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Abstract

A function f is called agraceful labelling of agraph G with g edgesif f isan injection

fromthe verticesof Gtotheset {0, 1, 2, .. ., g} such that, when each edge xy is assigned the
label [f(x) — f(y)|, the resulting edge labels are distinct. A graph G is said to be one modulo

N graceful (where N is apositive integer) if thereisafunction ¢ from the vertex set of G to

{0, LN,(N+1),2N, (2N +1),...,N(g-1),N(g—- 1) + 1} insuchaway that (i) ¢ is1 -1 (ii)

¢ inducesabijection @_fromtheedgeset of Gto{1,N+1,2N+1,... ,N(g- 1) + 1} where
¢@_(uv)=]o(u) — @(v)| . In this paper we prove that the every regular bamboo tree and coconut tree
are one modulo N graceful for al positive integers N .

1. INTRODUCTION

SW.Golomb [2] introduced graceful labdling. Odd gracefulness was introduced by.
B.Gnangjothi [1] . C.Sekar [6] introduced one modulo three graceful labelling. V.Ramachandran
and C.Sekar [4] introduced the concept of one modulo N graceful where N is any positive integer.
Inthe case N = 2, thelabelling is odd graceful and in the case N = 1 the labelling is graceful. [6]
Every regular bamboo tree is graceful. In this paper we establish the result for one modulo N
graceful (N > 1) of the regular bamboo tree and also we prove that coconut tree is one modulo N
graceful for al positive integers N . In order to prove the existing conjecture

Problem 1. All trees are graceful ?
Problem 2. All lobsters are graceful ?

we take adiversion to prove one modulo N graceful of acyclic graphs. Sometimes the technique

involved in one modulo N graceful labelling may yield a new approach to have graceful labelling
of graphs. Our approach will motivate the scholars to do more research in this area.
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2 Main Results Definition 2.1. A graph G with g edges is said to be one modulo N graceful
(where N is apositive integer) if thereis a function ¢ from the vertex set of Gto {0, 1N, (N + 1),
2N, (2N + 1), ... ,N(g- 1),N(g- 1) + 1} in such away that (i) ¢ is1 — 1 (ii) @ induces a
bijection _fromtheedgesetof Gto{1,N+1,2N+1,...,N(g- 1) + 1} where@_(uv)=|o(u) -
oWl

Definition 2.2. Consider k copies of paths Pn of length n—1 and stars Sm with m pendant vertices.
Identify one of the two pendant vertices of the j th path with the centre of the | th star. Identify the
other pendant vertex of each path with a single vertex u0 ( uO is not in any of the star and
path).The graph obtained is aregular bamboo tree. Definition 2.3. A coconut Tree CT(m, n) isthe
graph obtained from the path Pn by appending m new pendent edges at an end vertex of Pn .
Theorem 2.4. Every regular bamboo tree is one modulo N graceful for every positive integer N >
1.

Proof: Let ug’f ) , -ug ... , u) be the vertices of the j th path where -u(lj ) is identificd with Up an
uff ) is identified with -a.-[()j ) which is the centre of the jth star. Let t!ij;',t'éj} o ,ui‘;'.) be the pendan
vertices of the jth star. The bamboo tree has k(n+m—1)+1 vertices and k(n+m —1) edges. Namin
of the vertices is as shown in the figure.

(1) ] (1)
! ?lr.gl ) Uy u_;l}' u.'i/.
!_.‘L‘
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o

Case (i) kisodd and nisodd
Define
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() =@(ui’”’) =0
Fori=24,...,n—1 ) _
¢:(ul;”)=Nk{n+m— D—(N—1)-N(Gj—1)—- 202 sor j=1,2,..,k
For : =3,b6.....,n
Nk+1)+N@G—-1)+ for j—1.2,... &

ia)
d(u’’) — Nltl) | g Gty N?z.(a 9 for j = U1 | uuzrai? Lk

Nk(i—3)

For r —1,2,...,m

¢(¥?) — Nk(n+m—1)— (N —1)— XOD _ NpG—1)—NG—1) for j—1,2,....k

From the definition of ¢ it is clear that

[d(ug)} U{o!), i =2,3,...,n and j = 1,2,...,k} U [¢(v¥)),r = 1,2,...,m and j =
L2k} = {0} U{Nk(n+m —1) = N+ 1L, Nk(ln +m —2) = N + 1,..., Ne(22t) — N +

z

IL,NEkin+m—1)—2N + 1,Nk(n+m—2)— 2N +1,... NE(8E20ntl) _ 2N + 1, ..., Nk(n+m —

2) + 1, Nk(n +m — 3) + 1, NE(2E22=1) + 1 }U{N(k+1), N(2k+1), ..., Nk(ZL) + N N(k +
2).N(2k+2),...,Ne(22)+2N ... F@Ee—1), Yer-1),,..., X(nk- 1], Y1), e+,
oy Sk —k+1), X(k+3), FBE—3),, ..., %(nk:—?k—i—ﬂ:l;...?Nk OINK, .., M — 1)} ]
Ar(n42m—1)-N+1, 8e(nyam-3)-N+1,... 2 n+1)— Nk 1)—-2N+1, &k (n+

2m—3)—2N+1,..., % E(n+1)-2N+1, ..., W(?T-l—?m—S)—f—l (?H—Qm +1 o Em-1)+1}

Thus il is clear thal the verlices have distinel labels. Thurefuw @ is 1—1.

