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Abstract 
 

The idea of metric dimension in graph theory was introduced by P J Slater in [2].  It has been found 

applications in optimization, navigation, network theory, image processing, pattern recognition etc.  

Several other authors have studied metric dimension of various standard graphs. In this paper we 

introduce a real valued function called generalized metric +→×× RXXXGd :  where == )/( WvrX
 

( ){ })(/),(),...,,(),,( 21 GVvvvdvvdvvd k ∈ , denoted dG  and is used to study metric dimension of graphs.  It 

has been proved that metric dimension of any connected finite simple graph remains constant if dG

numbers of pendant edges are added to the non-basis vertices. 
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1. Introduction 
 

Graph theory has been used to study the various concepts of navigation in an arbitrary space.  A 

work place can be denoted as node in a graph, and edges denote the connections between places.  

The problem of minimum machine (or Robots) to be placed at certain nodes to trace each and 

every node exactly once is worth investigating.  The problem can be explained using networks 

where places are interconnected in which, a navigating agent moves from one node to another in 

the network.  The places or nodes of a network where we place the machines (robots) are called 

‘landmarks’.  The minimum number of machines required to locate each and every node of the 

network is termed as “metric dimension” and the set of all minimum possible number of 

landmarks constitute “metric basis”. 
 

A discrete metric like generalized metric [14] is defined on the Cartesian product XXX ××  of a 

nonempty set X into 
+R is used to expand the concept of metric dimension of the graph.  The 

definition of a generalized metric space is given in 2.6. In this type of spaces a non-negative real 

number is assigned to every triplet of elements. Several other studies relevant to metric spaces are 

being extended to G-metric spaces.  Different generalizations of the usual notion of a metric 

space were proposed by several mathematicians such as G¨ahler [17, 18] (called 2-metric spaces) 

and Dhage [15, 16] (called D-metric spaces) have pointed out that the results cited by G¨ahler are 

independent, rather than generalizations, of the corresponding results in metric spaces. Moreover, 

it was shown that Dhage’s notion of D-metric space is flawed by errors and most of the results 

established by him and others are invalid. These facts are determined by Mustafa and Sims [14] to 

introduce a new concept in the area, called G-metric space. 
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The concept of metric dimension was introduced by  P J Slater in [2] and studied independently 

by Harary and Melter in [3].  Applications of this navigation of robots in networks are discussed 

in [4] and in chemistry, while applications to problems of pattern recognition and image 

processing, some of which involve the use of hierarchical structures are given in [5].  Besides 

Kuller et.al. provide a formula and a linear time algorithm for computing the metric dimension of 

a tree in [1].  On the other hand Chartrand et.al. in [7] characterize the graph with metric 

dimension 1, n -1 and n -2.  See also in [8] the tight bound on the metric dimension of unicyclic 

graphs.  Shanmukha and Sooryanarayana [9,10] compute the parameters for wheels, graphs 

constructed by joining wheels with paths, complete graphs etc. In 1960’s a natural definition of 

the dimension of a graph stated by Paul Erdos and state some related problems and unsolved 

problems in [11].  Some other application including coin weighing problems and combinatorial 

search and optimization [12].  The metric dimension of the Cartesian products of graph has been 

studied by Peters-Fransen and Oellermann [13]. 
 

The metric dimension of various classes of graphs is computed in [3, 4, 5, 9, 10].  In [4, 5] the 

results of [3] are corrected and in [9, 10] the results of [5] are refined.  

 

2. Preliminaries 
 

The basic definitions and results required in subsequent section are given in this section. 
 

2.1. Definition 
 

A graph ),( EVG = is an ordered pair consisting of a nonempty set )(GVV = of elements called 

vertices and a set )(GEE = of unordered pair of vertices called edges. 
 

Two vertices )(, GVvu ∈ are said to be adjacent if there is an edge )(GEuv ∈ joining them. The 

edge )(GEuv ∈ is also said to be incident to vertices vandu . The degree of a vertex v , denoted by 

)deg(v is the number of vertices in )(GV adjacent to it.  
 

