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ABSTRACT 

 
The scale of big data causes the compositions of extract-transform-load (ETL) workflows to grow 

increasingly complex.  With the turnaround time for delivering solutions becoming a greater emphasis, 

stakeholders cannot continue to afford to wait the hundreds of hours it takes for domain experts to 

manually compose a workflow solution.  This paper describes a novel AI planning approach that facilitates 

rapid composition and maintenance of ETL workflows.  The workflow engine is evaluated on real-world 

scenarios from an industrial partner and results gathered from a prototype are reported to demonstrate the 

validity of the approach. 
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1. INTRODUCTION 

 
Workflows are increasingly important in the “big data” area of many scientific and industrial 

problem domains.  With the advent of the big data phenomenon, greater quantities of data are 

being collected and shared [1][2][3].  Modern organizations have data continuously flowing into 

their systems and seek solutions to continually re-evaluate this “big data” for real time decisions.  

Through correctly applied data science techniques that correlate, filter, and transform collections 

of data, these organizations can convert their raw data into knowledge that can be used to mine 

actionable information. 

 

As described by Deneke et al [4], traditional interfaces for workflow specification are manual, 

time intensive and cumbersome (e.g. XML), requiring a whole new team of human users with 

considerable domain knowledge to build, verify, and maintain solutions.  The data is typically 

fragmented, distributed among many different systems with differing schemas, quality, and stored 

using different technologies. Further, the data often arrives raw; a mix of unstructured and multi-

structured data of poor quality that must be standardized and cleansed before it can be integrated 

and utilized.  As a consequence, manually building these workflows becomes a heavy investment 

of time and resources. 

 

The objective of our research is to address this rapidly rising cost by showing that ETL workflow 

specification can be automated in an extensible manner through a domain-specific modeling 

language.  In order to effectively supplant the manual approach, an automated solution must 

provide: better solution accuracy, lower required level of expertise, faster turnaround and fewer 
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errors.  Ultimately, our aim is to abstract the specification process, instead providing an intuitive 

interface that flexibly integrates appropriate domain knowledge to enable even casual users to 

generate the correct ETL workflow for their goals by simply stating their “intents”. 
 

Our earlier work [5] presented preliminary results, but only provided an overview of two of the 

key components of our approach: the knowledge representation and intent language.  This paper 

presents the details of the final component of our work: the workflow engine.  The workflow 

engine is an implementation of an AI planner that leverages the domain model to automatically 

generate ETL workflows that satisfy the goals expressed through the intent language.  The central 

contribution of this research is generalizing database query languages to cover domain-specific 

operators and developing a way to automatically map an intent query language to a workflow 

plan.  This enables users to focus on the goal statement (what they want to achieve) instead of 

how to achieve the result. 
 

The organization of the rest of this paper is as follows.  Section 2 provides background and key 

concepts associated with workflow, ETL, and how they relate to artificial intelligence planning 

and database query languages.  Section 3 presents a summary of our previous work and 

introduces the AI planning approach employed by our workflow engine.  Section 4 describes the 

testing methodology, experimental results obtained, and evaluation of these results.  Section 5 

contrasts our approach with existing work in related disciplines.  Finally, Section 6 summarizes 

the conclusions and outlines areas of future research. 

 

2. BACKGROUND 

 
2.1. Workflow 

 
Workflows play a central role in delivering ETL solutions, but are also used in a variety of other 

areas, from AI planning and query optimization to web service composition and scientific data 

processing.  As defined by Aalst and Hee [6], a workflow models a process as a series of tasks 

that must be performed to achieve a particular result.  This model is commonly represented as a 

directed graph (digraph).  A directed graph G is defined as a pair (V, E), where V is a set of 

vertices and E is a set of ordered pairs of vertices that denote directed edges connecting vertex 

pairs.  In this representation, vertices denote the tasks and edges specify the sequence in which 

these tasks are performed. 
 

A workflow can model a process at different levels of abstraction.  A workflow’s tasks can 

describe higher-level behavior or very basic actions.  This is analogous to programming 

languages, where high-level languages (e.g. C#) are easier to understand than low-level languages 

(e.g. Assembly).  While the abstraction of underlying actions makes high-level languages easier 

to comprehend, this also provides users less control than low-level languages. To illustrate, 

a)  

 

b)  

Figure 1. Workflow at: a) higher level of abstraction b) lower level of abstraction. 
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consider the work performed by a person traveling from their home to the airport.  Using high-

level descriptions, this process would consist of a task for preparing to leave the house followed 

by a task for driving to the airport (see Figure 1a).  While adding complexity, these tasks could be 

broken down to describe the process in greater detail, such as in Figure 1b.  

 

While a digraph can represent the composition of a workflow, this basic representation obscures 

behavioral details, such as why the tasks must occur in this sequence.  Instead, the result produced 

by a data science workflow can be specified as a state: a specific set of conditions.  Mapped as a 

search space problem [7], workflow composition involves a sequence of state transitions 

(imposed on the data by the operators) to attain the desired set of conditions (goal state).  This 

stateful mapping can be represented with a specific form of a digraph, known as a state diagram.  

