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ABSTRACT 
 
Min-based qualitative possibilistic networks are one of the effective tools for a compact representation of 

decision problems under uncertainty. The exact approaches for computing decision based on possibilistic 

networks are limited by the size of the possibility distributions. Generally, these approaches are based on 

possibilistic propagation algorithms. An important step in the computation of the decision is the 

transformation of the DAG (Direct Acyclic Graph) into a secondary structure, known as the junction trees 

(JT). This transformation is known to be costly and represents a difficult problem. We propose in this paper 

a new approximate approach for the computation of decision under uncertainty within possibilistic 

networks. The computing of the optimal optimistic decision no longer goes through the junction tree 

construction step. Instead, it is performed by calculating the degree of normalization in the moral graph 

resulting from the merging of the possibilistic network codifying knowledge of the agent and that codifying 

its preferences.  
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1. INTRODUCTION 

 
More and more, problems of decision making under uncertainty [1] [5]take an important place in 

Artificial Intelligence (AI) applications. Several decision making tools [2][20]have been 

developed to assist decision makers in their tasks: simulation techniques, dynamic 

programming[21], logical decision models[7] and graphical decision models (e.g [4] [12][13] 

[19]).  

 

Several non-classical theories of uncertainty have been proposed in order to deal with uncertain 

and imprecise data such as evidence theory [17], Spohn's ordinal conditional functions and 

possibility theory [24] issued from fuzzy sets theory [23]. 

 

This paper focuses on graphical decision models which provide efficient decision tools by 

allowing a compact representation of decision problems under uncertainty [19]. A decision 

problem is a choice between a list of possible alternatives taking into account the knowledge of 

an agent (knowledge is sometimes tainted with uncertainties) as well as his/her preferences. The 

results of his/her decision are expressed by a set of utilities. 

 

 The qualitative possibilistic decision model allows a progressive expression of preferences as 

well as knowledge of the decision-maker. This model offers two qualitative criteria of utilities for 
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the approach of decision under uncertainty: the pessimistic decision criterion and the optimistic 

decision criterion. Interest in the issue of the calculation of qualitative decision continues to grow 

and many approaches and models have been proposed [11][16]. 

 

In addition to the calculation of decision, the aim of this method is to improve other methods and 

overcome their limits as regards the presentation form, the calculation time as well as the ease of 

understanding. In our work we focus on graphical decision models that provide effective tools for 

decision problems under uncertainty using a compact representation. Several evaluation methods 

have been proposed to select the optimal decision. Among these methods, there is an exact 

approach based on possibilistic networks spread. This approach requires a transformation of an 

original graph into a secondary structure called the junction tree [15] which is used then in 

various calculations. In this work, our goal is to propose a new approximate approach to compute 

the optimal optimistic decision. Our approach is based on the moral graph associated with the 

result of merging the networks representing the agent's beliefs and preferences. This approach has 

a polynomial complexity [2]. Indeed, it avoids the transformation of the initial graph into a 

junction tree which is known to be an intractable problem (NP-hard). Using the approximate 

approach provides very close answers to the exact marginal distributions [2]. 

 

The reminder of the paper is organized as follows. The next section briefly recalls the 

fundamental concepts of possibility theory and min-based possibilistic networks. The main results 

of merging min-based possibilistic networks are also briefly presented in this section. Section 3 

describes the new approach and its use in calculating the optimal optimistic decision and section 4 

concludes the paper. 

 

2. BACKGROUND 

 
2.1.Basic concepts of possibility theory  

 
Probability theory is the fundamental uncertainty theory used in classical decision theory. Despite 

its fame, probability theory presents some limits since it cannot model qualitative uncertainty and 

total ignorance is represented by equiprobability which formalizes randomness rather than 

ignorance. In order to avoid limits of probability theory, non-classical uncertainty theories have 

been developed. Possibility theory was initially proposed by Zadeh [24] and was developed by 

Dubois and Prade [8]. This theory offers a suitable framework to handle uncertainty since it 

allows the representation of qualitative uncertainty.  

 

This section gives a brief refresher on possibility theory which is issued from fuzzy sets theory 

[24], [18] and represents a main approach in dealing with uncertainty. Let � = �A�, A�, … , A	
be 

a set of variables. We denote by D� = �a�, … . , a	
thedomain associated with the variable 

Aa�denotes any instance ofA. The universe of discourse is denoted by	Ω =××��	∈� ��, which is 

the Cartesian product of all variable domains in�. Each element ω	 ∈ 	Ω is calledan interpretation 

which represents a possible state of the world. It is denotedby ω = (a�, … . , a	)	orω =(��⋀�, … ⋀��). Where�a�	|1 ≤ i ≤ n
are the instancesof the variable	A�.ϕ,ψ	 	denote 

propositional formulas (corresponding toevents, i.e., subsets ofΩ) constituted from the variables 

in�. 

 

2.1.1. Possibility distribution 

 

A possibility distribution describes knowledge about the unknown value taken by one or several 

attributes used to describe states of affairs. For instance it may refer to the age of a man, the size 

of a building, the temperature of a room, etc. Here it will refer to the ill-known consequence of a 
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decision. A possibility distribution can represent a state of knowledge (about the state of affairs) 

distinguishing what is plausible from what is less plausible, what is the normal course of things 

from what is not, what is surprising from what is expected. 

 

The possibility distribution is denoted  by π and  it is a mapping  from the  universe  of discourse 

Ω to a bounded  linearly ordered  scale L exemplified by the unit  interval  "0, 1$, i.e. % ∶ 	Ω	 →	"0, 1$. 
 

The particularity of the possibilistic scale ( is that it can be interpreted in twofold:   in an ordinal 

manner, i.e. when the possibility degree reflects only an ordering between the possible values and 

in a numerical   interpretation, i.e. when possibility distributions are related to upper bounds of 

imprecise probability distributions. 

 

This distribution encodes available knowledge on real world: %(ω) = 1 means that ω is 

completely possible and %(ω) = 0 means that it is impossible to ω to be the real world. A 

possibility distribution % is said to be	) − +,-./0123, if its normalization degree	ℎ(%) is equal 

to	), namely: ℎ(π) = maxπ(ω) = α                                                               (1) 

 

If	) = 1, then ϕ is said to be normalized. 

 
2.1.2. Possibility and necessity measures 

 

In probability theory, the quantity 7(¬ϕ)is fully determined by 7(ϕ)since7(ϕ) = 1 −7(¬ϕ).Hence, if ϕisnotprobable, then ¬ϕ		is necessarily probable. However, the expression “it is 

not possible that ϕ is true” not only implies that “¬ϕ is possible” but it also leads to a stronger 

conclusion i.e. “it is necessary that	¬ϕ”. 

