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Abstract 

 
A new efficient modified back propagation algorithm with adaptive learning rate is proposed to increase 

the convergence speed and to minimize the error. The method eliminates initial fixing of learning rate 

through trial and error and replaces by adaptive learning rate. In each iteration, adaptive learning rate for 

output and hidden layer are determined by calculating differential linear and nonlinear errors of output 

layer and hidden layer separately. In this method, each layer has different learning rate in each iteration. 

The performance of the proposed algorithm is verified by the simulation results. 
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1. Introduction 

 
The classical method for training feedforward neural network (FNN) is the backpropagation 

algorithm (BP) [9] which is based on the steepest descent optimization technique. Training is 

usually carried out by iterative updating of weights based on the error signal. BP is a 

descent algorithm which attempts to minimize the error at each iteration. The weights of 

the network are adjusted by the algorithm such that the error is decreased along a descent 

direction [18]. Traditionally two parameters called learning rate and momentum factor are 

used for controlling the weight adjustment along the descent direction. Finding initial 

learning rate and fixed learning rate must be done with great care. If the learning rate is very 

large, then the learning may become unstable. If it is small, then often it is very slow for practical 

applications which leads to finding of fast learning algorithms [13]. 
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Many techniques have been proposed to increase the convergence speed. Abid et al. [1] described 

modified BP algorithm (MBP) based on sum of linear and nonlinear errors of output neurons to 

improve the speed of convergence in minimum iterations. The algorithm converges faster than the  

standard BP algorithm. Some researchers focused on selection of better energy function [2,14] 

and selection of suitable learning rate and momentum [6,9,16,17]. Learning rate adaptation by 

sign changes will adapt the step size by having a separate learning rate for each connection [12] 

 

A problem with all of these techniques is their convergence to local minima. To solve this 

problem, global search algorithm like genetic algorithm have to be applied [4]. But searching for 

the global minimum may be trapped at local minima during gradient descent. Also if the network 

is trained with disturbances in the input, then global minimum point can not be found. So fast 

convergence and strong robustness may not be guaranteed. To solve these problems adaptive 

learning algorithms have been developed recently. 

 

Jeong and Lee [7] have proposed an adaptive algorithm based on first and second order 

derivatives of neural activation at hidden layers which results in hybrid learning rules. Sha and 

Bajic [13] have proposed an adaptive learning rate algorithm for I/O identification based on two 

ANNs using convergence analysis of the conventional gradient descent method. Xie and Zhang 

[15] have proposed variable learning rate LMS algorithm using Lyapunav method especially 

when there is noise in the input signal. Behera et al. [3] have described new learning algorithms 

LFI and LF II based on Lyapunov function for the training of feeforward neural networks. In this 

algorithm fixed learning parameters are replaced with adaptive learning parameters using 

convergence theorem based on Lyapunov stability theory. ].  Zhihong Man et al [19] proposed  

a new adaptive backpropagation algorithm based on lyapunov stability theory for neural 

networks.  They showed that the candidate of a lyapunov function of the tracking error 

between the output of a neural network and the desired reference signal is chosen first, and 

the weights of a neural network are then updated from the output layer to input layer. 

 

Our previous work [8] describes a modified backpropagation algorithm in neighborhood based 

network by replacing fixed learning parameters by adaptive learning parameters. Here the 

parameters are calculated using convergence theorem based on Lyapunov stability theory. 

Iranmanesh and Mahdavi [11] have proposed a learning method using differential adaptive 

learning rate. In each iteration, the learning rate is updated according to the error of the output 

layer. The  learning rate of the output layer is computed by differentiating the error of the output 

layer. The differentiation of the sigmoidal function of the sum of multiplication of error of each 

output layer neuron with corresponding weights is divided by the number of hidden neurons is 

used as an adaptive learning rate of hidden layer. 

