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ABSTRACT 

Tracking of leukocytes in vivo and recording their dynamics with intravital microscopy is an effective 

technique for further understanding of the mechanism of inflammation and the influence of drug delivery in 

microcirculation. Though the technique is well established, automated quantitative analysis of the captured 

video frames is lacking in the literature. In this paper we adopt a duality based TV-L1 optical flow to 

analyze leukocyte behavior using in vivo video microscopy. Typically, we exploit the ability of this 

approach to conserve discontinuities in the flow field through the regularization of the Total Variation 

(TV). On the other hand, the L1 norm overcomes the sensitivity to outliers. In the proposed framework, we 

submit the input images to a structure-texture decomposition in order to overcome the illumination changes 

causing violations in the optical flow constraint. Moreover, to further reduce the sensitivity to sampling 

artifacts in the image data, we apply a median filter into the numerical scheme. Using this technique, it is 

possible to directly compute the trajectories of leukocytes and their physical interaction parameters directly 

from the video frames. We have compared the obtained hydrodynamic fields with those obtained via 

simulation and have found that duality based TV-L1 optical flow approach is computationally less costly 

and reveals promising results. 
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1. INTRODUCTION 

Since the 1800s, intravital microscopy has yielded direct visual observation of living circulatory 

beds. Thus, it has boosted the research related to inflammatory processes. This invention serves to 

analyse and investigate the dynamic behaviour of leukocytes. Investigating the leukocytes flow 

and their interaction with the endothelial wall in venules is one of the most important stages to 

understand leukocyte recruitment and analyse their response to external stimulation. Using these 

techniques and simple analysis, it is difficult to determine the parameters influencing the process 

and the hydrodynamic interaction among the complex blood components within the small venule 

regions. Properties such as the velocity, the acceleration and the flux are difficult to obtain within 

acceptable accuracy [1, 2]. More specifically, the analysis and investigation of leukocyte 

activation, adhesion, arrest, recruitment and subsequent rolling are perceived as the key answers 

for several challenges faced by the immunology researchers. In other words, understanding such 

processes would effectively contribute in the development of anti-inflammatory drugs such as 

modulators and blockers. In fact, the recruitment process is usually observed in post venules in 

the microcirculation. The main assumption here is that the adhesion cascade and the 

corresponding rolling process are mediated by a number of chemoattractants on the endothelial 

cell surface, selectins, integrins and other mediators on the surface of the leukocytes, and in the 

tissue. This mechanism is triggered by margination of free flowing leukocytes toward the 

endothelial wall. The interaction of leukocytes with surrounding erythrocytes yields deformation 

and pushing of the leukocytes to the wall [3, 4]. Selectin mediators, such as E-Selectin, P-selectin 
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and L-selectin, or their ligands assist the rolling captured leukocyte. Leukocytes which the rolling 

speed is decelerated by the CD18 integrins adhere to the endothelium with the mediation of E-

selectins. Leukocytes change shape and transmigrate through the endothelium because of the 

existence of exogenous chemo attractants. The process aims at isolating and/or eradicating the 

irritants along with repairing the inflamed tissue. The process ends when the leukocyte is 

extravasated [5]. Despite the reported efforts to run and investigate in vivo and in vitro 

experiments, along with numerical simulations of leukocytes adhesion and recruitment, the 

phenomena has not given away all his secrets. Intensive investigation are still launched to 

determine the importance of the mechanism for different pathogenic and immunological activities 

such as kidney failure [6], cancer drug delivery and allergies [6, 7]. Moreover, the precise 

dynamical mechanisms by which molecular mediators facilitate leukocyte arrest are still 

undefined. Researchers have conducted intensive experiments in order to understand the 

complexity of the problem [9, 10, 56]. Leukocytes rolling has been investigated through several 

numerical simulations [11, 12]. The authors proposed a numerical simulation aiming at (i) 

obtaining detailed patterns for velocities and wall shear stress in a four dimensional non-