 

Moreover, the expression “it is possible that ϕ is true” does not entail anything about the 

possibility nor the impossibility ofϕ. Thus, the description of uncertainty about the occurrence of 

ϕ needs two dual measures: the possibility measure Π(ϕ)and the necessity measure N(ϕ) = 1 −
Π(¬ϕ	) due to the weak relationship existing between these two quantities. 

 

- Possibility measure: this measure evaluates to what extent ϕ is consistent with our 

knowledge. It is given by: 

Π(ϕ) = �π(ω):	ω	 ∈ 	ϕ	
(2) 

Π(ϕ)			is called the possibility degree ofϕ,it corresponds to the possibility to have one of the 

models of ψ as the real world[21].The degree of possibility satisfies the following properties: 

 

Π(⊥) = 0. 
Π(⊺) 	 = 1. 
Π(ϕ) = 	0. ϕis impossible. 

Π(ϕ) = 	1. ϕis completely possible. 

Π(ϕ) = Π(¬ϕ) = 	1.Φand¬ϕ are totally possible (case of total ignorance). max	(Π(ϕ),Π(¬ϕ)) = 	1.Φor¬ϕmust be possible(criterion of normalisation). 

 

- Necessity measure: it is the dual of the possibility measure. The necessity measure evaluates 

at which level ϕ iscertainly implied by our knowledge. It is given by: N(ϕ) = 1 − Π(¬ϕ)(3) 
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Necessity measure corresponds to the certainty degree to have one of the models of			ϕ		as 

the real world. This measure evaluates a t  which level		ϕ		is certainly implied by our 

knowledge represented by π.  

The dual relationship between Πand N expresses the fact that more is less certain: becomes 

consistent with available beliefs.The degree of necessity has the following properties: N(ϕ) = 	0	�+3	N(¬ϕ) = 	0ϕis total ignorance. N(ϕ) = 	1	�+3	N(¬ϕ) = 	0ϕis certainly true. N(ϕ) ∈	$0,1"	�+3	N(¬ϕ) = 	0. ϕis	somewhat		certain.	N	(ψ	 ∧ 	ϕ) 	 = 	min(N	(ψ), N	(ϕ)).	Conjonction	axiom.	N	(ψ	 ∨ ϕ) ≥ 			max(N	(ψ), N	(ϕ)).	Disjunction	axiom.		
2.1.3. Possibilistic conditioning 

 
The possibilistic conditioning consists in the revision of our initial knowledge, encoded by a 

possibility distributionΠ, after the arrival of a new certain informationϕ	 ⊆ Ω. The initial 

distribution Π is then replaced by another one, denotedΠ′ = Π(. |ϕ). The two interpretations of 

the possibilistic scale (qualitative and quantitative) induce two definitions of possibilistic 

conditioning [8]. In this paper, we focus on min-based conditioning (qualitative one) defined by: 

 

Π(ω|ϕ) 			 = O 1											if	π(ω) 	 = 	Π(ϕ)	and		ω	 ⊨ 		ϕi
π(ω)				if	π(ω) 	 < 	T(U)	�+3		V		 ⊨ 		U00		otherwise 

W(4) 

 

The distribution of possibilistic conditioning as defined above means that ifω falsifies, then it 

becomes completely impossible. Otherwise, we distinguish two cases: Ifω is a bettermodel, then 

it becomes totally possible otherwise it keeps the same level of ability. 

 

We also use a so-called min-based independence relation, as a non-interactivity relation [23]. This 

relation is obtained by using the min-based conditioning Equation 4 and it is defined by: 

 ∀Y, Z, 1	T(Y ∧ Z	|	1) 	 = 	.0+(T(Y	|	1), T(Z	|	1)).                           (5) 

 

2.2.Min-based possibilistic network 

 
2.2.1. Preliminaries 

 
There are two ways of knowledge representation: a logical representation and a graphical 

representation. In this paper we are interested to the graphical representation. It is qualitative 

network. A possibilistic network is an adaptation of the probabilistic (Bayesian) network, in the 

sense where we use the same graphic structure which is the direct acyclic graph (DAG) 

A min-based possibilistic network [14] over a set of variables V denoted by Π	[\�� =([, %\��)is characterized by: 

 

• A graphical component: which is represented by a Directed Acyclic Graph (DAG) where 

nodes correspond to variables and arcs represent dependence relations between variables. 

• Numerical components: these components quantify different links in the DAG by using 

local possibility distributions for each node A in the context of its parents denoted by	]�. 

More precisely:  

- For every root node	^(]� = ∅), uncertainty is represented by the a priori possibility 

degree%(�), for each instance	a	 ∈ D�, such thatmax %(�) = 1. 
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- For the rest of the nodes	^(]� ≠ ∅), uncertainty is represented by the conditional 

possibility degree	%(�|	]�), for each instance		a	 ∈ D�, and	]� ∈ D�, such 

that	max%(�|	]�) = 1, for any	]�. 

 

The set of a priori and conditional possibility degrees induces a unique joint possibility 

distribution defined by: 

 

Definition 1: Let	Π	[\�� = ([, %a) be a min-based possibilistic network. Given the a priori and 

conditional possibility distribution, the joint distribution denoted by	%a, is expressed by the 

following quantitative chain rule: 

 

πa(A�, … . , A	) = min	(Π(A�|	U��)) (6) 

 

Example 1:Let the graphic model of a possibilistic network illustrated in figure 1 and table of 

initial opportunities distributions is given by the following table: 

 
 

Figure 1. Model of a DAG 

 

A   		π�(A) 

A        B    		π�(A) 

A B       C      		π�(A) A         B       C   		π�(A) 

a1      0.1 

a2      1.0 

a1       b1      0.6 

a1       b2      1.0 

a2       b1      0.4 

a2       b2      1.0 

a1       b1      c1      0.5 

a1       b1      c2      1.0 

a1       b2      c1      1.0 

a1       b2      c2      0.2 

a2        b1      c1    0.3 

a2        b1      c2    1.0 

a2        b2      c1    0.0 

a2        b2      c2    1.0 

 
Table 1. Initial possibility distributions 

 

    A         B       C      		π�(A)   A         B       C   		π�(A) 

a1       b1      c1      0.5 

a1       b1      c2      1.0 

a1       b2      c1      1.0 

a1       b2      c2      0.2 

a2        b1      c1    0.3 

a2        b1      c2    1.0 

a2        b2      c1    0.0 

a2        b2      c2    1.0 

 
Table 2. Distributions de possibilité jointe 

 

2.2.2. Fusion of min-based possibilistic networks 

 
Merging uncertain information [10] is important to exploit complementarities between sources. It 

provides thus a global and complete point of view. In this paper, we are interested in conjunctive 
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mode which makes sense if all sources are considered as equally and fully reliable. One of the 

basic conjunctive operators is the minimum operation (min). 

