.766 30 11.566

(2, 4)ERWC 15 126 25.138 23 8.850
Reduction (%) 21% 12.5% 23.2%

Table 2: Statistics for CT and MNL on RGG

These results indicate a 38% reduction in required steps for Cover Time and 23.2% reduction of
the meanMNL value in favour of (2, 4)ERWC against (2)RWC algorithm.

Table 2 shows also percentage improvements associated with other measures, such as the
28% reduction for minCT , 24% reduction for maxCT , 21% for minMNL and 12.5% for

maxMNL . These results confirm the improved performance of random walk with the

( , )ERWC d h algorithm over the random walk with the ( )RWC d on RGGs .

4.2 Experimental results for Torus graphs
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Figure 4.3: Cover Time results for
(2,3)ERWC and (2)RWC on Torus

Figure 4.4: Maximum Node Load results for
(2,3)ERWC and (2)RWC on Torus

Figure 4.3 and Figure 4.4 present the sorted iCT , iMNL results, where 500N = and

1, 2,...,i N= . These results were obtained for the algorithms (2,3)ERWC and (2)RWC , using

the same N instances of Torus graphs with 900n = . It can be seen in Figure 4.3 that the
(2,3)ERWC algorithm outperforms the (2)RWC algorithm for all Torus graphs instances with

respect to Cover Time. The flat line part of the results for Torus graphs are identical values for
CT due to the symmetry of the Torus graph. There are also reductions for the Maximum Node
Load metric. Numerical values of these results and the corresponding percentage reductions are
shown in Table 3.

Statistics
minCT maxCT meanCT medianCT stdCT

(2)RWC 4965 7297 6008.9 6024 165.76
(2,3)ERWC 3621 5358 4799.4 4801 170.95

Reduction (%) 27% 26.5% 20%

minMNL maxMNL meanMNL medianMNL stdMNL
(2)RWC 8 11 9.92 10 0.36

(2,3)ERWC 7 9 8.03 8 0.25
Reduction (%) 12.5% 18% 19.6%

Table 3: Statistics for CT and MNL on Torus Graphs.

The (2,3)ERWC algorithm achieves a significant 20% average reduction in required steps to
Cover Time compared with (2)RWC for the Torus graph. Furthermore, the average reduction with
respect to MNL metric measures is 19.6% indicating improved Load Balancing characteristics.
One can thus verify performance improvements for the ( , )ERWC d h based random walk
proposed in this paper.

4.3 Experimental results for Grids
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Figure 4.5: Cover Time results for
(2, 2)ERWC and (2)RWC on Grid

Figure 4.6: Maximum Node Load results for
(2, 2)ERWC and (2)RWC on Grid

Figure 4.5 and Figure 4.6 show the sorted simulation results iCT , iMNL , where 500N = and

1, 2,...,i N= , for the (2, 2)ERWC and (2)RWC based random walks on Grids with 900n = . The
results were collected for both algorithms, using the same N instances of Grid graphs.
Performance improvements for the ( , )ERWC d h algorithm can be seen for all different instances
of Grids associated with the simulations.

Statistics
minCT maxCT meanCT medianCT stdCT

(2)RWC 6619 10975 8088.7 7976.5 705.53
(2, 2)ERWC 5239 9576 6155 6061.5 524.28

Reduction (%) 20% 12.7% 23.9%

minMNL maxMNL meanMNL medianMNL stdMNL
(2)RWC 11 17 13.19 13 1.13

(2, 2)ERWC 9 15 10.76 11 0.90
Reduction (%) 18% 11.7% 18.4%

Table 4: Statistics for CT and MNL on Grid Graphs.

Table 4 shows numerical results for both algorithms on Grids. There is a 23.9% reduction in mean
required steps for Cover Time when the (2, 2)ERWC algorithm is used. The meanMNL is also

reduced by 18.4% . Furthermore, there is a 20% reduction for minCT , a 12.7% reduction for

maxCT , a 18% reduction for minMNL and a 11.7% for maxMNL . From these results we conclude

that there is performance improvement both for the Cover Time and the Load Balancing on Grids.

4.4 Experimental results for Bernoulli graphs
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Figure 5: Cover Time distribution for (2, 7)ERWC and (2)RWC on Bernoulli Graphs

Figure 5 shows the sorted iCT results where 500N = and 1, 2,...,i N= obtained by running the

( 2, 7)ERWC d h= = and ( 2)RWC d = algorithms on the same N graph instances of a Bernoulli

graph ( , 2 )B n pcon with 900n = .

The results indicate that (2,7)ERWC algorithm outperforms (2)RWC over all Bernoulli instances
used in the simulations.