We compute the edge labelling in the following sequence.

For 1<j3<k
| o(uS”) — ¢(uo) | = Nk(n+m —1) —Nj+1

For 1<r<mand 7=1,2,... %

(o) — ¢(u) | = Nk(m—r+1) — 2Nj +1
For 1<r<m fmdj:—‘l‘—,—"‘—?...,k

| (v m) d(u {J})I—Nk(??L—r+2)—2Nj+1
For j=2,4,...,n-1 andjzl,Z,...%

| o(u”) — o(u ii)l) | = Nk(n+m—i)—2Nj+1

For j =2,4,. —1land j=52 B3k

| $(u”) — p(u ii)l) | = Nk(n+m—i+1)—2Nj+1
For j=3,5,...,n—2 and j=1,2,... 51

| o(uil))) — o(u) | = Nk(n+m— i) — 2Nj + 1
For j=3,5...,n—2 and j =51 k3

| p(u?) — d(u?) | = Nk(n+m—i+1)—2Nj+1
This shows that the edges have the distinct labels {1,N +1,2N +1,...,N(g—1)+1}.
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Tl is clear from the above labelling thal the function ¢ from the vertex sel, of G Lo {0,1, N, (N +
1),2N, (2N +1),. .. ,N{gy—1),N(g— 1)+ 1} is in such a way that (d) ¢ is 1 —1 (id) ¢ induces a
bijection ¢' from the edge set of G to {1,N+1,2N+1,... N(g—1)+1}where &*(uv)=|o(u)—¢(v)|.
Hence the regular bamboo tree is one modulo N graceful.
Clearly ¢ defines a one modulo N pgraceful labelling of regular bamboo tree.

Example 2.5. One modulo 5 graceful 1abelling of regular bamboo tree. (k=5,n=5 m=3)

121

171 30 146 55
. . . 96
71

116
166 35 141 69/, o1

66
111
161 15 136 49/ 36
0 . . * .

106
26 20 131 4_54 81

101
51 25 126 5_04: 76

Case (i) kisodd and nis even
Define
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P(uo) = ¢(uy’’) =0
For i=2,4,...,n
o(u?) = Nk(n+m—1)— (N-1) - NG —1)— X2 for j=1,2,.. .k
For i =3,5,...,n—1

@(u(j))* NU""’].)-F.V(_}—]_)—FW forj=1,2,___,(k;1!

P w_’_f\r(j_(k;l])_'_ﬁkg—?,] fofj:{ké_l),(kgslj,_,,k

For r=1,2,...,m

(0 = NCALD 4 Nk(r—1)+ N(j - 1) for j=1,2,..., ¢

' FEUEL £ Nk(r— 1)+ N(j = &52)  for j= 552, 550,k

The proof is similar to the proof in case(i).
Clearly ¢ defines a one modulo N graceful labelling of regular bamboo tree.

Example 2.6. One modulo 8 graceful labelling of reqular bamboo tree. (k=3,n=6,m=2)

80
161 32 137 56 11_;/.
od L L] L
T~ 104
64
) 153 16 129 40 1M
L L J L ] LJ

72
45 24 121 48 9_7/.

Case (iii) kiseven and nisodd
Define
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c_.*}{'c.-'i-l)_] =N(r—1) forr=12,...,m

dlug) — Nk(n+m —1) — (N —1) - X1

U { N — 1)+ Mgl - MEEL fori =2,4,...,n—1
B Ni(m+n—1)+1 - Mot NS gy 35 ..,n

For i —3,5,....n i ;

duy=Nkin |m 1) (N 1) N(@G 2y VE+R NEDE=D g s 93k
b, ( ( ) J 2 2 2 =23,

For i=2,4,...,n—1

j}) s\f'.rrt+w+s\f|:j—2)+w 1'01'3—2,3,,..,-%

Tl Nm-p+ e N NG oo+ BB sk Ego g
For 1‘:1,2,...,??1

ceo
blu;

) Nm+ Yo 10y o) XIS | Nk — 1) + Nk — L)(r — 1) forj— 2,3, ..,%
dloy’) = N(n=1) | Nk-1)(n—3) . I - L ok
Nm | 7057173 INE D)ING 5 DINE D 1) forjg=135 1,...,] k