 

Given two min-based possibilistic networksΠ[\�� = ([, %d)and Π[e\�� = ([e, %df),the 

result of merging Π[ and Π[eis the possibilistic network Π[⨁ = ([⨁, %⊕)[22], such that: ∀	ω, π⊕(ω) = min	(πa(ω), πaf(ω))	                                      (7) 

 

The syntactic counterpart of the fusion of two possibility distributions, associated to two 

possibilistic networks, using the min operator is a new min-based possibilistic network whose 

definition depends on the union of the two initial ones. In [22], the authors propose two principal 

classes for merging min-based possibilistic networks: 

 

• Fusion of two possibilistic networks jk and jkehaving the same network 

structure. The resulting network Π[⨁ retains the same structure:	[⨁ = [ = [e.The 

possibility degrees are computed as follows: for each variable A,	%⊕(^|	]�) =min(%d(^|	]�), %df(^|	]�)). 
 

• Fusion of two possibilistic networks jk andjkewithdifferent structures. Two 

cases are distinguishable: 

 

- The union of graphs is acyclic. In this case, Π[ and Π[e are first expanded, with 

additional variables and links, to T[1	 = 	 ([⊕ 	 = 	[	 ∪	[e	, %�	)	and T[′� 	 = 	 ([ ⊕	= [	 ∪ 	[	, %�e		) without affecting possibility distribution. The extension process of 

a min-based possibilistic network can be performed either by adding variables or 

arcs, namely, 

 

� Adding variable. The extension of Π[	 = 	 (G, π)  by adding a new variable 

X∉ 	� provides a new min-based possibilistic network Π[p =	 (Gp , πp) 

whichinduces a joint possibility distribution πdq  , such that : 

- GX = G ∪ {X}, 

- The additional node X will represent the total ignorance, namely ∀Y	 ∈ �p, πp(Y) = 	1, 
- The remaining variables preserve the same possibility distributions, ∀r	 ∈ 	s, r ≠ 	t, πp	(r	|	7	�-(r	)) 	= 	%(r	|	7	�-(r	)). 

Then, ∀V	 ∈ 	Ω, %d 	(V) 	= 	.�Y	πdq 	(YV). 
 

� Adding link. The extension of Π[	 = 	 (G, π)  by adding a link from X to Y (t ∉ 	Par(Y	)) provides a new min-based possibilistic network Π[x =	(Gx , πx) which induces a joint possibility distribution πGL , such that: ∀Z ∈ �r	, Y ∈ �t	, y�-(r	) ∈ �z{|(}	)π((Z	|	y�-(r	)Y) 	 = 	%(Z	|	y�-(r	)).	∀~, ~ ≠ 	r, ∀1	 ∈ 	�~	, y�-(~) 	 ∈ 	�7	�-(~)	, π(	(1	|	y�-(~)) 	= 	%(1	|	y�-(~)).	
Then, ∀ ∈ω  Ω, %d  (ω) = πd�  (ω). 

 

Since, both initial min-based possibilistic networks have the same structure (by 

adding nodes and links), then the fusion of same-structure networks is applied. 

 

- The union of graphs is cyclic. In this case, additional variables are added to 

eliminate cycles. Indeed, the resulting possibilistic network ΠG ⊕	= 	 (G ⊕	, π ⊕	) is 

obtained by: 

-  
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� Initially, let 	[⨁ = 	G′ 
� Renaming all variables in G⊕ , such that ∀t� 	 ∈ 	s, rename t� to t�e  , 
� Adding G to 	[⨁ , such that 	[⨁= G	 ∪ G′,   
� Linking each old variable t�  to the new correspondent variable t�e  , 
� For each old variablet0	, ∀Y� ∈ 	 ���	, %⊕	(Y�	|	7�-(t� 	)) 	 = 	%(Y� 	|	7�-(t�	)) 

� For each new variable t� %(Y�′|	Y�	7	�-′	(t�	)) = �%	(Y�|	7	�-′	(t0	))		��	0	 = 	�		0	otherwise W 
 

The new conditional distributions relative to the new variables ensure the equivalence 

between new and old variables. 

 

For more details on the fusion of possibilistic networks see [22]. 

 

3. DECISION MAKING UNDER UNCERTAINTY USING POSSIBILISTIC 

NETWORKS 

 
In a problem of decision under uncertainty, knowledge of the decision-maker is generally not 

very informative. In other words, the agent does not know the real state of the world, but he 

knows only that this state belongs to a finite set of possible states. A decision system is defined by 

a finite set of states	� = ���, ��, … . , ��
, a finite set of consequences X, a set of decisions 

noted	� = �3�, 3�, … . , 3\
, and a set of preferences among the consequences. Each decision 3�	: � → t is a function that associates to every possible state of the world a consequence. The 

preferences among the consequences are encoded by the utility function �: t → ]where U is 

apreferably ordinal scale. 

 

The theory of possibility allows one to express the uncertain knowledge on different states of the 

world by using a possibility distribution. Indeed, it allows one to represent uncertain knowledge 

by distinguishing what is plausible to what is less plausible. It provides also a suitable mean to 

represent preferences on the consequences of decisions in order to distinguish the desirable 

consequences from the less desirable ones [12]. 

 

The uncertainty on the possible states of the world is represented by a normalized possibility 

distribution	πthatassociates to a set of state variables a value in the interval [0, 1]. Likewise, the 

preferences of the agent are represented by a different possibility distribution � that associates to 

a setof consequences a value in an ordinal scale U , represented by the interval [0,1] [12]. We 

assume that the uncertainties and preferences are commeasurable[9]. 

 

In the context of decision theory under uncertainty proposed by Savage, uncertainty of the agent 

is modeled by a probability distribution π on the set of possible states of the world and 

itspreferences by a utility function � with real values on the setX of the possible consequences of 

his/her actions. 

