
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

DOI : 10.5121/ijaia.2014.5203 21

VERIFICATION OF CONFLICTION AND

UNREACHABILITY IN RULE-BASED EXPERT

SYSTEMS WITH MODEL CHECKING

Einollah pira
1
, Mohammad Reza Z and Miralvand

2
 and Fakhteh Soltani

3

Department of Computer Engineering, Arak University, Arak City, Iran

ABSTRACT

It is important to find optimal solutions for structural errors in rule-based expert systems .Solutions to

discovering such errors by using model checking techniques have already been proposed, but these

solutions have problems such as state space explosion. In this paper, to overcome these problems, we

model the rule-based systems as finite state transition systems and express confliction and

unreachabilityas Computation Tree Logic (CTL) logic formula and then use the technique of model

checking to detect confliction and unreachability in rule-based systems with the model checker UPPAAL.

KEYWORDS

Model checking, Confliction, Unreachability, Rule, Uppaal, Verification

1.INTRODUCTION

A rule base is the central part of an expert system that extracts the knowledge from domain

experts in the form of inference rules. Structural errors usually appear by augmenting the

knowledge base rules. According to [1] , the typical types of structural errors include

confliction(conflict rules),unreachability(unreachable rules),subsumption (subsumed rules) ,

redundancy (redundant rules), and circularity (circular depending rules).But we just focus on the

confliction and unreachability in this paper.

Model checking is an automatic method for studying the properties given to a system and their

verification [2]. In [3] a solution by using model checking is presented, but it has the following

problems:

1) State space explosion: with the increase of rules, the number of states of the model checker

increases exponentially, and this makes the model checker is unable to continue his work

(out of memory).

2) The model checker has been used in this solution is textual and it makes the importing of

rules to the model checker become complicated.

In this paper, to overcome these problems, we model the rule-based systems as finite state

transition systems and express confliction and unreachabilityas Computation Tree Logic (CTL)

logic formula and then use the technique of model checking to detect confliction and

unreachability in rule-based systems with the model checker UPPAAL.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

22

The rest of the paper is organized as follows. In section 2, related works is presented. In section

3, we briefly introduce the required background.. Section 4 presents our proposed method to

detect confliction and unreachability in rule-based systems with the model checker UPPAAL.

Finally, we conclude the paper and highlight the future works in section 5.

2. RELATED WORKS

Many different techniques have been proposed to detect the structural errors in rule-based

systems [4]. Initial works mostly concentrated on the detection of structural errors by checking

rules pair-wisely. Recent works focused on detecting structural errors made by implementing

multiple rules in longer inference chains. Using some graphical notation such as Petri nets and

graphs is approach in the majority of the recent verification techniques [5].Some of the

mentioned approaches cannot discover structural errors exactly. The approach in [6] could only

detect structural errors matching a set of pre-defined syntactic patterns. The approaches in [7,8]

did not detect inconsistency errors. The approach in [4] used an adjacency matrix technique,

which has a greater computational cost in space and time.

3. PRELIMINARIES

In this section, we briefly present the required preliminaries, i.e., Model Checking and

UPPAAL.

3.1. Model Checking

Model checking is an automatic method for examining the properties given to a system and their

verification[9,10-14]. This verification is done by software tools as a model checkers. A model

checker thoroughly explores the state space to decide whether the system satisfies the property.

The approach is depicted in Figure 1. In a first step, which is called modeling, the system

description is converted into the system model. A system description is, for example, a program

written in C, Java or Assembly language. A system model is, for example, a Kripke structure, a

labeled transition system, or a finite automaton. The requirements have to be manually

formalized because they are mostly given in natural language. The result of this formalization is

the formal specification given as formulas in a temporal logic such as CTL (Computation Tree

Logic).

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

23

Figure 1: Model checking process [2]

CTL is a common logic for model checking, that develops propositional logic with specific

temporal operators.

The model and the specification are inputs given to the model checker. The model checker uses
an exhaustive search over all reachable states of the model to check whether the model satisfies

the formula. In the end, it returns a result. The result may be that the model satisfies the formula

or that the model does not satisfy the formula together with a counterexample. Due to the state-

explosion problem, it may happen that the model checker runs out of memory and does not

return a result.

3.2. UPPAAL

One of the best tools for the modeling, simulation and verification of real-time systems is

UPPAAL [14].UPPAAL can verify systems that have the following property: they can be

modeled as networks of timed automata (TA) expanded with structured data types, integer

variables, and channel synchronization. A finite-state machine expanded with clock variables is

a TA. UPPAAL expands the definition of TA with extra characteristics. Below are some of

these characteristics that are pertinent to our aim [15]:

• Templates: A TA is defined as template with optional parameters. Parameters are

local variables that are initialized during template instantiation in system declaration.

• Global variables: In global declaration section, global variables and user defined

functions can be introduced. All templates can access global variables and user defined

functions.