An edge of a graph is said to be a pendant edge if it is incident with only one vertex of the graph. 
 

A uv -path is a sequence of distinct vertices vvvvu no == ,...,, 1  so that 1−iv is adjacent to iv  for all

,  1i i n≤ ≤ , such a path is said to be of length n .  A uu -path of length n is a cycle denoted by

nC . 
 

A graph is said to be connected if there is a path between every two vertices.  A complete graph is 

a simple graph (a graph having no loops and parallel edges) in which each pair of distinct vertices 

is joined by an edge. 

 

2.2. Definition 
 

A graph G  is infinite if the vertex set )(GV  is infinite. An infinite graph is locally finite if every 

vertex has finite degree. An infinite graph is uniformly locally finite if there exists a positive 

integer M such that the degree of each vertex is at most M . For example, the infinite path ∞P is 

both locally finite and uniformly locally finite by taking 2=M . 

 

2.3. Definition 
 

If G is a connected graph, the distance ),( vud between two vertices V(G) , ∈vu is the length of the 

shortest path between them.  Let { }kwwwW ,...,, 21=  be an ordered set of vertices of G and let v be  
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a vertex of G. The representation )/( Wvr of v respect to W is the k-tuple 

( )),(),...,,(),,( 21 kwvdwvdwvd . If distinct vertices of G have distinct representations (co-ordinates)  

 

with respect toW , then W is called a resolving set or location set for G. A resolving set of 

minimum cardinality is called a basis for G and this cardinality is called the metric dimension or 

location number of G and is denoted by dim(G) or ( )Gβ . 

 

For each landmark, the coordinate of a node ‘ v ’ in G having the elements equal to the cardinality 

of the set W and th
i  element of coordinate of ‘ v ’ equal to the length of the shortest path from the 

th
i landmark to the vertex ‘ v ’ in G . 

 

For example, consider the graph G of figure 1. The set },{ 211 vvW =  is not a resolving set of G  

 
 

Figure 1.       Figure 2. 

 

Since )/()1,1()/( 1413 WvrWvr == . Similarly, we can show that a set consisting of two distinct 

vertices will not give distinct coordinates for the vertices in G . On the other hand, },,{ 3212 vvvW =

form a resolving set for G in figure 2, since the representation for the vertices in G with respect 

to 2W  are ( ) ( ) ( ) ( )1 ,0 ,1/ ,1 ,1 ,0/ 2221 == WvrWvr , ( ) ( )0 ,1 ,1/ 23 =Wvr , ( ) ( )1 ,1 ,1/ 24 =Wvr  and it is the 

minimum resolving set implying that dim( ) 3G = . 

 

2.4. Remark   
 

A graph can have more than one resolving set.  For example consider the graph in  figure 3. Here 

we obtained two resolving sets namely {a,b} and {a,c}. 

 

 
 

Figure 3. A graph with two resolving sets 
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2.5. Definition 
 

Let X  be a nonempty set.  A dG - Metric or generalized metric is a function from XXX ××  into 
+

R  having the following properties: 
 

 

XzyxzyxzyxGd ∈=== ,,for      if  0),,(  

yxXyxyxxGd ≠∈≤  with , allfor  ),,(0  

yzXzyxzyxGyxxG dd ≠∈≤  with ,, allfor  ),,(),,(  

 

) variables three theallin symmetry ...(),,(),,(),,( === xzyGyzxGzyxG ddd & 

)inequality (Rectangle ,,,  ),,(),,(),,( XazyxzyaGaaxGzyxG ddd ∈∀+≤  

 

2.6. Illustration  
 

Let ),( dX  be a metric space.  Define +→×× RXXXGd :   by     

( ) =zyxGd ,, ),(),(),( xzdzydyxd ++ is a dG -metric satisfying the above five conditions. 