 

In contrast, in the possibilistic framework, knowledge of the agent is modeled by a normalized 

possibilistic distributionπ which is a function from states to a simply ordered scale( of 

plausibility: for a world ω, %(ω) ∈ ( ∶	represents thedegree of likelihood that ωis the real state of 

the world. If we consider that the information possessed by the agent on the decision problem is 

purely ordinal, it is reasonable to think that not only his/her knowledge can be expressed by a 

possibilistic distribution but also his/her preferences [6][16]. A distribution of possibilities can be 

then seen as a utility [16] function. 
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Let � be the possibility distribution representing the agent’s

simply orderly scale in [0, 1]. As in Savage theory, an action is represented by a

associates to a world an element of X 

whose consequence is 3(ω) ∈ t
the utilities �(3(ω))in anappropriate manner for all

 

Two evaluation criteria have been proposed to achieve

commensurability between the scales of plausibility and utility 

 

• Pessimistic criterion (Minimax

decision is that having the largest minimum utility :

 U
• Optimistic criterion (Maximin):

decision is that having the largest maximum utility :U
 

In this work, we are interested in the optimistic criterion for the calculation of the decision.
 

Example 1: Let us consider the problem of deciding whether we should or not take an umbrella, 

knowing that it would rain. The two min

preferences of the agent are denoted 

possibilistic graphs, let us first present the set of nodes used in the networks 

 

- R: It’s raining. 

- W: The grass is wet. 

- UM: Take the umbrella. 

- C: Cloudy atmosphere. 
 

Figure 2. The possibilistic networks of 

• Agent’s knowledge: described by the min([� , %�), where the graphical c

possible states of the world R, one decision va

The initial possibility distributions associated with 

We suppose that the variables are binary
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be the possibility distribution representing the agent’s preferences. �takes its values in a 

1]. As in Savage theory, an action is represented by a function d that 

es to a world an element of X [16].The utility of an action (decision) d in a state t can be evaluated by combiningthe possibility degrees 

in anappropriate manner for all the possible states of world [16].

Two evaluation criteria have been proposed to achieve such combinations assuming some form of 

between the scales of plausibility and utility [6][16]: 

Pessimistic criterion (Minimax). Criterion of a pessimistic decision maker: 

decision is that having the largest minimum utility : 

U∗(d) = 	minmax�∈�(1 − π��(ω), μ(ω))      (8) 

Optimistic criterion (Maximin): Criterion of an optimistic decision maker: the chosen 

decision is that having the largest maximum utility : U∗(d) = maxmin�∈�(π��(ω), μ(ω))                                     

In this work, we are interested in the optimistic criterion for the calculation of the decision.

: Let us consider the problem of deciding whether we should or not take an umbrella, 

knowing that it would rain. The two min-based possibilistic networks representing knowledge and 

preferences of the agent are denoted j����and j���� respectively. Before presenting the 

possibilistic graphs, let us first present the set of nodes used in the networks and their 

 
 

. The possibilistic networks of knowledge and preference of an agent 

 

described by the min-based possibilistic network

, where the graphical component GK is given by Figure 2 (a). It contains one 

possible states of the world R, one decision variable UM and two consequences {

The initial possibility distributions associated with Π�\�� are given byTables 3

that the variables are binary. 

Applications (IJAIA) Vol. 6, No. 2, March 2015 
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takes its values in a 

function d that 

.The utility of an action (decision) d in a state ωand 

can be evaluated by combiningthe possibility degrees %(ω)and 

. 

such combinations assuming some form of 

). Criterion of a pessimistic decision maker: the chosen 

Criterion of an optimistic decision maker: the chosen 

                                    (9) 

In this work, we are interested in the optimistic criterion for the calculation of the decision. 

: Let us consider the problem of deciding whether we should or not take an umbrella, 

based possibilistic networks representing knowledge and 

Before presenting the 

and their meanings. 

 

based possibilistic networkΠ�\�� =
(a). It contains one 

UM and two consequences {W, C}. 

Tables 3and 4. 
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R       		π�(R) 

r1        0.9 

r2        1.0 

 
Table 3. Initial possibility distributions relative to ΠK��	 

 

W     R 		%�(�|�)	
 

C     R      		%�(�|�)       UM  C    		%�(]�|�) 

w1    r1           0.4 

w1    r2           1.0 

w2    r1           1.0 

w2    r2           0.0 

c1    r1           1.0 

c1    r2           0.2 

c2    r1           0.3 

c2    r2           1.0 

bio1      of2             0.8 

bio2      of1             0 

um1    c1           1.0 

um1    c2           1.0 

um2    c1           1.0 

um2    c2           1.0 

 

 
Table 4. Initial possibility distributions relative to ΠK��	 

 

• Agent’s preferences: expressed by the min-based possibilistic network		ΠP��	 =(G�, μ),, where the graphical component G�,is given by Figure 2 (b). It contains one 

decision variable UM and two consequences {W, C}.The initial possibility distributions 

associated with Π7\��are given by Tables 5 and6. 

 

W     μ (W) UM      μ (UM) 

w1          1.0 

w2          1.0 

um1          1.0 

um2          1.0 

 
Table5. Initial possibility distributions relative to ΠP��	 

 

       UM        W     R   		μ (UM|W R) UM     W     R		μ (UM|W R) 

 um1      w1    r1           1.0 

 um1      w1    r2           1.0 

 um1      w2    r1           1.0 

 um1      w2    r2           1.0 

um2      w1    r1           1.0 

um2     w1    r2           0.0 

um2w2    r1           0.8 

um2     w2    r2           1.0 

 
Table 6: Initial possibility distributions relative to ΠP��	 

 

4. ON THE COMPUTATION OF OPTIMAL OPTIMISTIC 

DECISIONS BASED ON MIN-BASED FUSION 

 
Given our graphical model for representing decision making under uncertainty, in this section, we 

propose an algorithm for dealing with decisions evaluation. In fact, at the semantic level 

qualitative possibilistic decisions can be viewed as a data fusion problem of two particular 

possibility distributions: one representing agent’s beliefs and the second representing the 

qualitative utility.  

 

We recall that agent’s knowledge and preferences are both represented by two separated min-

based possibilistic networks. The first represents agent’s beliefs and the second represents the 



International Journal of Artificial Intelligence & 

qualitative utility. Knowledge and preferences of the agent are both represented by two separated 

min-based possibilistic networks, namely 

respectively. 