Statistics
minCT maxCT meanCT medianCT stdCT

(2)RWC 6672 16896 8930.9 8668.5 1246.6
(2,7)ERWC 6209 14702 8210.3 7936.0 1144.1

Reduction (%) 6.93% 12.98% 8.06%

Table 5: Statistics for CT on Bernoulli graphs.

Table 5 shows the numerical values of results for our simulations on Bernoulli graphs. There is a

meanCT improvement of 8.6% in favor of ( , )ERWC d h . Further reductions in Cover Time are

6.93% for minCT and 12.98% for maxCT . The (2,7)ERWC algorithm is thus shown to be an

improved version of the (2)RWC algorithm on Bernoulli graphs with respect to Cover Time.

The Load Balancing of (2,7)ERWC is getting worse for Bernoulli graphs by comparison

with (2)RWC . For example the meanMNL get worse by 22% , so we do not present any other

results about the Maximum Node Load metric.

4.5 Experimental results for Hypercube graphs
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Figure 6: Cover Time distribution for (2, 2)ERWC and (2)RWC on HyperCube Graphs

Figure 6 shows the sorted iCT results, where 2000N = and 1, 2,...,i N= obtained by running

the ( 2, 2)ERWC d h= = and ( 2)RWC d = algorithms on the same N graph instances of a

Hypercube graph with 256n = .

The results indicate that (2, 2)ERWC algorithm outperforms (2)RWC over all Hypercube
instances used in the simulations.

Statistics
minCT maxCT meanCT medianCT stdCT

(2)RWC 1171 2334 1476.0 1449 145.82
(2, 2)ERWC 1031 1978 1279.5 1263 120.14

Reduction (%) 11.9% 15.2% 13.3%

Table 6: Statistics for CT on Hypercube graphs.

Table 6 shows the numerical values of the results for our simulations on Hypercube graphs. There
is a meanCT improvement of 13.3% in favor of ( , )ERWC d h . Further reductions in Cover Time

are 11.9% for minCT and 15.2% for maxCT . The (2, 2)ERWC algorithm is thus shown to be an

improved version of the (2)RWC algorithm on Hypercube graphs with respect to Cover Time.
The Load Balancing of (2, 2)ERWC is getting worse for Hypercube graphs by comparison

with (2)RWC . For example the meanMNL get worse by 11% , so we do not present any other

results about the Maximum Node Load metric.

4.6 Experimental results for Lollipop graphs

The last graph type used for comparing ( 2, 2)ERWC d h= = and ( 2)RWC d = algorithms is the

Lollipop graph with 100n = .
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Figure 7: Cover Time results for (2, 2)ERWC and (2)RWC on Lollipop Graphs

Figure 7 shows the sorted iCT results, where 2000N = and 1, 2,...,i N= . These results where

obtained for both algorithms using the same N graph instances of Lollipop graphs.

Statistics
minCT maxCT meanCT medianCT stdCT

(2)RWC 3603 14605 6510.9 6237 1557.90
(2, 2)ERWC 1813 7868 3544.7 3410 827.02

Reduction (%) 49.6% 46.1% 45.5%

Table 7: Statistics for CT on Lollipop graphs.

The reduction in meanCT in favor of (2, 2)ERWC measures 45.5% . Furthermore, Table 7 shows

reductions of 46.9% at minCT and 46.1% at maxCT .

These results show a significant performance improvement in Cover Time of (2, 2)ERWC

algorithm over the (2)RWC algorithm on Lollipop graphs.
The performance improvement in Load Balancing on Lollipop graphs is small. For example there
is a 2.99% improvement with respect to meanMNL , so we do not present any other results about the

Maximum Node Load metric.

5 Conclusions

In this work, the Enhanced Random Walk with Choice algorithm is introduced as an improved
version of the Random Walk with Choice algorithm. The ( , )ERWC d h algorithm is formally

defined and compared against ( )RWC d via simulations over six different graph types, including
Random Geometric Graphs, Torus, Grids, Hypercube, Lollipop, and Bernoulli graphs.
Comparative results are presented for both ( , )ERWC d h and ( )RWC d algorithms, which are
based on the Cover Time metric and Maximum Node Load metric. Our simulation results indicate
significant savings in Cover Time up to 38% for Random Geometric Graphs, 20% for Torus
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graphs, 23.9% for Grids, 13.3% for Hypercube, 45.5% for Lollipop and 8.06% for Bernoulli
graphs. Furthermore, the Load Balancing properties of the ( , )ERWC d h algorithm are better

than those of ( )RWC d with reductions for MNL in the order of 23.2% for Random Geometric
Graphs, 19.6% for Torus graphs and 18.4% for Grids.

Our plans for future work include running simulations on other types of graphs to verify
performance improvement of the ( , )ERWC d h algorithm over ( )RWC d . Furthermore, the
analytical description of Cover Time for both algorithms is an open issue for future research.
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