Newtonian shear thinning model, (ii) identifying the role of localized shear stress profiles on the 

surface of leukocytes, and (iii) investigating the influence of clustering leukocytes on the 

endothelial wall shear stress. However, most of these assumptions have not been confirmed using 

real data. The main objectives of this paper is to use computer vision techniques to confirm the 

assumptions and conclusions in [12]. Moreover, the earliest efforts to understand leukocyte 

behaviours were constrained by the subjective manual analysis of the analyst rely on the 

subjective interpretation of the expert. Our aim is to propose a computer vision framework to 

support the analysis and the understanding of leukocyte trafficking and their interaction with 

microvessel walls based on a sequence of images. Relying only on optical flow technique, we 

seek a possibility for accurately determine governing hydrodynamic parameters and flow fields 

from a given set of itravital video frames of clusters of leukocytes moving through a rat venule of 

20 micrometers in diameter. Instantaneous velocities and accelerations need to be determined in 

order to track each leukocyte and compute the net force acting on it. Since the captured video 

frames are two dimensional, we have neglected the influence of the third dimension. Each 

leukocyte has its own dimensions and will be treated as an individual object interacting with the 

surrounding. The influence of each object on its neighbors will completely be computed from 

analyzing the changes in successive frames as captured by image analysis using the optical flow 

method.  

 

Figure1: Ten successive typical frames of rolling and adherent leukocytes from in vivo color video clip 

Figure 1 shows typical frames of rolling and adherent leukocytes from in vivo color video clip. 

As one can notice, adherent and moving leukocytes correspond to high intensity spheres 

compared with their neighbouring pixels. A natural solution to exploit this fact would be the use 

of an intensity threshold based technique to detect leukocytes in each frame. However, methods 

relying on a single threshold are not able to detect the “blurred” leukocytes as shown in Figure 1. 
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Moreover, the discrimination between moving and adherent leukocytes is usually investigated in 

inflammation reaction experiences. Spatio-temporal feature extracted from successive frames has 

proven to be a good alternative to detect moving and/or adherent leukocytes. Thus, the proposed 

system integrates a version of the duality based TV-L1 optical flow algorithm in [40]. It exploits 

the ability of this algorithm to conserve discontinuities in the flow field through the regularization 

of the Total Variation (TV). On the other hand, the integrated L1 norm overcomes the sensitivity 

to outliers. In the proposed framework, we submit the input images to a structure-texture 

decomposition to overcome the illumination changes causing violations in the optical flow 

constraint. Moreover, to further reduce the sensitivity to sampling artefacts in the image data, we 

apply a median filter into the numerical scheme. This system can be used as an automated 

leukocyte detection algorithm within the microvasculature using video microscopy in vivo. The 

remainder of this paper is organized as follows. In section 2, we highlight related leukocyte 

recognition/detection techniques. In section 3, we present the optical flow estimation algorithm 

we adopt to investigate the dynamic behaviour of leukocytes. The experiments conducted to 

assess the proposed approach are outlined in section 4. Finally, section 5 contains the conclusions.  

2. RELATED WORKS 

Identification of leukocytes within intravital microscopy emerged as an active research field in 

various laboratories conducting inflammation related experiments. More specifically, the 

adhesion of rolling leukocytes to the vascular endothelium represents a key process of 

inflammation, and plays a fundamental role in our immune system [41]. For instance, continuous 

formation and breakage of bonds between the ligands on the endothelium and the corresponding 

selectin adhesion molecules on the leukocyte surface yield slower rolling leukocyte [42]. Various 

parameters related to rolling leukocytes, such as the number of rolling cells passing per unit time 

(flux of rolling leukocyte), the rolling leukocyte volume fraction and the rolling leukocytes per 

unit length are usually considered in order to design appropriate anti-inflammatory drugs [42, 39]. 

However, the successful estimation of these parameters has been affected by the manual 

procedures performed by the laboratory technicians who may have to visually detect and analyze 

thousands of leukocytes in one video sequence. Recently, in order to assist technicians and 

overcome their potential distraction when investigating hundreds of frames, automated leukocytes 

identification systems has been proposed [50]. These systems have inherited various automatic 

object detection approaches [43]-[49]. In [51], various object recognition approaches were 

assessed. One of these approaches relies on convolution based filtering [53], feature-based 

classifiers [53, 54], and contour-based approaches represent alternative approaches [54]. One of 

the most popular Contour-based approaches is the Hough transform (HT) [43] which relies on a 

parametric representation in the parameter space in order to detect edge pixels vote for a shape. 