 

In what follows, we propose a method for computing optimal optimistic decisions based on the 

fusion of %� and	� (or Π�\��
optimal optimistic decisions, it should be noted that each set of decision d induces a possibility 

distribution %�� in the following way 

 

π

 

4.1.Describing optimistic decisions as a fusion process

 
We recall that making a decision comes down to choosing a subset d of the decision set D which 

maximizes the optimistic qualitative utility by:U
Where, %
 

Using equation (12), the optimistic utility decision U
 

Using technical merging of two minU
where π⨁(ω) = min	(π�(ω),µ(ω
 
Example 2: The two DAGs ([�
Their union is acycles, the result of merging 

min-based possibilistic network 

the union of the two graphs of Figure 1 and 2. The resulted min

Π[⨁induces a unique possibility distribution 
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qualitative utility. Knowledge and preferences of the agent are both represented by two separated 

based possibilistic networks, namely Π�\�� = ([� , %�)and	Π7\��
In what follows, we propose a method for computing optimal optimistic decisions based on the 

 andΠ7\��). Before describing a fusion process for computing 

optimal optimistic decisions, it should be noted that each set of decision d induces a possibility 

in the following way [10]: 

π� (ω) 	 = 	min(π�	(ω), π�	(ω))	(10) 

 

Describing optimistic decisions as a fusion process 

making a decision comes down to choosing a subset d of the decision set D which 

maximizes the optimistic qualitative utility by:  U∗(d) 	 = 	 maxmin�∈� (π�  	(ω), μ	(ω))(11) 
%�	(V) 		 = ¡ 1										0�		V				 ⊨ 		U0		0															,¢ℎ2-£0�2W(12) 

), the optimistic utility decision U∗(d)becomes: U∗(d) 	 = 	 maxmin�∈� (min	(π�(ω), μ(ω))	, π�	(ω))       
 

Using technical merging of two min-based possibilistic networks, this Equation (13) down to:U∗(d) 	 = 	 maxmin�∈� (min	(π⨁(ω)	, π�	(ω))(14) (ω)). 

�and	[z) given in Example 1, Figure 1 havea different structure

cycles, the result of merging Π�\�� = ([� , %�)and	Π7\�� = (
based possibilistic network Π[⨁ = ([⨁, %⊕	)where G⨁,	 isgiven in Figure 3

the union of the two graphs of Figure 1 and 2. The resulted min-based possibilistic network 

induces a unique possibility distribution %⊕. 

 
 

Figure3. The DAG G⨁ 
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qualitative utility. Knowledge and preferences of the agent are both represented by two separated \�� = ([z , �), 

In what follows, we propose a method for computing optimal optimistic decisions based on the 

Before describing a fusion process for computing 

optimal optimistic decisions, it should be noted that each set of decision d induces a possibility 

making a decision comes down to choosing a subset d of the decision set D which 

)       (13) 
) down to: 

erent structures. ([z , �),is the 

3.G⨁is simply 

based possibilistic network 
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The initial possibility distributions are given by Tables 7 and 8. 

 

 

R    π�(R) W     R 		π�(W|R)	
 

C     R      		π�(C|R) 

r1        0.9 

r2        1.0 

w1    r1           0.4 

w1    r2           1.0 

w2    r1           1.0 

w2    r2           0.0 

c1    r1           1.0 

c1    r2           0.2 

c2    r1           0.3 

c2    r2           1.0 

 

 
Table 7. Initial possibility distributions relative toΠG⨁ 

 

 

UMW     C		μ (UM|W C) UM        W      C		μ (UM|W C) 

um1      w1    c1           1.0 

um1      w1    c2           0.0 

um1      w2    c1           0.8 

um1      w2    c2           1.0 

um2      w1    c1           1.0 

           um2        w1    c2              1.0 

           um2         w2    c1             1.0 

um2      w2    c2            1.0 

bio2      of1             0 

bio2      of2             1 

 
Table 8.Initial possibility distributions relative toΠG⨁. 

 

4.2.Computing optimal decisions using moral graph 
 

In this section, we present the propagation process based on moral graph to compute optimal 

decisions. It is composed of several steps, which progressively get close to exact possibility 

degrees (i.e. converges to exact values). The first step consists in transforming the initial 

possibilistic graph in to an equivalent undirected graph, called here for simplicity moral graph, 

where each node (called cluster) contains a variable from the initial graph and its parents. The 

clusters are quantified by local joint possibility distributions instead of the initial conditional 

ones. Then, several stability procedures are used in order to guarantee that joint distribution 

relative to any cluster is in agreement with those of its adjacent clusters. 

 

Computing the optimistic optimal decisions amounts to find the normalization degree of the 

moral graph resulting from the merging of the two possibilistic networks, the first min-based 

possibilistic network encodes a joint possibility distribution representing available knowledge and 

the second one encodes the qualitative utility, without going through the junction tree.Note that 

the construction of the moral graph is done only once and has a polynomial complexity. However, 

the simple stabilization procedure, multiple stabilization procedure and initialization (see below) 

(which are all three polynomials) are repeated for each decisiond∗. 

 

4.2.1. Building the moral graph. 

 

The first step is to transform the initial network in to an equivalent secondary structure, called 

moral graph for simplicity of notation, and denoted by ℳ¦. Each node in the moral graph MG is 

called a cluster and it is constructed by adding to each node (variable) from the initial network its 

parent set. This construction way insures that for any variable A corresponds only one cluster in 
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ℳ¦ denoted by	C� . Between any two clusters 

edge labeled with a separator, denoted 

 

The construction of the possibilistic moral graph, 

follows: 

 

- For each variable Ai ,form a cluster

- For each edge connecting two nodes 

between thecluster C� and the cluster 

intersection. 

 

Example 3: Let us continue with Example 2. We need to compute the optimal optimistic decision 

UM = {um1; um2}. First, we start by constructing the moral graph (see Figure4) associated with 

the graph [⨁ (Figure 3) representing the fusion of 

contains four cluster C1 = {R}, C2 = {R, W}, C3= {R, C} and C4 = {R, W, UM} and their 

separator S12 = {R}, S12 = {R}, S13 = {R}, S23 = {R}, S24 = {w} and S34 = {c}.

Figure.

4.2.2. Initialization. 

 

For a given decision d, once the moral graph is built, 

transformed into local joints in order to quantify it. Namely, for each cluster 

local joint distribution relative to its 

 

The quantification is proceeds by taking into account the decision 

 

- For each cluster	C�, (resp.

 

- For each variablemin( %§� , %⊕(^�|]�)). 