A state diagram S is a directed graph that can be formally defined as: S = (Q, ∑, δ, q0, F).  In this 

definition, Q is a collection of states, consisting of the start state q0 and each state qi depicted by a 

vertex of the graph.  F is a subset of Q that represents the set of accepting states.  ∑ is a collection 

of valid input symbols, also known as an alphabet.  Finally, δ is a collection of state transitions, 

where a state transition δi for the input symbol ∑t from state Qj to Qk is expressed as δi : ∑t × Qj → 

Qk, and each state transition δi is depicted by an edge of the graph connecting the two states for 

which there exists a transition.  In the context of workflow, the vertices represent a workflow’s 

distinct states and the edges represent the transitions between states dictated by the available 

tasks. 

To demonstrate this concept, consider the workflow depicted in Figure 2.  For this example, 

assume that the person starts at home and the goal is to end up at the airport.  To achieve this 

goal, the sequence of tasks performed in the workflow must transition the person from the initial 

“At Home” state to the desired “At the Airport” state.  The set of distinct states Q for this state 

diagram representation can be defined as: Q = {Q1, Q2, Q3}, where Q1=“At Home”, Q2=“In the 

Car”, and Q3=“At the Airport”.  Similarly, the set of available tasks ∑ can be defined as: ∑ = {t1, 

t2}, where t1=“Prepare to Leave the House” and t2=“Drive to the Airport”.  The set of state 

transitions δ can be defined as: δ = {δ1, δ2}, where δ1=Q1→Q2 and δ2=Q2→Q3, the start state q0= 

Q1.  Finally, the set accepting states F can be defined as: F = {Q3}. 

2.2. Extract-Transform-Load Workflows 

Extract-Transform-Load (ETL) refers to a category of data processing solutions that are designed 

and executed as workflows to perform a series of extract, transform, and load operations on one 

or more data sets.  A data set is a collection of data records with a uniform schema.  The schema 

defines the data fields – elements that contain the instances of data – that data records are 

comprised of.  Each data field is assigned a data type and a name.  The data type is a domain-

generic description of the values a data field can contain.  The name is a tag – unique within a 

given schema – that enables each data field to be individually addressed.  This structure of data is 

analogous to that of a relation in a relational database, where a relation contains tuples, which in 

turn contains attributes. 

 
Figure 2. A state diagram for a person traveling to the airport. 
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The data processing operations performed in an ETL workflow can be described as follows: 

• Extract – Pull data sets from diverse, possibly numerous sources together into a form of 

intermediate storage, providing a homogenous format for later operations. 

• Transform – Alters data sets to bring data of heterogeneous quality levels to a particular 

standard and combined, while enabling erroneous, unusable data to be pruned out. 

• Load – Persist data that has attained desired characteristics to target repositories, which 

may include a file, database, data warehouse, or other form of data persistence, allowing 

any post-ETL processes to utilize the resultant data for a variety of applications. 

The procedural logic and environmental details (client, server, grid, etc.) of these operations is 

encapsulated in reusable modules known as operators.  As depicted in Figure 3, each operator 

contains a set of input fields and options, specified as inputs preceding execution of a workflow, 

and a set of output fields that are produced after execution.  Input fields specify which data fields 

from a given data set an operator will process. Options are externalized settings that configure the 

exact behavior of an operator, which can alter the inputs an operator accepts or the outputs an 

operator produces.  Output fields specify data fields that are produced or modified by operator 

execution. 

It is important to note that the graphs of ETL workflows are acyclic, and so are more accurately 

represented as directed-acyclic graphs (DAGs), where starting from any vertex v in a graph of an 

ETL workflow, there exists no path that ends up back at v after following any sequence of 

directed edges.  This constrained structure ensures that operators are only performed a definite, 

pre-defined number of times during workflow execution, allowing ETL workflows to be run as 

reusable batch jobs instead of indefinitely persistent processes. 

2.3. Building an ETL Workflow 

In practice, ETL workflows are built manually.  This process starts by gathering objectives from 

stakeholders.  A stakeholder is a person or organization, such an external client or a business user, 

that understands and can describe the high-level business goals.  Stakeholders often lack the 

expertise needed to describe the requirements from a technical perspective.  To bridge this gap, 

domain experts must derive the technical requirements from the high-level objectives. 

Domain experts are people with extensive domain knowledge, including familiarity with an 

organization’s data and the details of domain-specific operators.  To build an appropriate solution, 

domain experts must determine the following requirements: data sources to include, fields to 

 
Figure 3. A simple ETL operator. 
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extract from these sources, operators to include or exclude, field mappings, option mappings, 

sequencing of the included operators, what fields to persist, and where to load the data for 

persistence.  These decisions can rely heavily upon domain knowledge.  Numerous data fields 

may appear to be valid arguments for input fields; some from the outputs of previous operators 

and others from data sources.  Further, several operators may perform similar operations; 

requirements may necessitate that a custom operator is defined; some operators may need to be 

performed in a specific order, while others can be performed at any time throughout the 

workflow.  Operator implementation can restrict the quality or format of input data, or 

conditionally constrain the combination of inputs.  Failure to conform to these assumptions can 

cause the operator to error off or produce invalid results.  A workflow’s composition may 

similarly be subject to standards that have been put in place to ensure solution consistency, as 

well as business rules that consider compliance with regulations or a domain’s preferred 

practices.  Once these questions are answered, the workflow graph, such as depicted in Figure 4, 

can be constructed.  Construction of the workflow graph is commonly performed using a visual 

ETL tool.  Commercial ETL tools available today include: IBM InfoSphere DataStage [8], 

Microsoft SQL Server Integration Service [9], and Oracle Data Integrator [10].   