However, HT is mainly constrained by the identification accuracy of peaks in the parameter 

space. In fact, arc segments and spurious line yield wrong peaks. Notice that improved HT 

algorithms aiming at solving this issue have proved to be computationally expensive [45]. 

Another famous object detection approach consists in the Edge Radius Symmetry (ERS) 

transform which has been proposed to identify bronchi in CT lungs images [45]. Also, 

mathematical morphology has served as foundation of several object detection techniques [46]. In 

[47], the authors outlined a framework to detect leukocytes in contact with the vessel wall. Their 

approach relies on neural network that is trained with synthetic images generated using stochastic 

model. Another technique relying on image layer sets has been proposed in [48]. Cells detection 

is based on a search within the sets of image layers. A low-contrast object detection is achieved in 

[49] using the optical flow [21] which integrates the temporal information. This approach 

assumes that the width of the transition of image edge should be larger than the width of the per-

frame motion shift. Estimating the motion between video frames, referred to as optical flow 

estimation (OFE) finds application in various research domains such as image registration, video 

compression, motion detection, and video summarization. Researchers coupled optical flow with 

several techniques using frame sequences extracted from raw videos. Namely, some of the most 
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used techniques are gradient based method, region based method, energy based method, Bayesian 

and phase based methods[16, 17]. Also, most of these optical flow based techniques require a 

large number of operations in order to reasonable performance. Moreover, more dense and 

accurate measurements of the optical flow velocity are required by some applications. The usage 

of high frame-rate sequences has enhanced the estimation accuracy of these techniques. Also, this 

yields less motion aliasing. Sequences capture at a high frame rate overcomes large velocity 

challenge, and complex images with high spatial bandwidths and low velocities. In [18], a method 

for block-based motion vector estimation at standard frame rate using high frame-rate video 

sequence is proposed. The authors outlined an iterative block matching framework using a high 

frame-rate sequence in order to produce motion vectors at 30 frames per second. In [19], the 

authors proposed an accurate estimation of the optical flow from high frame-rate sequence. The 

authors assume spatial smoothness and brightness constancy of the scene. On the other hand, its 

quadratic formulation makes it sensitive to outliers. In [22], the authors tackled this issue through 

a robust formulation of the problem. Other researchers investigated various robust functions [23]. 

These spatially-discrete formulations are perceived as “baseline” optical flow formulation 

approaches. Other significant non-classical approaches adopt image segmentation [27, 28], 

oriented smoothness [24, 25] or rigidity constraints [25, 26]. Actual technique to overcome large 

motions is coarse-to-fine estimation [29, 30]. Similarly, high-order filter constancy [31] and/or 

texture decomposition [26] yield the reduction of lighting changes influence. Also, minimizing 

non-convex energies [24] is achieved using bicubic interpolation-based warping [32], temporal 

averaging of image derivatives [32 and graduated non-convexity [33]. On the other hand, median 

filtering after each incremental estimation step serves to discard outliers [32]. Median filtering 

heuristic enhances the robustness of methods sensitive to outliers, and improves the accuracy of 

all methods tested in [34]. Also, least median squares estimation has been used to discard outliers 

in flow estimation [35]. Similarly to median filtering, bilateral filtering changes the original 

energy function. Notice that model formulation which involves the L1 robust penalty is usually 

associated with specialized total variation (TV) optimization [36].  

In this work, we adopt a version of the duality based TV-L1 optical flow algorithm in [40]. We 

exploit the ability of this approach to conserve discontinuities in the flow field through the 

regularization of the Total Variation (TV). On the other hand, the L1 norm overcomes the 

sensitivity to outliers by applying. In the proposed framework, we submit the input images to a 

structure-texture decomposition in order to overcome the illumination changes causing violations 

in the optical flow constraint. Moreover, to further reduce the sensitivity to sampling artifacts in 

the image data, we apply a median filter into the numerical scheme. 