 

- Encode the evidence � =Λ
- Identify a cluster 	C�containing D
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Between any two clusters C� and C©  with a non-empty intersection exits an 

edge labeled with a separator, denoted by	S�©, containing the common variables in C�
The construction of the possibilistic moral graph, noted	ℳ¦,from the initial graph is done as 

For each variable Ai ,form a clusterC� = ^� ∪	]� 

each edge connecting two nodes ^�and	 ©̂  : forman undirected edge in the moral graph 

and the cluster C©labeled with a separatorS�©corresponding 

Let us continue with Example 2. We need to compute the optimal optimistic decision 

UM = {um1; um2}. First, we start by constructing the moral graph (see Figure4) associated with 

(Figure 3) representing the fusion of Π�\�� and	Π7\��. The resulted moral graph 

contains four cluster C1 = {R}, C2 = {R, W}, C3= {R, C} and C4 = {R, W, UM} and their 

separator S12 = {R}, S12 = {R}, S13 = {R}, S23 = {R}, S24 = {w} and S34 = {c}. 

 
 

.4. Moral Graph MG of th DAG in Figure 3 

 

For a given decision d, once the moral graph is built, the initial conditional distributions are 

transformed into local joints in order to quantify it. Namely, for each cluster C ofℳ¦
local joint distribution relative to its variables, called potential and denoted	π«�¬ . 

by taking into account the decision 3 as follows: 

(resp.S�©)  %«�¬ ← 1. (resp.S�© ← 1)   

variable	^�  , choose a cluster	C�containing^
 

= 3�as likelihood Λ®(3): Λ®(3): ¡1					�	0�	0+�¢�+¯0�¢23	��	3																												0					�	0�	0+�¢�+¯0�¢23	��	�	°�/±2	3e		 ≠ 3
containing D: 
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empty intersection exits an 

andC© .  

graph is done as 

: forman undirected edge in the moral graph 

corresponding to their 

Let us continue with Example 2. We need to compute the optimal optimistic decision 

UM = {um1; um2}. First, we start by constructing the moral graph (see Figure4) associated with 

. The resulted moral graph 

contains four cluster C1 = {R}, C2 = {R, W}, C3= {R, C} and C4 = {R, W, UM} and their 

 

the initial conditional distributions are ¦, we assign a 

 

^� ∪	]�%§� ←
	3 W													(16) 
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		%«�¬ ← min( %«�¬ , 	Λ®).                          (17) 
 

It is clear that the joint distribution encoded by the initialized moral graph is equivalent to the one 

encoded by the initial networks since the local joint distributions in clusters are equal to the initial 

local conditional distributions. 

 

Note that Equations 16 and 17 do not appear in standard initialization of moral graph associated 

with standard min-based possibilistic networks. It is proper to possibilistic decision problem. By 

entering the fact D = d, the moral graph ℳ¦ encodes π 

 %ℳ¦(ω) 	 = 	min(π⊕(ω), π�(ω)),                  (18) 
 

where%ℳ¦can be redefined from ℳ¦ as follows: 

 

Definition 1: The joint distribution associated with the moral graph ℳ¦ is expressed by: %ℳ¦ =	 min�:�,�%§� .                               (19)	
 

where m is the number of clusters in ℳ¦ . 

 

Then the qualitative utility associated with a decision d is summarized by the following 

proposition:  

 

Proposition 1: LetΠ�\�� = ([� , %�),be a min-based possibilistic network representing agent’s 

beliefs and Π7\�� = ([z , �)be a min-based possibilistic network representing agent’s 

preferences. Let Π[⨁ = ([⨁, %⊕) be the result of merging Π�\�� and Π7\�� using the min 

operator. Let	ℳ¦, be the moral graph corresponding to Π[⨁	generated using the above 

initialization procedure. Then, 

 U∗(d) 	 = 	 max�∈�(ℳ¦(ω))                         (20) 
 

Where	U∗(d) is given in Equation 14. 

 

Hence, after the initialization step, the moral graph really encodes the possibilistic optimistic 

decision. The next step is used to apply the simple stabilization procedure and multiple 

stabilization procedure in order to efficiently determine the value of U∗(d). 

 

4.2.3. Simple Stability Procedure. 
 

The simple stabilization procedure ensures that the potential of each clique is in agreement with 

that of its neighbors. This procedure is applied through a mechanism of passage of messages 

between different cliques. Indeed, each separator collects information from its corresponding 

cliques in order to distribute it then to each of them in order to update them.  

 

The potentials of any adjacent clusters 	C�  and 	C©  (with separator	S�©) are updated as follows: 

 

• Collect evidence(Update separator) : ��©²³� ← min(	max«� ´�µ⁄ 	%«�² , max«µ ´�µ⁄ 	%«�· )																													(21) 

• Distribute evidence (Update clusters) : 
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%§�²³� ← min(	%«�² , 	%´�µ²³�)																																																																			(22) %§©²³� ← min(	%«µ² , 	%´�µ²³�)																																																																			(23) 

 

These two steps are repeated until reaching the stability of all clusters. This procedure is defined 

as follows: 

 

Definition 2: Let 	C�and 	C©  be two adjacent clusters in a moral graph	ℳ¦, and let S�© be their 

separator. The separator S�©is said to be stable if:  	max«� ´�µ⁄ 	%«�¬ = 	max«µ ´�µ⁄ 	%«�¬ 																																																			(24) 

 

Where 	max«� ´�µ⁄ π«¸ 	is the marginal distribution of	S�© defined from 	%«�¬  (resp.	%«µ¬ ). 

 

A moral graph ℳ¦ is stable if all its separators are stable. 

 

Proposition 2: Let ℳ¦ be a stabilized moral graph, let %ℳ¦ be the joint distribution encoded by 

MG after the initialization procedure. Then, ∀		C� 	, max %ℳ¦	¹ ≥ )                            (25) 
 

Where,) is the maximum value in all clusters. 

 

 
 

- The theoretical complexity. 

 

In this procedure, a separator will be treated if one of its corresponding clusters has been 

modified. Moreover, a cluster will be treated if one of its corresponding separators has been 

modified. Thus, the moral graph is considered as stable if none of its clusters has been modified. 

It can be shown that the simplest ability is reached after a finite number of message passes, which 

can be evaluated as follows: 

 

Let		º		be the number of clusters,ℳbethenumberofseparatorsand7thenumberofvaluesinthe 

possibilistic scale relative to all the clusters. The iteration in the simplest ability procedure is 

repeated until there is no modification in the clusters. The maximal number of iterations occurs 

when a degree is modified in one cluster during one iteration, thus we can have atmost	º ∗7iterations.Each iteration runs»(ℳ)timestheCollet-Distribute evidence. Thus, the theoretical 

complexity is		»(ℳ ∗ º ∗ 7)and hence the stability is a polynomial procedure. 