• Expressions: Three main types of expressions can be existed: (1) Guard expressions,

which are evaluated to Boolean and used to limit transitions, they may contain clocks

and state variables, (2) Assignment expressions, which are used to set values of clocks

Model

Checking

tool

Answer
Yes:if model
satisfies

specification
Counter-example: if
not

Model
(System

Requirements)

Specification
(System
Property)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

24

and variables, (3) Invariant expressions, which are defined for locations and used to

indicate conditions that should be always true in a location.

• Edges: Transitions between locations are marked with edges. Each edge specification

can consist of four expressions: (1) Select, which assigns a value from a given range to

a defined variable, (2) Guard, is a logical expression that if its value is evaluated to

true, the corresponding edge is enabled for a location, (3) Synchronization, which

describes the synchronization channel and its direction for an edge, and (4) Update, an

assignment statements that reset variables and clocks to required values. However, in

our paper, we only use two expressions Guard and Update in edges. Figure 2 shows an

example: we assume that the system is in a location loc0, if the value of x is 2, then its
value will be equal to 4 and the system location will be loc1. Otherwise, its value will

not be changed, but the system location will be loc2. Sometimes the edges may not

have any expressions.

Figure 2: An example in UPPAAL

We use UPPAAL to describe a checking formula that contains a set of properties [16]. The

checking formula can be a union of the following (see Figure 3):

• A[] � , which means � will invariantly happen

• E<> , which means � will possibly happen

• A<> , which means � will always happen eventually

• E[] � , which means � will potentially always happen

• �-->�, which means will always lead to �

Which and� are Boolean expressions defined on locations, integer variables, and clocks

constraints.

Figure 3: Path Formulae Supported in Uppaal. The Filled States Are Those for Which a

Given State Formulae is True [14].

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

25

4. OUR PROPOSED METHOD

4.1 Explanation of a rule

A rule has the following general form [15]: P → Q , where P and Q are called proposition and

deduction respectively. P (or Q) can be an atomic propositional logic formula (a proposition or

its negation) or a combined propositional logic formula containing multiple propositions and

logical connectives: ˄ and ˅).

For example, a rule base R is defined as follows:

R={
r0: p0 → p1˄ p4

r1: p1 → ~ p4

r2: ~p2 → p0 ˄ p1

r3: p0 ˅ p3 → p4

r4: p4 → p3

 }

4.2 Implementation of rules in the UPPAAL

It is assumed that the number of rules in R is m and the number of propositions is n. Each

proposition can take three values: 0 (false) , 1 (true) and 2 (nothing). We define an array p with

size n to keep the values of propositions, and an array with size m to show that what rules are

used. We consider a rule base R as a template. This template consists of the following locations:

start (the initial location), rs, rf and ri (i=0..m-1). The corresponding template of the rule base R

in the section 4.1 is displayed in Figure 4. When the system goes from location start to location

rs, the initp() procedure is called in the local declaration of the template. In this procedure, all

entries of array p are set with value 2 (nothing), but the value of p[0] is set 1 because the left-

hand side of r0 is p0. However, this procedure is written such that all entries of array p to be

initialized only once. For implementing of rule r0: p0 → p1 ˄ p4 , an edge is drawen from

location rs to location r0 that its guard expression is p[0]==1 and update expression is p[1]=1 ,

p[4]=1. Also, an edge is drawen from location r0 to location rf that its update expression is

r[0]=true. This edge means that rule r0 is used.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

26

Figure 4: The corresponding template of the rule base R in section 4.1

4.3 Verification of confliction

To verify the confliction, it is considered two instances es1 and es2 (also, are called processes)

of the defined template in the section 4.2. Then, we find two rules rx and ry of rule base R that

they have the proposition pi and ~pi on their right-hand sides respectively (regardless of the

left-hand sides) . For example, in the rule base R of section 4.1, two rules r0 and r1have the

proposition p4 and ~p4 on their right-hand sides respectively. In the verifier section of

UPPALL, we insert the following query:

E<>es1.r0 and es2.r1

this means that: eventually, is there the state of the system in which process es1 is in the location

r0 and process es2 is in the location r1? If this query is satisfied, two rules r0 and r1 are in

conflict with each other, otherwise, two rules mentioned aren’t in conflict with each other. In

this example, the verifier produces the following response:

property is satisfied.

this means that: two rules r0 and r1 are in conflict with each other.

4.4 Verification of unreachability

Similar to the previous section, to verify the unreachability, it is considered two instanceses1and

es2 (also, are called processes) of the defined template in the section 4.2. Provided that all rules
in the rule base R have been used at least once therefore: r[i]=true (i=1..m). So, in the verifier

section of UPPALL, we insert the following query (typem is a new type of integer type in the

range of 1 to m):

E<>forall (i:typem) r[i]==true

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

27

this means that: eventually, is there the state of the system in which all r[i] (i:1..m) are true ? If

this query is satisfied, all rules in the rule base R have been used at least once, otherwise, some

of them are not being used.