Conversely if ),( dGX is a dG -metric space, it is easy to verify that ),(
dGdX is a metric space 

where  ( ) ( )),,(),,(
2

1
, yyxGyxxGyxd ddGd

+=  

 

For,  

a) ( ) ( ) 0),,(),,(
2

1
, ≥+= yyxGyxxGyxd ddGd

 by (ii)  

b) ( ) ( ) 0),,(),,(
2

1
, =+= xxxGxxxGxxd ddGd

by (i) 

c) ( ) ( ) ( )xydxxyGxyyGyyxGyxxGyxd
dd GddddG ,)),,(),,((

2

1
),,(),,(

2

1
, =+=+=  by (iv) 

d) ( ) ( )),,(),,(
2

1
, yyxGyxxGyxd ddGd

+=  

  [ ]),,(),,(),,(),,(
2

1
yyzGyzzGzzxGzxxG dddd +++≤  

  ( ) ( )yzdzxd
dd GG ,, +≤  

Since ),,(),,(),,(),,( xxzGzzyGxxyGyxxG dddd +≤=  

Similarly ),,(),,(),,( yyzGzzxGyyxG ddd +≤  by (v) 

 

Now we recall a few results already published in [23] 

 
2.7. Theorem [7] 
 

The metric dimension of graph G is 1 if and only if G is a path. 

 
Figure 4. (black colored vertices shows the metric basis for ∞P ) 

 

2.8. Theorem [7] 
 

If nK is the complete graph with 1>n  then 1)( −= nKnβ . 
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2.9. Theorem [1] 
 

If nC is a cycle of length 2>n , then 2)( =nCβ . 

 

 

 

2.9. Theorem [20] 
 

If G  is an infinite graph with finite metric dimension then it is uniformly locally finite.  
 

The infinite graph ∞2P is uniformly locally finite with metric dimension equal to two. 

 

 
Figure 4. 

 

The converse of the above theorem is not true.  That is a uniformly locally finite graph need not 

have finite metric dimension.  For example the infinite comp is uniformly locally finite but its 

metric dimension is infinite. 

 

    
Figure 5. 

 

3. Main Results 
 

3.1. Theorem 
 

The metric dimension of the graph obtained by adding ‘n’ pendant edges to each of the ‘n’ 

vertices in the complete graph nK , 2>n is same as that of nK . 
 

Proof: We have ( ) 1−= nKnβ .  Let { } { }in vvvvW \,...,, 21= for some nii ≤≤1  ,  be a basis for nK .  

Since every vertices nK are adjacent to each other the coordinate of (n-1) vertices ijv j ≠  ,  in W  

has (n-1) components at which thj component takes the value ‘0’ and the other components are 

1’s with respect to W . Now the vertex Wvi ∉ is adjacent to the vertices in W , its coordinate 

vector also has (n-1) components and that will be (1,1,…,1). 
 

Suppose nmmm ,...,, 21  are the pendant edges added correspondingly to the vertices nvvv ,...,, 21  such 

that ( ) njuvm jjj ≤≤= 1 ,, . Let the graph obtained in this way is denoted by ∑+=
=

n

j
jn mKK

1

.  

We know that the coordinate of jv is (1,1,…,0(j
th

place),1,…,1).  So for some j , 1),( =jj uvd and 
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since every vertex ( )nKVv ∈  are adjacent to jv , 2),( =juvd  for all those vertices jvv ≠ .  Hence 

the coordinate of ju  will be (2,2,…,1(j
th

place),2,…,2).  

 

That is, the coordinate of 1u  is (1,2,…,2), 2u  is (2,1,…,2)…, nu  is (2,2,…,1) respectively.  Thus 

the vertices in the graph K obtained by adding ‘n’ pendant edges to each of the vertices in nK  has 

distinct coordinates with respect to W . Therefore W  itself is the basis for nK  and hence

( ) 1−= nKβ . 

 

3.2. Illustration  
 

Consider 5K (Figure 6).  Here five pendant edges 51 ),,( ≤≤= juvm jjj are added at each of the 

vertices 54321  and ,,,, vvvvv respectively and shown that ( ) 415
5

1
5 =−=








∑+=
=j

jmKK ββ . 