Before a workflow is ready for production use it must undergo verification, where it is 

methodically tested on sample data sets to ensure the workflow behaves according to the 

specified requirements and verify absence of operator failures at run time from improper 

mappings.  Results produced by execution on sample data sets are evaluated to identify issues 

such as: ambiguous or missing specifications, contradictory objectives, invalid input mappings, or 

erroneous operator sequencing.  Based on the evaluation, a workflow may need to be 

reconstructed to resolve compositional errors or even revert back to the analysis phase to clarify 

requirements. 

2.4. SQL and Relational Algebra 

Structured Query Language (SQL) is a declarative language, enabling those familiar with the 

domain of relational databases to make clear, expressive statements in without needing to specify 

sequences of relational operations or have knowledge of computer systems [11].  A user specifies 

the properties of the data to be retrieved, not the algorithm required to retrieve the data.  

Statements in SQL contain constructs known as operators, which perform a task involving one or 

more relations and produce another relation as a result.  Common SQL operators include select, 

project, union, join, etc. 

 

Figure 4. An ETL workflow. 
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Before execution, SQL statements are parsed and translated into an intermediate procedural 

language known as relational algebra, which is utilized by the query optimizer to find the fastest 

executing expression for a given SQL statement [12].  Of particular interest is that the 

intermediate form that high-level SQL statements are translated into is a kind of workflow, 

known as a query plan.  As in ETL workflow, operators in a relational query plan can be generic 

or custom operations, such as relational algebra operators or user-defined functions respectively.  

Similarly, the operands of these operators can be concrete or virtual relational tables, such as data 

sources or outputs from earlier operations respectively. 

2.5. Search and Planning 

Search and planning are general approaches from artificial intelligence for automating problem 

solving that are also complementary to automatic workflow generation.  Similar to the earlier 

observation that a workflow can be represented as a state diagram, search space concepts can be 

mapped to workflow.  As described by Coppin [7], the search space problem requires three basic 

pieces of information: an initial state, a goal state, and the collection of available state transitions.  

For a given problem, each choice can be represented as a state in a state-space diagram and would 

include an initial state to indicate where the problem starts, and one or more final states to denote 

the goals.  A state transition represents making a choice, which changes the current state in the 

state-space diagram to another state.  Paths through the diagram that transition from the initial 

state to the final states can then express problem solutions. 

Constructing a workflow is a matter of constraint satisfaction (satisfying business rules, pre/post 

conditions, pre/post requisites, etc.).  Given constraint specifications, such as from a knowledge 

representation, AI planning concepts can be employed to search for a solution to relevant 

constraints and generate a workflow.  The process of planning searches for a solution, 

determining which actions should be performed to transition the current state closer to the goal. 

STRIPS [13] is an example of an AI planner that employs an automated planning approach.  The 

approach follows a means-end analysis strategy, determining the differences between the current 

state and the goal state, then selecting an appropriate action to move closer to the goal state.  A set 

of operators, each with preconditions and postconditions, represent the actions that can be taken.  

From predicate logic [14], a precondition is a constraint that must be satisfied before a particular 

action can be performed, while a postcondition is the “effect” of performing the action; what 

becomes true and no longer true after performing the action. 

An instance of STRIPS starts off given the following information: an initial state, described by a 

set of true conditions; a set of conditions that describe the world; the set of available operators; 

and a set of conditions that describe the goal state.  The STRIPS program then develops a plan by 

comparing the current world model to the conditions of the goal state.  If these conditions match, 

the goal state is reached and the problem is solved.  Otherwise, an operator that lessens the 

differences between the current state and the goal state is selected and added to the plan.  Once an 

acceptable plan is developed, the plan can be executed by the STRIPS robot and the goal 

conditions should be satisfied. 

 

3. APPROACH 

 
3.1. Summary of Previous Work 

 
3.1.1. Attributed Field Model 

 
The attributed field model was introduced to express the characteristics of data, augmenting data 

fields with two semantic annotations: content types and state attributes.  These annotations are 

semantic descriptions of concepts drawn from a domain’s ontology.  The first annotation, content 
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type, is a class-like abstraction over the values that data fields contain.  Like data type, a given 

data field can only be assigned a single content type. Unlike data type, a content type is a 

semantic, user-defined descriptor instead of a technical, system-defined one. Content type 

describes the data the field contains using an appropriate domain concept, which would be a noun 

such as “first name”, “phone number”, “zip code”, etc.  This key difference enables the 

specification of relationships between data to be explicit and clear. 