 

We propose a new adaptive learning rate algorithm to speed up the learning process of the neural 

network. In the proposed algorithm separate adaptive learning rate is used in both hidden and 

output layers. In this, linear and nonlinear errors for each neuron in the output layer are multiplied 

with derivative of the corresponding neuron’s activation function, added and then differentiated 

to get the adaptive learning rate for the output layer. Linear and nonlinear error of each hidden 

neuron is multiplied with its corresponding output layer weights separately and then added. Then 

the value is divided by number of hidden neurons. The differentiation of the sigmoidal function of 

this value is used as a learning rate for the hidden layer. The efficiency of the proposed algorithm 

in terms of time and epochs shown by simulating the benchmark problems such as XOR, 3-bit 

parity, nonlinear function approximation problem and iris data sets. 
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The remaining of the paper is organized as follows: section 2 describes adaptive learning rate 

algorithm, section 3 describes the proposed algorithm and section 4 discusses the simulation 

results. 

 

2. Training of Neural network 
 

Consider a single hidden layer feedforward neural network shown in Figure 1. A bias node is 

included in the input layer. Let X = (xi) be the input vector, Y = (yj) be the output vector and wji
[s]

 

be the weight of the i
th 

unit in the (s-1)
th 

layer to the j
th 

unit in the s
th 

layer. The activation function 

of both hidden and output layer neurons are assumed to be sigmoidal. Sequential mode training is 

applied here. 

 

 

Figure 1. Single hidden layer neural network 
. 

Standard BP (SBP) 
 

For each input pattern nonlinear output of the  j
th 

 neuron of the output layer network is 

calculated as follows: 

                        1

1

)1(

−

=

∑
−

= s

i

n

i

s

ji

s

j ywu
s

                                (1) 

                      ( )
s

ju

s

j d
e

uf
s
j

=
+

=
−

1

1
)(                        (2)                            

where n(s-1) represents number of neurons in the (s-1)
th 

layer. 

 SBP minimizes the following criterion equals to the sum of the squares of the errors 

between the actual 
s

jy  and the desired 
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The weight update rule is  
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where µ is the fixed learning rate selected by trial and error. Substituting (3) in (5), the weight 

update rule becomes, 
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The estimated nonlinear error of the hidden layer (s-1) is as follows: 
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The weight update rule of the hidden layer is 
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Now the weights of both hidden and output layer are updated using  

               jijiji wtwtw ∆+=− )()1(                        (10) 

 

Modified BP 
 
For each input pattern the linear and nonlinear outputs of the  j

th 
 neuron in output layer s of the 

network are calculated respectively as follows: 
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where n(s-1) represents number of neurons in the (s-1)
th 

layer. The MBP approach minimizes 

modified form of criterion Ep  used in standard BP algorithm. The criteria Ep is sum of the linear 

and nonlinear quadratic errors of the output neuron for the current pattern p. 
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where the nonlinear error signal is  
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and the linear error signal is  
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where 
s

jy  and 
s

jd  respectively are desired and current output for j
th 

unit in the s
th
 layer. p in (13) 

denotes the p
th
 pattern and λ is the weighting coefficient. In the output layer the linear and 

nonlinear errors are known [1]. So the weight update rule [1] for the output layer is  
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where µ is the fixed learning rate selected by trial and error. Substituting (13) in (17), the weight 

update rule becomes, 
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In the hidden layer, the linear and nonlinear errors are unknown and must be calculated [1]. The 

estimated nonlinear and linear error [1] of the hidden layer (s-1) are respectively as follows: 
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The weight update rule of the hidden layer is 
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Now the weights of both hidden and output layer are updated using  

              jijiji wtwtw ∆+=− )()1(                               (23) 

where t represents iteration. In order to increase the convergence speed and to make the learning 

rate µ adaptive , we propose a new technique based on differential linear and nonlinear errors of 

output layer and hidden layer. 