 

 

 

 

Algorithm1: Simple stability procedure 

Begin  

     Whileℳ¦ is not stable do  

For each separator S�©do 

-Collect evidence in S�©  from 	C�and 	C© 

-Distribute evidence  

End 
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4.2.4. Multiple Stability Procedure. 

 

[3]Proved that the simple stabilization procedure does not always guarantee accurate marginal. 

One needs to stabilize each clique with respect to all of its adjacent cliques but this can turns out 

to be very costly in terms of calculation if the number of cliques is important. For that, [3] has 

proposed to follows several steps in stabilizing the possibilistic moral graph over subsets of its 

adjacent cliques. Authors of [3] have proposed several progress ivestabilization procedures based 

on n   parents, n   children, n   parents   children and n   neighbors by varying the value of n from 

2 up to the cardinality of the considered subset. To illustrate the multiple stabilization procedure, 

we consider the case of two parent’s stabilization. The principle of this procedure is to ensure for 

each clique, with at least two parents, its stabilization over each pair of parents. The updating of 

any cluster 	C� with respect to two of its parents 	C© and 	C¼ is performed as follows: 

• Compute the potential of 	C� using 	C© and 	C¼: 	%§ ← min(	%«µ² , 	%«�² )(26) 
• Distribute the potential of � using �: 	%¹ ← 	max 	%§§\¾ (27) 

• Compute the potential of 	C� using 	C© and 	C¼: 	%«�²³� ← min(	%«�² , 	%¹)                                                          
(28) 

Once stability has been reached, the calculation of qualitative utility over a decision d will be 

obtained as follows: 

 

Proposition 3. Let Π�\�� = ([�, %�)be a min-based possibilistic network representing agent’s 

beliefs and Π7\�� = ([z , �)a min-based possibilistic network representing agent’s preferences. Π[⨁is the result of merging of Π�\��and 	Π7\��by using the min operator. Let ℳ¦ be the 

moral graph of	Π[⨁. The computation of optimistic decisionsreturns to calculate the 

normalization degree of MG: U∗(d) 	 = 	 max§� ¿%§�À                                                            
(29) 

4.3.Algorithm 

 
The computation of the optimal optimistic decisions is obtained using the following algorithm. 

 

Algorithm : Computation of optimal optimistic decision 

Data:	j���� = (k�, Á�): Knowledge possibilistic network 	j���� = (k�, Â): Preferences possibilistic network 

         D = {D1,…,Dn}: Set of decisions, 

Result:decisions ,Â∗ 

Begin: 					jk⨁ = (k⨁, Á⊕)Fusion of j���� and	j���� 					ÃÄ = MoralGraph(jk⨁); Â∗ ← Å �			 ← 	Æ ÇÈÉÊ				 ← Å 					ËÌÍÎÏÎÈÐ			 ← ∅ 
For i = 1...n do 												ÑÒÑÓ(ÃÄ	, Ë�) 
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												ÇÈÉÊ				 ← ÔÔÕ	(ÃÄ	, Ë�) 												ÇÈÉÊ				 ← ÖÔÕ	(ÃÄ	, Ë�) 
IFÇÈÉÊ		 > �∗ 

Then		ËÌÍÎÏÎÈÐ			 ← Ë� 					Â∗ ← ÇÈÉÊ			 
Else 

IFÇÈÉÊ		 = Â∗ 

Then				ËÌÍÎÏÎÈÐ			 ← ËÌÍÎÏÎÈÐ	 ∪ Ë� 
EndIf 

EndIf 

Endfor 
Return<Decision > 

End 

 

 

The result of the fusion steps of the two initial min-based networks Π�\��and 	Π7\��is the min-

based networkΠ[⨁	 = ([⨁, %⊕). The construction of the moral graph ℳ¦ associated with the 

resulted fusion min-based network Π[⨁	 = ([⨁, %⊕)is ensured by calling the function moral 

graph   MoralGraph(Øk⨁	). In addition, the function Init(ÃÄ ; d) corresponds to the 

initialization step. Similarly, the proceduresÔÔÕ(ÃÄ	, Ë�)corresponds to the simple stabilization 

procedure,MSP	(ℳ¦	, D�) corresponds to the multiple stabilization and returns a normalization 

degree relative to	ℳ¦ .  

 

As it was already stated, the construction of the moral graph is only done once but the 

initialization, the simple stabilization procedure and the multiple stability procedure step sare 

repeated for each decision. More precisely, for each decision di= {d1,…,dn} a call to the 

initialization, the simple stabilization procedure and the multiple stability procedure occurred.  

 

The initialization function Init(ÃÄ ; d)allows the parameterization of the moral graph by the 

decision di. 
 

As for the simple stabilization procedureÔÔÕ(ÃÄ	, Ë�) and the multiple stability 

procedureÖÔÕ(ÃÄ	, Ë�), they allows the computation of a normalization degree associated to 

the parameterized moral graph. Finally, the algorithm returns optimal decisions, those that 

maximize the normalization degree relative to the moral graph. 

 

The interesting feature of our approach is that the decision calculation process has a polynomial 

complexity: the complexity of the merge process is polynomial, in particular when the union of 

the two graphs is free of cycles. In this case, the complexity of the fusion process is linear with 

respect to the number of variables and parameters of the two graphs, as well as the complexity of 

two stabilization procedures are polynomial. 

 

Example 4: Let us continue with Example 3. We need to compute the optimal optimistic decision 

UM = {um1; um2}. First, we start by constructing the moral graph (see Figure4) associated with 

the graph [⨁(Figure 3) representing the fusion of Π�\��and	Π7\��. The resulted moral graph 

contains four cluster C1 = {R},C2 = {R, W}, C3= {R, C}and C4 = {R, W,UM} and their 

separator S12 = {R}, S12 = {R}, S13 = {R}, S23 = {R}, S24 = {w} and S34 = {c}. 