 

The other annotations, state attributes, are used to express data state.  A state attribute describes a 

distinguishable characteristic that instances of data may possess (or lack).  Each state attribute 

assigned to a data field, which can be zero to many, asserts that the values of the given data field 

possess (or lack) the described characteristic.  The composite of these characteristics express the 

state of the data, which enables variations of data to be differentiated from one another.  For 

example, variations of the same address can be misspelled, missing components, USPS 

standardized, etc. 

 

3.1.2. Operator Model 

 
The operator model introduced predicate logic to express which input mappings are valid and 

express the characteristics of the outputs produced for a given input mapping.  Operator 

preconditions assert each requirement an input mapping must satisfy to be considered valid.  

When the logical disjunction of all of an operator’s preconditions evaluates to true, meaning at 

least one precondition was not violated, an input mapping is valid.  Operator postconditions assert 

which output fields will be written, the characteristics of newly produced data, and the changes to 

characteristics of derived data.  Each postcondition is associated to the precondition that defines 

the input requirements that guarantee the assertions of the postcondition. 

 

3.1.3. Intent Language 

 

The intent language maps terms to sets of assertions on semantic annotation pairs; a content type 

and a state attribute per pair.  Each assertion specifies a state attribute that must be present (or not 

present depending on the assertion being inclusive or exclusive) on a data field with the specified 

content type.  This mapping establishes the higher-level terms of the language as abstractions that 

capture “design intent”.  Each constituent term of a statement maps to lower-level concepts, 

providing a partial to full description of the desired data results.  Using these mappings, a 

statement can be translated into technical specifications, which can be merged to produce a single 

specification of the desired result. 

 

3.2. Infrastructure 

Before describing the AI planning approach, it is first necessary to present and explain 

fundamental details of the infrastructure.  First is the concept of state.  The state of data fields is 

represented following the attributed field model, via the state attributes.  For workflow, the state 

of all of the fields in the workflow at a particular instance describes the state, represented by a 

collection of attributed fields.  For application to goals, however, state must be able to be 

specified in an inclusive manner (data state that should be produced) and an exclusive manner 

(data state that should not be produced).  Accordingly, postconditions represent goal state 

specifications, which are explained in greater detail later in this section. 

 

Next is the definition of assertion types.  Both preconditions and postconditions are composed of 

assertions, yet the base concept of an assertion is abstract.  That is, an assertion’s definition can 

change depending on the criteria it represents.  While this abstraction provides extensibility, 

concrete definitions are necessary for an implementation.  For this reason, two assertion types 

were designed: field mapping assertions and field state assertions. 
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Field mapping assertions are assertions found in preconditions that represent constraints on the 

mapping combinations of input fields.  Only specific combinations of an operator’s multiple input 

fields may be valid to map conjunctively.  An input field can be required, disallowed, or optional 

for a given precondition.  An argument field must be mapped to a required input field for the 

condition to be satisfied.  Conversely, an argument field must not be mapped to a disallowed 

input field to satisfy the condition.  Finally, an optional input field indicates the absence of a 

constraint, in which case it is acceptable to either map or not map an argument field.  The 

representation of the field mapping assertion contains a reference to the input field the assertion is 

for, and a Boolean value to express whether the assertion should evaluate to true when the 

specified field is mapped or when it is not mapped. 

 

To illustrate this assertion, consider the operator in Figure 5.  Assume that “Input 1” is required 

“Input 2” is disallowed, and “Input 3” is optional.  An expression of these conditions would 

include the following field mapping assertions: (“Input 1”, true) and (“Input 2”, false).  Note the 

lack of an assertion for “Input 3”, since it is optional.  The precondition of this example can be 

satisfied by two cases.  The first accepted case is when an argument field is mapped to “Input 1”, 

an argument field is not mapped to “Input 2”, and an argument field is mapped to “Input 3”.  The 

second accepted case is the same for “Input 1” and “Input 2”, but an argument field is not mapped 

to “Input 3”.  Instead of using the absence of an assertion to express the optional case implicitly, 

an alternative is to split the precondition into two explicit cases: {(“Input 1”, true), (“Input 2”, 

false), (“Input 3”, true)} and {(“Input 1”, true), (“Input 2”, false), (“Input 3”, false)}. 

 

Next are field state assertions, which can be found in both preconditions and postconditions.  

Field state assertions in preconditions represent constraints on the state of an argument field’s 

data for mapping to an input field.  These assertions specify the required content type, any state 

attributes that are required, and any that are disallowed for a given input field.  The representation 

of the field state assertion references an attributed field, defining which input field the assertion is 

for and criteria on content type and state attributes.  A Boolean value is also part of the 

representation to configure the assertion’s evaluation.  True denotes that both an argument field’s 

content type and all of its state attributes must match those of the attributed field referenced by 

the assertion.  False differs only in that none of an argument field’s state attributes must match 

those of the attributed field referenced by the assertion. 

 

As an example, consider again the operator in Figure 5.  Assume “Input 1” requires the content 

type C1 and the state attribute A1.  Also assume that “Input 2” requires the content type C2 and 

the state attribute A2, but the state attribute A3 is disallowed.  An expression of these conditions 

would consist of the following field state assertions: (“Input 1”, C1, {A1}, true), (“Input 2”, C2, 

{A2}, true), and (“Input 2”, C2, {A3}, false).  The precondition of this example can be satisfied 

when an argument field with the content type C1 that has the state attribute A1 is mapped to 

“Input 1”, and an argument field with the content type C2, that has the state attribute A2, but not 

the state attribute A3, is mapped to “Input 2”. 