The proof is similar to the proof in case(i).
Clearly ¢ defines aone modulo N graceful labelling of regular bamboo tree.
Example 2.7. One modulo 5 graceful |abelling of regular bamboo tree. (k=6,n=7,m=3)

0

256 20 261 15 266"
L . * * 5
2 10

[=2]

236 70 211 95 186 " 120
. . . . 145
10

231 75 206 100 181 120
. . . . —e 150
251 T~
226 55 201 80 176" 105
L i * - 130
~u155

221 60 196 85 171~ 110
. . . . 135
~ 160

216 65 191 90 166 — O

/

165

Case (iv) kiseven and niseven
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Define
@[-1.-';':])] =N(r 1) forr=12,...,m

dlug) — N(m —1) — \'T’

m(”m-} _ I NEim+n— lr) —(N —1} — w + % fbri=2,4....,n
e lN{m—1)4—L’2’"")—%l fori=3,5...., n—1

Fori=24,....,n ) _
o) =Nkn1m 1) @N 1) NG 2) Ve N&DED g jo23. 0k

For « —3,0,...,n—1

p(ul) = Nm + N[n;rk.’ +N(G-2=N(;-1)+ 1\':\:.-_12;.._'1-_3; for j=2,3,.. %
o Nm o+ HUGEL L N (G - & — 1) FEED for j — & +1,5+2, ..k
For — 1,2,....m
(s N+ Yt 4 N —9) 4 NEZU0-D | Nk _9) L N(E - 1)(r— 1) for j=2,3,....%
Plor’) = : Ntk | N(E—1)(n—d) A Gk - \ : ek
Nm | 2 | ; | N(E 2) | N(j 2 1) Nk 1)(r 1) orj=, |

The proof is similar to the proof in case(i).
Clearly ¢ defines aone modulo N graceful labelling of regular bamboo tree.
Example 2.8. One modulo 10 graceful labelling of regular bamboo tree. (k=8,n=6,m=2)

0
531 30 541 20 551
» L LJ L /
T~
120 451 190 3V 260
330
130 441 200 371" 270
\. 340
140 431 210 36_1/‘ 280
T~ 350
80 421 150 351 220
290
90 411 160 341 " 230
\ 300
100 401 170 331~ 240
310
250
110 301 180 321 "

/

320
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Theorem 2.9. Caconut tree is one modulo N graceful for every positive integer N .

Proof: Let uy,us,...,u, be the vertices of a path P, and vq,vs,...,7,, be the pendent vertices
being adjacent with v, in the coconut tree (. Let ¢; denote the edge wauiyp of P for 1<<2<n 1
and wiv; for 1 < i < m. The coconut tree G has m + n vertices and m +n — 1 edges.

Case (i) n is codd.

Let n=2k |1, k>1.

Detine

Plug; ()=N(i—1) fori=123 . k+1

@(uy) —2Nk— (N—-1)—N(i—1) for i—1,2,3,....k

o) =2Nk+1+N(z—-1) for i=123,....,m

From the definition of ¢ it is clear that:

{d(w;),i=1,2,...,n} U {&(v;),i=1,2,...,m} ={0,N,2N,... Nk} U{N(2k - 1)+ 1,N(2k —
2)+ 1., NE+ L} U{N{2E)+-LLN2E+ 1)+ L,....N(2k+m — 1)+ 1}

Thusit is clear that the vertices have distinct labels. Thereforepis1-1.
We compute the edge labelling in the following sequence.
For 1<:<m
| 6(vg) — B(us) | = N(2k+i—1)+1
For 1<i<k
| (I‘)(IJ;-;;) — ('I)[:T-'.gg_l) | = N(Zk +1-— 2?) +1
| png:) — plugs 1) | = N(2k — 24) + 1
This shows that the edges have the distinct labels {1, N + 1,2N +1,...,N(g— 1)+ 1}.

1t is clear from the above labelling that the funetion ¢ from the vertex st of G to {0, 1, N, (N |
1),2N,(2N +1),...,N(g— 1}, N{qg — 1) + 1} is in such a way that (i) ¢ is 1 — 1 (i) ¢ induces a
bijection ¢* from the edge set of G to {1, N+1,2N+1,...,N(¢g—1)+ 1} where ¢*(uv)=|@(u)—¢(v)| .
Hence the coconut tree is one modulo N graceful.
Clearly ¢ defines a one modulo N graceful labelling of coconut tree.

Example 2.10. One modulo 3 graceful labelling and graceful labelling of coconut tree
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8 9

Case (ii) n is even.
Let n=2k.
Define

Bluzi 1) =N(i—1) for i=1,2,3,...,k
() = 2Nk — (2N —1)—N(i—1) for i=1,2,3,...,k
dlv;) =2NE+14+N(i—1) for i=1,2,3,...,m
The proof is similar to the proof in case(i).
Clearly ¢ defines a one modulo N graceful labelling of coconut tree.

Example 2.11. One modulo 10 graceful labelling and odd graceful labelling of coconut tree.
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