3. OPTICAL FLOW MODEL 

Let 1I  and 2I :  (Ω⊆ 2
R )→ R  be two image frames. The optical flow can be formulated as the 

minimization of an image-based error criterion together with a regularization force in order to 

find the disparity map u : Ω→ 2
R  between the two images. In this work, the image similarity 

score is measured with respect to the intensity difference between pixels. Hence, the target 

disparity map u is the minimizer of 

  ( )( ) ( ){ }1 2(x) x u(x) , ,... ,I I u u dxλφ ψ
Ω

− + + ∇∫ (1) 

where the term ( )( )1 2(x) x u(x)I Iφ − + represents the image data typicality, and ψ(u,∇u,...) is the 

regularization term. The parameter λ is the weighing factor of the two terms. Selecting φ(x)=x 2

and ψ(∇u)=|∇u| 2 yields to Horn-Schunck model [21]. On the other hand, setting φ(x) to x and 

ψ(∇u) to |∇u| results in the following energy.  

  ( ){ }1 2
(x) x u(x) ,E I I u dxλ

Ω

= − + + ∇∫ (2) 

As it can be seen, E consists of a total variation regularization and an L1 data penalty term. 

Moreover, the regularization term and the data term are not continuously differentiable. 
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Therefore, in order to apply numerical optimization technique, we replace φ(x)and ψ(∇u) with 

differentiable approximations, 2 2 2(x ) xεϕ ε= +  and
2 2( )u uψ ε∇ = ∇ + , respectively.  

Based on two images 1I  and 2I , let u be an N-dimensional displacement map. The first order 

image residual ( )1
, ,u u xρ with respect to a given disparity map 

1u is ( )2 1 2 1 1
(x u ) , (x)I I u u I+ + ∇ − − . 

On the other hand, the energy can be formulated as follows: 

 

 ( )
2

1

1
(d) v(d) (v,u , x) ,

2
d

d d

E u u dxθ λ ρ
θ

Ω

 
= ∇ + − + 

 
∑ ∑∫ (3) 

where
{1,...,N}d

u = is the th
d component of u, and θ is a constant such that v is a close approximation of 

u.  

Alternating optimization steps, with respect to u and v, of this convex problem yield the following 

solutions [32]: 

2

1 2
2

2

2 1 2

2
2

1 2
2

2

( , ,

( , ,

( , ,(u)

if u u x II

v u I if u u x I

I if u u x I

I

ρ λθλθ

λθ ρ λθ

ρ λθρ


 < − ∇∇


= + − ∇ > ∇
 ∇ ≤ ∇−
 ∇

(4) 

On the other hand, the structure-texture decomposition aiming at reducing the sensitivity to 

illumination changes is performed using the robust model in [56]. This model relies on Total 

Variation (TV) approach, and the structural part of a value image I(x) is formulated as the 

solution of the following problem 

  ( )
21

min ,
2Is

s s
I I I dx

θ
Ω

 
∇ + − 

 
∫ (5) 

Then, we estimate the textural part (x)TI  as the difference between the denoised image and the 

original one. This procedure overcomes the problem of artifacts caused by shading reflections and 

shadow in the images.  

 

We use the standard incremental multi-resolution technique in [27] to minimize the energy in (3), 

and estimate the flow fields corresponding to large displacements. This approach starts by 

estimating the optical flow at a coarse layer. Then, the obtained flow is used to warp the second 

image toward the first at the next finer layer. Finally, the flow increment is estimated based on 

these two images. Notice that each layer is recursively downsampled from its neighbour lower 

layer. The number of pyramid layers is defined in a way the highest layer has an average width of 

25 pixels. At each layer, as suggested in [27], 10 warping steps are performed in order to estimate 

the flow increment. Also, the warping step requires the linearization of the data term. On the other 

hand, the pyramid prolongation and restriction for image intensities, flow vectors, and the dual 

variable are different. In fact, gray values can simply be averaged. Notice that flow vectors 

require scaling factor between the pyramid levels in order to induct valid displacement vectors on 

each pyramid layer. In this work, we adopt image pyramids with a factor of 2 down-sampling. 

The restriction operator is designed as a combination of a low pass 5 × 5 binomial filter and 

subsequent down-sampling. As suggested in [32], we adopt bi-cubic look-up to estimate the 

intensity value 2 1( )I x u+ and the derivatives of 1I  which are calculated using the five-point stencil. 