 

Field state assertions for postconditions represent the “effect” produced by an operator’s 

execution.  This encompasses altering the state of an existing data field’s or appending new data 

 
Figure 5. An example operator with multiple inputs. 
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fields with specific states.  For the former case, the assertion specifies which existing field is 

altered and what changes are made to the content type and state attributes via the referenced 

attributed field.  True for the Boolean value designates merging the specified state attributes with 

those of the existing field, while false indicates removing the specified state attributes from the 

existing field.  For the latter case, the Boolean value is ignored.  Instead, a new field is added to 

the data set that has all characteristics of the referenced attributed field – the name, data type, 

content type, and state attributes. 

 

To demonstrate, consider the operator in Figure 6.  Assume one result of this operator is to add a 

new field “Output 1” with the content type C1 and the state attribute A1.  Also assume another 

result is to alter “Input 1” by changing its content type to C2 and adding the state attribute A2.  

These conditions could by expressed by the following field state assertions: (“Output 1”, C1, 

{A1}, true) and (“Input 1”, C2, {A2}, true).  Evaluation of the first assertion would add a new 

field, “Output 1”, with a content type C1 and the set of state attributes {A1}.  If the argument 

field mapped to “Input 1” is assumed to have content type C2 and state attributes {A3}, 

evaluation of the second assertion would alter field “Input 1” to have the state attributes {A2, 

A3}.  As an alternative example, consider a different postcondition which alters “Input 1” by 

changing its content type to C1, adds the state attribute A1, and removes the state attribute A2.  

These conditions can be expressed by the following field state assertions: (“Input 1”, C1, {A1}, 

true) and (“Input 1”, C1, {A2}, false).  If the argument field mapped to “Input 1” is assumed to 

have content type C2 and state attributes {A2}, evaluation of both assertions would alter field 

“Input 1” to have content type C1 and state attributes {A1}. 

 

Field state assertions are also utilized to represent the goal state of a workflow, expressing 

postconditions that are required to be present (inclusive) or not present (exclusive) after workflow 

execution.  This approach does not assume that the name of each field in the final state of a 

workflow that satisfy a given goal are known.  Instead, the goal conditions are asserted on 

specific content types, not specific data fields.  This generalizes the specification to a category of 

fields rather than a specific field, permitting goal specification to be based on domain concepts 

and so be more expressive.  The referenced attributed field of the assertion specifies which 

content type and state attributes are required to be present or not present.  True for the Boolean 

value indicates the specified state attributes must be present in a workflow’s final state, while 

false specifies that the state attributes must not be present. 

 

For example, consider the following field state assertions: (C1, {A1}, true), (C1, {A4}, false), 

and (C2, {A2, A3}, true).  The conditions of this example intent can be satisfied by any workflow 

state that contains a data field with content type C1 and state attributes {A1}, no data field with 

content type C1 and state attributes {A4}, a data field with content type C2 and state attributes 

{A2}, and a data field (possibly the same as the previous) with content type C2 and state 

attributes {A3}. 

 

 

 

 

 
Figure 6. An example operator with a single input and output. 
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3.3. Workflow Engine 

 
The workflow engine is an implementation of an AI planner.  The purpose of this component is to 

utilize the knowledge representation to generate the full procedural specifications of ETL 

workflows that satisfy the requirements users express through the intent language.  Workflow 

composition is modeled as a search space problem by mapping the input data sources as the initial 

state, user intent specifications as the goal state, and operators as the available state transitions.  

The workflow engine follows an A* strategy (see Figure 7), using forward chaining to select and 

arrange operators into workflows that achieve the specified goal state using the given initial state 

and collection of operators. 

 

Execution of the workflow engine generates a collection of steps, referred to as the workflow 

plan, to reach the goal state from the initial state.  Multiple operators and input mappings can 

transition the workflow from the current step in the workflow plan closer to the goal state.  The 

planning algorithm evaluates as deep as possible upon each available path – a series of sequential 

steps in the workflow plan – and ends when the goal state is reached or no next steps are 

available.  At this point, the algorithm backtracks to the previous step in the workflow plan and 

evaluates any other paths that have not been explored.  Execution of the workflow engine 

terminates once all paths have been explored.  All valid workflows that reach the goal state from 

the initial state are then contained in the workflow plan.  The remainder of this section expands 

on this high-level description, describing the algorithm in greater detail. 

 

3.4. Workflow Planning Tree 

An integral part of the algorithm is tracking the workflow plan.  The workflow engine must be 

able to backtrack to a previous step in the plan when the current step reaches the goal state or has 

no next steps still unexplored.  Similarly, the workflow engine must be able to extract each 

distinct paths that reaches the goal state from the plan once all paths in have been explored, as 

each of these paths represents a workflow solution. 