In this case, to find out the rule ri is not used, we must check the following query:

E<> es1.ri

this means that: eventually, is there the state of the system in which process es1 is in the location

ri? If this query is satisfied, the rule ri has been used at least once, otherwise, this rule has not

been used. In this example, the query E<> es1.r2has not been satisfied, this means that the rule

r2 is unreachable and must be removed from base rule R.

In the end of this section, we want to calculate the total number of system states. Since the

defined template in section 4.2 has 3+m locations (the start, rs and rf locations plus m locations

ri’s) and our system have two processes, so the total number of system states for a rule base R
with m rules is:

 N=(3+m)*(3+m)=O(m
2
)

this means that : the total number of system states is linear.

5. CONCLUSION AND FUTURE WORKS

In this paper, we have modeled the rule-based system as finite state transition system and

expressed confliction and unreachabilityas Computation Tree Logic (CTL)logic formula and

then used the technique of model checking to detect confliction and unreachability in rule-based

systems with the model checker UPPAAL. Our technique has the following advantages:

1) The total number of system states is O(m
2
), so the total number of system states is linear.

2) The model checker has been used in this solution is graphical and it makes the importing

of rules to the model checker become easy.

An open problem is, we find solutions to detect the other structured errors such as subsumption,

redundancy, and circularity.

REFERENCES

[1] Nazareth, D.L., (1989) “Issues in the Verification of Knowledge in Rule-Based Systems”, Int’l J. of

Man-Machine Studies, vol. 30, 255-271.

[2] William, C. ,Richard,J. , Paul, B. , Steve, B., Francesmary, M. , David, N. & Jon. D. (1998) “Model

checking large software specifications”, ,” In IEEE Transactions on Software Engineering 24(7),

pages 498-520.

[3] Desheng, X. , (2009) “Model Checking the Inconsistency and Circularity in Rule-Based Expert

Systems”, Computer and Information Science(CCSE), vol. 2, 12-17.

[4] Ramaswamy, M. ,Sarkar, S. & Chen, Y.S. (1997) “Using Directed Hypergraphs to Verify Rule-

Based Expert Systems”, IEEE Trans. on Knowledge and Data Engineering, vol. 9, no., 2, 1997, 221-

237.

[5] Lorena, C. & Li. X.(2006) “Structural Error Verification in Active Rule-Based Systems using Petri

Nets.” , Artificial Intelligence, 2006. MICAI'06.Fifth Mexican International Conference on.IEEE.

[6] Zhang, D. & Nguyen, D.,(1994) “Issues in the Verification of Knowledge in Rule-Based Systems”,

IEEE Trans. On Knowledge and Data Engineering, vol. 6, no., 6, Dec., 983-989.

[7] Valiente, G., (1993) “Verification of Knowledge Based Redundancy and Subsumption Using

Graph. Transformations”, , Int’l J. of Expert Systems, vol. 6, no. 3 , 1993, 341-355.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 2, March 2014

28

[8] Yang, S. J.H. , Lee, A. S. , Chu, W. C. & Yang, H. (1998) “Rule Base Verification Using Petri

Nets”, Proc. Of 22nd International Computer and Software Application Conference

(COMPSAC’98), Viena,Austria.

[9] Baier, C. &Katoen, J. (2008) “Principles of Model Checking”, . MIT Press,. ISBN 978-0262026499.

[10] Bengtsson, J. & Yi. W. (2004) “Timed automata: Semantics, algorithims and tools,” The United

Nation University, P.O.Box 305, Macau, Report 316.

[11] Maidl, M. “The Common Fragment of CTL and LTL,” In FOCS’00, pages 643–652.

[12] Mayr, R. (1998) “Decidability and Complexity of Model Checking Problems for Infinite-State

Systems,” PhD thesis, TU-Munich.

[13] To, A.W. &Libkin. L. “Recurrent reachability analysis in regular model checking” , In LPAR’08,

pages 198–213.

[14] Behrmann, G. , David, A. & Larsen, .K. G. (2004) “A tutorial on UPPAAL”, ,” in Formal Methods

for the Design of Real-Time Systems: 4th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems, SFM-RT 2004, vol. LNCS 3185. Springer–

Verlag, September 2004, pp. 200–236.

[15] Ibrahim, N. & Khalil. I. (2012) “VerifyingWeb Services Compositions Using UPPAAL”, ,” IEEE

Conference on Control, Systems & Industrial Informatics (ICCSII).

[16] Bengtsson, J. & W. Yi (2004) “Timed automata: Semantics, algorithims and tools”, The United

Nation University, P.O.Box 305, Macau, Report 316.

AUTHORS:

• Einollahpira: PhD student in Computer Engineering, Arak University

• Mohammad Reza Zand Miralvand: PhD student in Computer Engineering, Arak University

• FakhtehSoltani: Assistant professor in Computer Engineering, Arak University