Finally, If 
1u  is a good approximation for u, the optical flow constraint states that 

1 2 1(x) ( )I I x u≈ +

. Considering this fact when estimating image derivatives implies that 
1( )I x∇ is a good 

approximation for 2 1( )I x u∇ + . 
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4. EXPERIMENTS 

 

The video frames used in this work were provided by Artoli et al. from a previous work [12] to 

which we refer the reader for more information on the experiment, ethical clearance and data 

collection. The obtained video frames are for leukocytes moving through a venule in an inflamed 

region of a Wistar male rat. We have conducted a number of optical flow analysis on consecutive 

video frames of moving leukocytes. For each two consecutive frames 
1I  and 

2I , the velocity was 

captured pixel wise as outlined in Section 3.  

 

 

Figure 2: Three successive sample frames (left), and their corresponding optical flow velocity profiles. 

This is actually the velocity of moving blood components. Sample velocity profile for the two 

consecutive frames iI  and 1iI + shown in Figure 2.(a) and Figure 2.(b), respectively, is given in 

Figure 2.(c). Similarly, the velocity profile of the two next frames 
1iI +  and 

2iI + is shown in Figure 

2.(e). Figure 2.(c) proves that large velocity magnitudes and more swirling appear close to the 

endothelial walls, showing the initiation of the rolling process for the leukocytes. This may be 

explained as follows. The leukocytes move with lower velocities than the main stream of the 

blood components. When they are close to the endothelial wall, the flow between the leukocyte 

and the endotheial wall moves faster and rotates more around the slowly moving spherical 

leukocyte. 
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Sample velocity profiles and their corresponding acceleration, estimated as the first order 

differential of the velocity vectors of moving blood components, are depicted in Figure 3. As one 

can see, the acceleration map in Figure 3.(c) corresponds to the two velocity profiles in Figure 

3.(a) and Figure 3.(b). Similarly, Figure 3.(f) illustrates the acceleration of the the two velocity 

profiles in Figure 3.(d) and Figure 3.(g). From these Figures we realize that the characteristics of 

the flow fields, obtained using optical flow, is more robust and time efficient than conducting 

regular image segmentation on the moving components. Moreover, these results reveal similar 

flow characteristics to those reported in [18]. For example, the swirling nature of the flow and the 

traping stagnant regions have been captured. The 3D nature of the flow may be noticed from the 

red velocity regions (see Figure 3.(b)-(e)-(h)) where higher disturbance occurs due to the rotation 

of the leukocytes and their motion toward the endothelial wall which pushes the flow in a smaller 

tunnel and increases their velocity. Figure 4 compares between simulation and optical flow based 

analysis results of the velocity fields. The artwork accompanying this paper elaborates on this 

similarity. 

 

 

Figure 3: Sample velocity profiles (left and center) and their corresponding acceleration map (right). 

The maximum velocity reported in the literature was 6 12 /m sµ−   for the leuckocytes [18]. In this 

work, we report a velocity range of 3.7 11.6 /m sµ− . The average velocity of leukocytes (the blue 

objects in Figure 3(b), Figue 3.(e), and Figue 3.(h)) is approximately 5.4 1.3 /m sµ± . On the other 

hand,  the acceleration range is 2
0 0.99 /m sµ− , and the average acceleration is approximately 

2
0.019 0.02 /m sµ± . 
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Figure 4: Comparison between (a) simulated velocity field [12], and (b) optical flow based velocity field. 

5. CONCLUSIONS 

Since it was introduced by Gibson in the 1940s, optical flow techniques have been used in many 

applications to estimate the relative motion of successively recorded events in dynamic 

environments. In this work we have demonstrated that this technique yields reasonably accurate 

results when used in tracking leukocyte dynamics in microcirculation. The range of obtained 

velocity and acceleration is comparable to that reported in the literature. As the shear stress and 

the vorticity play important roles in biomechanics, we have noticed that optical flow is very 

sensitive to discontinuity in depth and brightness which suggest that it will yield good estimates 

for the stress and the three dimensional nature of hydrodynamic phenomena in discovering 

regions of complex fluid flow. However, further benchmarking to compute the accuracy of the 

method is a subject for future work.  
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