 

The workflow planning tree is a tree-based data structure composed of a collection of connected 

nodes.  Each node in the tree represents a step in the workflow plan.  The root of the tree is the 

starting point of the workflow and the leaf nodes are the possible last steps based on the path 

taken through the tree.  Each node has a reference to a single parent and one or more children, 

enabling the workflow engine to traverse both up and down the tree.  Each node also maintains 

 
Figure 7. Process flow of the workflow engine. 



International Journal of Artificial Intelligence & Applications (IJAIA) Vol. 6, No. 5, September 2015 

11 

 

details about the step in the workflow plan they represent, including the operator planned, along 

with its option and input mappings.  This enables the exact specifications of a workflow to be 

extracted from the tree.  The end state and remaining goals after the operator is executed are 

additional details each step records to assist the workflow engine in planning next possible steps 

in the workflow. 

 

The root of the workflow planning tree is initialized using the initial state as the end state and the 

goal state as the remaining goals when execution of the workflow engine begins.  Starting with 

the root as the current node, the workflow engine determines which operators should be the next 

steps in the workflow plan.  These are added as the children of the current node.  Then the 

workflow engine recursively performs the same logic on the children of the current node.  Once 

the current node reaches the goal state or no next steps can be found, the recursive algorithm 

backtracks the workflow engine to the parent node and the next child is evaluated. 

 

3.5. Matching Goals 

To determine which steps should be the next in the workflow plan, the workflow engine searches 

for operators that bring the plan closer to the goal state.  During this process, referred to as goal 

matching, the postconditions of all available operators are searched and matched against the 

remaining goals of the current step in the planning tree.  A match is determined by comparing the 

assertions in each postcondition to each of the assertions in the remaining goals. 

 

To perform this logic, one criteria is that the content types of the field state assertions must 

match; if the content types differ, then the assertion does not produce the goal under 

consideration.  Another criteria is that assertions cannot conflict.  For example, if the assertion 

produces a state attribute that is disallowed by the goal state, then it is not a goal match.  A final 

criteria is that if the content type already exists in the current state of the workflow, then the 

assertion must also share at least one state attribute with the goal state’s assertion.  This allows 

the workflow engine to handle data fields that do not exist in the workflow until produced by an 

operator during workflow execution.  This also prevents false positives on matching operators 

that are not actually bringing the workflow closer to the goal state. 

 

3.6. Mapping Inputs 

 
Once a candidate operator is selected through goal matching, the operator’s preconditions must 

then be evaluated against the current workflow state to determine if a valid input mapping exists.  

If no valid input mapping exists, an operator should not be added to a workflow plan.  Finding a 

valid input mapping is performed using the fields from the end state of the current step in the 

planning tree.  Each of the field mapping assertions of the precondition are checked first.  If a 

field cannot be found for a required field mapping assertion, a valid input mapping is not 

available.  If a field is available for each of the required inputs, the algorithm moves on to check 

the field state assertions.  If all of the conditions are satisfied, meaning the required content types 

match and there are no conflicts with the required and disallowed state attributes, then the 

candidate field is considered a match.  If a match is found for each of the required inputs, the 

operator is determined to have a valid input mapping.  Note that the precondition to be evaluated 

must be that which produces the postcondition that goal matching determined; however, this is 

handled by a separate step that is discussed later.   

 

3.7. Growing the Workflow Plan 

 
Candidate operators that pass both goal and input matching are added to the planning tree as a 

child of the current node in the tree.  In order to continue the workflow planning algorithm, these 
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newly added nodes must have their end states and remaining goals evaluated.  First, the 

postcondition of the planned operator is applied to the data fields from the input mapping to 

determine the end state of the new step.  For each assertion in the postcondition, the input 

mapping is checked for matching fields.  If matched, the state attributes of the attributed field 

from the input mapping are merged with those from the assertion.  Otherwise, the attributed field 

from the assertion is added to the end state. 

 

Next, the remaining goals are determined, which involves taking the difference between the end 

state of the child node and the remaining goals of the current node.  This logic is performed by 

taking the field state assertions from the postcondition with a Boolean value of true, finding the 

data fields in the end state that match (based on content type), and taking the difference of the 

assertion with the matched fields.  The resulting assertion has all the state attributes that were in 

the old assertion excluding those present in the attributed field.  Once no state attributes are left in 

the assertion it is dropped from the result.  Otherwise, it is added to the resultant postcondition.  

Similarly, the existing assertion is added to the resultant postcondition if no matching fields are 

found, as this indicates that none of its asserted goals have been satisfied.  The postcondition that 

results contains all of the assertions that have not yet been satisfied by the current state of the 

workflow. 

 

3.8. Evaluating End Conditions 

 
As the workflow engine attempts to recursively plan the next steps of the workflow, each 

recursive invocation checks to see if the goal state has been reached.  To evaluate the end 

condition, the remaining goals of the current step in the workflow planning tree are checked for 

two possible cases that indicate that the goal state has been reached: when there are no remaining 

goals and when only exclusive goals are remaining.  No remaining goal is a clear end condition 

that doesn’t require explanation.  For the second case of having only exclusive goals remaining, 

this indicates that all-inclusive goals satisfied.  So long as none of the exclusive goals are 

violated, then this case indicates that the goal state has been reached. 