 

Then, for each decision value in UM = {um1; um2}, we must run the algorithm in order to 

compute the normalization degree associated with the moral graph. 
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 								ω																											πℳ¦ 												ω																											πℳ¦ 

r1  w1 c1 um1           0.3 

r1  w1 c1 um2           0.3 

r1  w1 c2 um1           0.0 

r1  w1 c2 um2           1.0 

r1  w2 c1 um1           0.3 

r1  w2 c1 um2           0.3 

r1  w2 c2 um1           0.4 

r1  w2 c2 um2           0.4 

r2  w1 c1 um1            0.0 

r2  w1 c1 um2            0.0 

r2  w1 c2 um1            0.0 

r2  w1 c2 um2            0.0 

r2  w2 c1 um1            0.8 

r2  w2 c1 um2            0.9 

r2  w2 c2 um1            0.2 

r2  w2 c2 um2            0.2 

 
Table 9. Joint distribution πℳ¦ 

Step 1: UM= um1 

 
In this case, the fact that UM = um1 is encoded as follows: 

 ΛÚÛ(±.1): ¡1			]�	0�	0+�¢�+¯0�¢23	��	±.10				]�	0�	0+�¢�+¯0�¢23	��	±.2W 
 

The table 10 represents the joint distribution encoded by ℳ¦ after the initialization procedure us. 

 												ω																											πℳ¦ 												ω																											πℳ¦ 

r1  w1 c1 um1           0.3 

r1  w1 c1 um2           0.0 

r1  w1 c2 um1           0.0 

r1  w1 c2 um2           0.0 

r1  w2 c1 um1           0.3 

r1  w2 c1 um2           0.0 

r1  w2 c2 um1           0.4 

r1  w2 c2 um2           0.0 

r2  w1 c1 um1            0.0 

r2  w1 c1 um2            0.0 

r2  w1 c2 um1            0.0 

r2  w1 c2 um2            0.0 

r2  w2 c1 um1            0.8 

r2  w2 c1 um2            0.0 

r2  w2 c2 um1            0.2 

r2  w2 c2 um2            0.0 

 
Table 10. Joint distributions πℳ¦  after the initialization procedure 

 

Once the moral graph is quantified, then the simple stabilization procedure allows us to compute 

the normalization degree of the moral graph which corresponds to the normalization degree of 

any cluster. Using this procedure, we obtain: 

 R							π«� R    W   π«� R    C       π«Ý W  C   UM    π«Þ W  C   UM   π«Þ 

r1   0.9 

r2   0.9 

r1  w1    0.4 

r1  w2    0.9 

r2  w1    0.9 

r2  w2    0.0 

 

r1  w1    0.9 

r1  w2    0.3 

r2  w1    0.2 

r2  w2    0.9 

 

w1 c1 um1    0.9 

w1 c1 um2   0.0 

w1 c2 um1   0.0 

w1 c2 um2   0.0 

 

 

w2 c1 um1    0.8 

w2 c1 um2    0.0 

w2 c2 um1    0.9 

w2 c2 um2    0.0 

 

 
Table 11. Normalized potentials with UM=um1  
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.�Yß§� = .�Yß§� = .�Yß§Ý = .�Yß§Þ = 0.9 

 

From the table 8 we can check that:	h¿πℳ¦	À = 0.8	 ≠ 0.9, which means that the moral graph is 

not consistent. So we must to re-stabilize the moral graph using the multiple.stability procedure. 

Using this procedure, we obtain:  

 R							π«� R    W   π«� R    C       π«Ý W  C   UM    π«Þ W  C   UM   π«Þ 

r1   0.8 

r2   0.4 

r1  w1    0.4 

r1  w2    0.3 

r2  w1    0.8 

r2  w2    0.0 

 

r1  w1    0.4 

r1  w2    0.3 

r2  w1    0.2 

r2  w2    0.8 

 

w1 c1 um1    0.3 

w1 c1 um2   0.0 

w1 c2 um1   0.0 

w1 c2 um2   0.0 

 

 

w2 c1 um1    0.8 

w2 c1 um2    0.0 

w2 c2 um1    0.4 

w2 c2 um2    0.0 

 

 
Table 12. Normalized potentials with UM=um1 

 .�Yß§� = .�Yß§� = .�Yß§Ý = .�Yß§Þ = 0.8      

The normalization degree of the moral graph is:  U∗(um1) = 0.8 

 

Step 2: UM= um2 
 

We repeat the same procedure described in the previous step, with: 

 ΛÚÛ(±.2): ¡1			]�	0�	0+�¢�+¯0�¢23	��	±.20				]�	0�	0+�¢�+¯0�¢23	��	±.1W 
 

The table 13 represents the joint distribution encoded by ℳ¦ after the initialization procedure us. 

 												ω																											%ℳ¦ 												ω																											%ℳ¦ 

r1  w1 c1 um1           0.0 

r1  w1 c1 um2           0.3 

r1  w1 c2 um1           0.0 

r1  w1 c2 um2           1.0 

r1  w2 c1 um1           0.0 

r1  w2 c1 um2           0.3 

r1  w2 c2 um1           0.0 

r1  w2 c2 um2           0.4 

r2  w1 c1 um1            0.0 

r2  w1 c1 um2            0.0 

r2  w1 c2 um1            0.0 

r2  w1 c2 um2            0.0 

r2  w2 c1 um1            0.0 

r2  w2 c1 um2            0.9 

r2  w2 c2 um1            0.0 

r2  w2 c2 um2            0.2 

 
Table 13. Joint distributions πℳ¦  after the initialization procedure 

 

In the same way, once the moral graph is quantified, using the simple stabilization procedure and 

the multiple stabilization procedure, we obtain:  

 U∗(um2) = .�Yß§� = .�Yß§� = .�Yß§Ý = .�Yß§Þ = 1.0 
 

Thus, we can conclude that the optimal optimistic decision is UM =um2 with the maximal 

qualitative utility which equals 1.0 
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5. CONCLUSION 

 
In this paper, we proposed a new approximate approach for the computation of the qualitative 

possibilistic optimal optimistic decision in a graphical context. Our approach first merges 

possibilistic networks associated with available uncertain knowledge and possibilistic networks 

associated with agent's preferences. We then showed that computing optimistic decisions comes 

down to computing a normalization degree of the moral graph associated to the result graph of 

merging agent's beliefs and preferences networks. This allows an efficient computation of optimal 

decisions.  

 

This approach allows one to avoid the transformation of the initial graph into a junction tree 

which is known as a difficult problem. This approach is interesting when accurate approaches 

fail, i.e., when the generation of the local possibility distributions by the standard algorithm is 

impossible or takes a too long response time. In such case, our approach provides answers that are 

very close to the exact marginal distributions. 

 

As a future work, we plan to apply our solution to deal with the pessimistic decisions for 

possibilistic decision problems. 
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