 
 

Figure 6. 

 
The following corollary is about infinite graph with constant metric dimension. 
 

3.3. Corollary  
 

The above theorem holds for an infinite graph obtained by adding pendant edges 

( ) njuvm jjj ≤≤= 1 , ,  successively at each ju .  Thus there exist infinite graphs with finite metric 

dimension. 
 

The development of uniformly locally finite (ULF)[19] graphs is based on the adjacency operator 

A  acting on the space of bounded sequences defined on the vertices.  It has several applications 

in spectral theory.  The following theorem gives a simple result on uniformly locally finite graph. 
 

3.4. Theorem 

The infinite graph ∑+=
∞

=1j
jn mKK  mentioned in theorem 3.1 is uniformly locally finite graph with 

finite metric dimension. 

Proof: By theorem 3.1 ( ) 1)(
1

−=∑+=
∞

=

nmKK
j

jnββ where ( ) ∞≤≤= juvm jjj 1 ,, .  Since every 

vertex is adjacent to each other in nK , 1)( −= nvd  for )( nKVv ∈  and the degree of the vertices ju

which is one of the end vertex in each of the edge added to nK  is 2.  Now fix a positive integer

1−= nM where 2>n .  Then Mvd ≤)(  for all Kv ∈ .  Thus K  is uniformly locally finite. 

 

 



International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor 

Networks(GRAPH-HOC) Vol.7, No.1, March 2015 

7 

 

 

3.5. Theorem  
Let G be connected graph with kG =)(β , { }kvvvW ,...,, 21=  be the basis and 

( ){ }.)(/)),(),...,,(,,()/( 21 GVvvvdvvdvvdWvrX k ∈==   Define generalized metric or dG -metric 

+→×× RXXXGd : by 

   

( ) { }),(),,(),,(min,,
,,

zydzxdyxdzyxG
kRXzyx

d

rrrrrrrrr

rrr
⊆∈

=  

Where d  is the 2-metric defined from +→× RXX  by ∑ −=
=

k

i
ii yxyxd

1

),(
rr

. 

If mzyxGd =),,(
rrr

 then the metric dimension of the super graph G
~

obtained by adjoining at most m  

pendant edges to the vertices Wv ∉ is same as that of G  with respect toW . That is ( ) ( )GG ββ =
~

. 

 

Proof: Let { }kvvvvW ...,,, 321=  be the basis for G . Then the coordinate space 

{ })(/),(),...,,(),,()/( 21 GVvvvdvvdvvdWvr k ∈= .  Since kG =)(β , the coordinate of each vertex in G  

contains ‘k’ components and they are distinct. 
 

Let ( ) mzyxGd =,, .  Now we add m pendant edges are added to suitable vertices Wv ∉ . Suppose 

the first pendant edge 1e  is added at Wv j ∉ and ( )
1

,1 ej vve = .  The coordinate of jv  is 

)),(),...,,(),,(( 21 kjjj vvdvvdvvd  and it is distinct from the coordinate of other vertices in G . 

 

 

 

 

 

 

 
Figure 7. 

 

Thus the coordinate of 
1ev  will be )1),(,...,1),(,1),(( 21 +++ kjjj vvdvvdvvd  with respect to W and is 

different from all other coordinates of the vertices in G  since )),(),...,,(),,(( 21 kjjj vvdvvdvvd  is 

distinct from )),(),...,,(),,(( 21 kiii vvdvvdvvd , jini ≠=  ,,...,2,1 .  Hence keG =+ )( 1β . If the second 

pendant edge is added at 
1ev  say ( )

21
,2 ee vve = , then by the same argument as in the case of 

1ev , the 

coordinate of 
2ev  will be )1),(,...,1),(,1),((

111 21 +++ keee vvdvvdvvd and it is distinct from all other 

coordinates )),(),...,,(),,(( 21 kjjj vvdvvdvvd  for 1 ,,...,2,1 ejnj == . Then obviously the coordinate of 

the new vertex is distinct from all other vertices since each component in the coordinate of 
2ev is 

increased by one.  Thus keeG =++ )( 21β . 
 