 

3.9. Operator Decomposition 

 
A characteristic of operators noted in our previous work is that an operator can be overloaded 

with functionality, having multiple preconditions, each of which can produce a distinct 

postcondition.  The workflow engine must know the each operator’s distinct postconditions in 

order to determine which operators to select to transition the workflow closer to the goal state.  

The workflow engine must also know the distinct preconditions of each operator in order to 

identify the input mapping required to produce a desired postcondition.  While one strategy is to 

compute these on demand during the workflow planning process, the computational overhead 

becomes excessive.  The strategy employed by our approach is to perform this computational 

process, referred to as operator decomposition, before workflow planning begins. 

 

The process of operator decomposition breaks up a single, complex operator into many atomic 

operators.  The term atomic is used in this context to refer to possessing only a single 

precondition and postcondition.  Decomposing an ETL operator into atomic operators starts from 

the canonical, “sum of products” form of all of the operator’s preconditions (including the 

options).  As each precondition in our approach is modelled as a conjunctive expression, the 

collection of preconditions tied to an operator or option setting is already in canonical form.  

However, the operator’s preconditions must be merged with the preconditions of the options.  

Note that preconditions from different settings of the same option are not merged, as an option 

can only have a single setting at a time.  The maxterms of the resulting merged canonical form 

expresses the operator’s discrete preconditions. 
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As an example, consider an operator with the following preconditions: (P1&&P2) || (P1&&P3).  

Assume the operator has only a single option with two settings, one with no precondition and the 

other with the precondition P4.  The merged canonical form for this example specification would 

be: (P1&&P2) || (P1&&P3) || (P1&&P2&&P4) || (P1&&P3&&P4).  The four maxterms of this 

expression indicate four discrete preconditions.  Next, assume the operator has an additional 

option with two settings, one setting with no precondition and the setting other with the 

precondition P5.  In this case, the merged canonical would be: (P1&&P2) || (P1&&P3) || 

(P1&&P2&&P4) || (P1&&P3&&P4) || (P1&&P2&&P5) || (P1&&P3&&P5) || 

(P1&&P2&&P4&&P5) || (P1&&P3&&P4&&P5).  The resulting expression contains eight 

maxterms, indicating eight discrete preconditions. 

 

To merge preconditions, the underlying assertions must be merged.  This entails merging 

assertions of the same type for the same field into single assertions.  For example, a precondition 

composed of a field mapping assertion (“F1”, true) merged with another precondition that 

contains a field mapping assertion (“F1”, true) would produce a resultant precondition with the 

single field mapping assertion (“F1”, true).  Similarly, a precondition composed of a field state 

assertion (“F1”, C1, {A1}, true) merged with another precondition with a field state assertion 

(“F1”, C1, {A2}, true) would produce a resultant precondition with the single field state assertion 

(“F1”, C1, {A1, A2}, true).  When assertions are conflicting, asserting that a field mapping or 

state attribute is both required and disallowed, this indicates that both preconditions cannot be 

satisfied in conjunction.  In such cases, the conflicting preconditions are excluded from the 

merged result. 

 

4. EVALUATION 

 
Results were gathered by testing a prototype implementation of the approach on the services 

offered by an industrial partner.  Their services focus on improving the quality of their clients’ 

data.  Testing scenarios were selected from real-world business cases of this target domain that 

originate from a client planning to perform a mailing campaign.  To improve the productivity of 

this campaign, the client seeks to enhance their customer’s contact data.  Such improvements 

include: 

 

• Hygiene on address data for accurate mailing addresses. 

• Enhancing the contact data with delivery sequencing to receive mailing discounts. 

• Classification of customers through industry demographics, allowing the campaign to 

be targeted accurately. 

• Checking for changes of address to update data that is out of date. 

• Cross-referencing a knowledge base to identify duplicate contacts. 

• Identifying and flagging records with invalid name and/or address data. 

 

4.1. Test Scenario 1 

 
The first scenario is a basic mailing enhancement package.  The initial state consisted of unparsed 

data; full name, unparsed primary address, and unparsed city state zip.  The selected intents were 

“Determine industry demographic”, “Address hygiene”, and “Validate names”.  The expected 

workflow, which was produced by the target domain, is the following sequence: 

 

Parser => IndustryCode => AddressEnhance => AddressSelect => NameEditCheck 
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4.2. Test Scenario 2 

 
The second scenario is an advanced mailing enhancement package.  As before, the initial state 

consisted of unparsed data; full name, unparsed primary address, and unparsed city state zip.  The 

selected intents were “Determine industry demographic”, “Address hygiene”, “Link contacts”, 

“Validate addresses”, and “Validate names”.  The expected workflow – once again produced by 

the target domain – is the following sequence. 

 

Parser => IndustryCode => AddressEnhance => AddressSelect => ContactLink => 

NameEditCheck => AddressEditCheck 

 

4.3. Results and Analysis 

 
The number of workflows generated was 384 for the first scenario and 7680 for the second 

scenario.  Each workflow for the first scenario involved 5 operators, 8 options, 84 input fields that 

had to be mapped, and 90 output fields.  Each workflow for the first scenario involved 7 

operators, 9 options, 116 input fields that had to be mapped, and 91 output fields.  In the manual 

process, the first scenarios would require 32,256 input fields and 3,072 options to map by hand, 

and the second scenario would require 890,880 input fields and 69,120 option to map by hand.  