Suppose the second pendant edge 2e  is added to jivi ≠ ,  in 1eG +  and ( )
2

,2 ei vve = .  Here also the 

coordinate of 
2ev  will be )1),(,...,1),(,1),(( 21 +++ kiii vvdvvdvvd . Hence keeG =++ )( 21β . 

Therefore the result is true for 2,1=m .  Assume that keeeG m =++++ − )....( 121β  where 

( )
lejl vve ,=  for 1,...,2,1, −=∉ mlWv j .  If me  is added at any 

lev  then each of the ‘k’ components in 

the coordinate of the vertex 
mev is increased by one and hence it is distinct from other coordinates.  

If me  is added to any vertex v  in G  not in W  and not the end vertex of any of le , 1,...,2,1 −= ml , 

then the coordinate of 
mev  will be )1),(,......1),(,1),(( 21 +++ kvvdvvdvvd  and distinct from all other 

coordinates of the vertices in the super graph  121 .... −++++ meeeG .  Thus 
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keeeeG mm =+++++ − )....( 121β .  Hence the result is true for m .  Thus the theorem is true for any 

integral value of +∈ RzyxGd ),,(
rrr

. 

 

3.6 Example  
 

Consider a 5- vertex Kite say H  (Figure 8).  There ( ) ( )( ) ( ) ( ){ }2,3,1,2,1,10,1,1,0=X  and 

( ) { } XzyxzxdzydyxdMinzyxGd ∈= ,, ,),(),,(),,(,,
r

∑ −==
=

2

1

),(    where,2
i

ii yxyxd  

 

Thus the minimum number of pendant edges that added to the Kite is 2.  If these edges are added 

to those vertices which are not in W  namely 43  and vv  with ( ) 221 =++ eeHβ . 

 
 

Figure 8. 

 
3.7. Example 
 

Consider 4C  
( ) 24 =Cβ  with respect to { }21,vvW = (Figure 9).  Then ( ) ( ) ( ) ( ){ }1,2,2,1,0,1,1,0)/( == WvrX  

 

 
 

Figure 9. 

 

By the definition of +→×× RXXXGd : , we have  

 

  ( ) { } XzyxzxdzydyxdMinzyxGd ∈= ,, ,),(),,(),,(,,
r

 

      ∑ −==
=

2

1

),(    where,1
i

ii yxyxd  

 

So one pendant edge is added to 4C .
Suppose the pendant edge is added at Wv ∈1  and ( )

1
,11 evve = .  

Then the coordinate of 
1ev is (1,2) with respect to W , but that is similar to the coordinate of 3v

(Figure 10).  Therefore ( ) WeC   respect to with 214 ≠+β . 
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Figure 10. 

 

Similarly if 1e  is added to Wv ∈2 , the coordinate of 
1ev  will be (2,1) and that is similar to the 

coordinate of 4v (Figure 11).  Thus 1e  must be added to any of 3v  or 4v .  It will give a distinct 

representation for the coordinates of the vertices in 14 eC +  (Figure 12).  That is 1e  must be added 

to the vertices not in .W  
 

 

 

 

 

 

 

 

 

 
Figure 11. 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

Figure 12. 
 

Note: Since W is not unique, ( ) 214 =+ eCβ with respect to another resolving set { }2,
1

vvW e=  

 and ( ) ( )( ) ( ) ( ){ }1,3,2,2,0,21,1,2,0)/( =Wvr  (Figure 13). 

 

 

 

 

 

 

 

 

 
Figure 13. 

 
 

4. Conclusion 
This paper gives a measure that can be used in navigation space where the number of robots 

required to navigate a work place kept constant.  Extension of navigation space will lead us to  
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infinite graphs and its properties.  With the help of dG -metric and its properties we established 

general concepts and results.   
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