Through our approach, however, solutions were generated automatically in less than one minute 

for both scenarios. 

 

Analysis of these solutions revealed only 16 distinct workflows in each scenario, all of which had 

compositions matching the expected result and fulfilled the specified intents.  The 16 distinct 

compositions resulted due to the intents being under-constrained.  Certain option settings were 

ambiguous, thus multiple option configurations attained extraneous services as these were not 

excluded by the goal specifications. 

 

5. RELATED WORK 

 
Relatively little literature exists that ties workflow as developed by the ETL community to 

planning from artificial intelligence.  The former community generates workflows manually, 

while the latter automates plans that are, essentially, workflows.  Some communities have 

considered how the two areas can fit together, which is central to our work.  The relational 

community enables operations that involve data stored in relational databases to be expressed 

through a high-level, declarative language, SQL.  Statements in SQL are automatically mapped to 

workflows known as query plans.  However, a query planner is only able to map SQL statements 

to generic set operations, not to custom operations.  Query optimization also does not incorporate 

domain knowledge, relying instead upon the expertise of the querying user. 

 

Sun [15] recognized that the existing process to produce a workflow was “highly manual and 

cumbersome effort” and sought to automatically generate workflows as a solution.  The approach 

employed a domain ontology to generate all possible workflows, then incorporated user-specified 

constraints to filter the results until only a single solution was remaining.  Our work differs in that 

we constructively determine a solution for a given goal set instead of generating all possible 

workflows and iteratively pruning the excess solutions through a decision tree. 

 

Research by Zhang et al [16] employed patterns to capture and integrate domain knowledge from 

experts.  The approach associated these patterns with a task, scenario, and solution as an attempt 

to provide domain independence.  In contrast to our work, this research just makes suggestions 

and does not fully generate workflows, leaving reliance upon domain experts in the specification 



International Journal of Artificial Intelligence & Applications (IJAIA) Vol. 6, No. 5, September 2015 

15 

 

process.  Further, the approach cannot generate unique workflow solutions, merely regurgitate 

what it has already seen. 

 

Ambite and Kapoor [17] incorporated concepts of both domain ontology and artificial 

intelligence planning.  Their approach introduced predicate logic to represent domain knowledge 

and employed a planner to generate a workflow solution for a given user request.  The workflows 

the planner was capable of building, however, were only a simplification of ETL workflow, 

having only a single way to connect and sequence the available operators.  Such an approach 

would be infeasible to apply to domains with complex workflows. 

 

Previous research by Xiao, Thompson, and Li [18][19][20] also employed a planner.  This work 

was capable of generating all of the possible workflows that transformed a given initial set of 

input fields to a specified set of output fields.  Though the research included a knowledge 

representation, it was only able to capture a small portion of the domain knowledge.  Constraints 

on workflow composition due to operator logic, workflow standards, and business rules could not 

be represented in an extensible manner.  Consequently, even invalid workflows were included in 

the solutions generated. 

 

6. CONCLUSIONS AND FUTURE WORK 

 
The scale of big data causes the compositions of data science workflows to grow increasingly 

complex.  With the turnaround time for delivering solutions becoming a greater emphasis, 

stakeholders cannot continue to afford to wait the hundreds of hours it takes for domain experts to 

manually evaluate and select an optimal workflow.  The work presented in this paper introduces 

an extensible approach to automatically transform declarative goal statements into fully-specified 

ETL workflows.  Like how query optimizers transform SQL statements into specific query plans, 

our AI planning approach auto-generates workflows by following an A* search strategy to 

sequence and connect operations that fulfill the requirements specified by a user’s intents.  The 

practical contribution is an intuitive interface that facilitates rapid composition and maintenance 

of workflows, much like SQL provides for relational database queries.  Results for real-world 

industrial cases were gathered and analyzed to demonstrate (in a generative manner) the validity 

of the approach. 

 

There are several opportunities for further research in this problem area.  Intelligent result 

filtering is an enhancement that can improve ease of use, enabling ambiguous goals that inflate 

the number of workflows generated to be identified and pruned by users for a refined result set. 

Discovering interchangeable elements of workflow specification, analogous to identity statements 

in query optimization, could revolutionize how businesses and scientists analyze and reason about 

data science workflows, while opening the way for derivative research into optimization.  

Optimization refers to the process of refactoring a workflow to improve it in some sense.  For 

instance, reducing the financial cost to the client, reducing the cost to the business in employee 

hours, reducing the cost to the business in operations performed, or minimizing workflow 

runtime.  If equivalence relations are discovered for workflow operations, then workflows could 

be optimized similar to query optimization, by transforming from one form to another that 

produces the same result at a cheaper cost.  These costs could be defined in a cost-model that 

users can adjust to have particular factors weighed more greatly than others, including: runtime, 

financial cost, and level of data quality. 
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