 

Adaptive Modified BP 

 
In the proposed technique first linear and nonlinear errors of  j

th 
neuron in the output layer s are 

calculated using (14), (15) and (16). Then all the linear and nonlinear errors of the neurons are 

multiplied with the derivative of the corresponding neuron’s activation function and added 

separately as shown below: 
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Then 1oδ  and 2oδ  are added to get the total error 

                    21 ooo δδδ +=                                             (26) 

Now the total error is divided by the total number of output neurons known as 
aδ  
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and the outµ  of the output layer s is computed as follows: 
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Similarly for the hidden layer (s-1) the same procedure is applied to calculate adaptive learning  
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rate hidµ . First nonlinear errors 
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and then both 1hδ and 2hδ  are added to get the total error hδ as below: 
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Now the total error is divided by the total number of hidden neurons known as 
bδ  
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and then hidµ is computed as follows: 
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where f is a sigmoidal activation function. Then the change of weights are calculated using the 

following equation. 
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Now the weights of both hidden and output layer are updated using (23). 

 

3. Algorithm 
 

1. Define network structure and assign initial weights randomly. 

2. Select a pattern to be processed in the network. 

3. For each node in the hidden layer, compute 

a. Net value using Eq (11). 

b. Output value using Eq (12). 

4. For the output layer, compute 

a. Net value using Eq (11) and output value using Eq (12). 

b. Non Linear and linear errors using  Eq (14), Eq (15) and Eq (16). 

c. Adaptive learning rate  outµ   using Eq (24) to Eq (30). 

d. Change of weight using Eq (31). 

5. For the hidden layer, compute 

a. Non Linear error using  Eq (19). 

b. Linear error using Eq (20). 
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c. Adaptive learning rate hidµ  using Eq (32) to Eq (36). 

d. Change of weight using Eq (37) 

6. Update weights of output and hidden layer using Eq (23). 

7. Repeat the steps 2 to 6 for all the patterns. 

8. Evaluate network error with new weights. 

9. Stop training if termination condition is reached. Otherwise repeat the steps 3 

to 9. 

 

4. Simulation Results and discussions 
 

The performance of the proposed algorithm is verified by simulating the benchmark problem 

such as XOR, 3-Bit parity, Nonlinear function approximation function problem and Iris data set. 

All the problems are simulated using language C on a Pentium IV with 2.40 GHz. The 

convergence property of the proposed algorithm is compared with MBP [1], Backpropagation 

with momentum (BPM) [9] and backpropagation algorithm [10]. Each time all the patterns in the 

problem have been used once in the network during training is called an epoch. Mean squared 

error (MSE) of the network is calculated by dividing the sum of squared linear error in each 

epoch by twice the number of patterns. Network structure, parameter values and termination 

condition are considered as constant for all the algorithms to have better comparison. Network 

weights are randomly and uniformly generated from the range [-5, +5]. The weighting coefficient 

λ is assigned the value 3.7. The convergence of the proposed algorithm is shown by the 

learning curve. 

 

XOR 
 

The network structure considered in this problem has 3 input neurons including bias, 4 hidden 

neurons and one output neuron. The termination condition fixed for convergence is MSE 0.001. 

The results obtained are tabulated in Table 1.  

 

Table 1: Comparison table for XOR problem 

 

ALGORITHM      PARAMETERS     EPOCHS      TRAINING    TIME                 

                                                                                             MSE             IN       

                                                                                                               MSECS                                                       

BP                          µ=1.15            754        0.000998       176 

BPM                   µ=1.15  α=0.01  710          0.001           151 

MBP                   µ=0.25 λ=0.01   501          0.001           115 

Proposed                  λ=3.7             237       0.000987         49 

 
It has been observed that the BP algorithm takes 176 msecs and 754 epochs to reach the 

minimum error. The proposed algorithm converges faster even the learning rate is not fixed in the 

beginning. Since the learning rate is adapted based on the error of output and hidden layers it 

takes minimum time of 49 msecs and minimum epochs of 237 for convergence. The learning 
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curve obtained is shown in Figure 2 for the proposed algorithm. The adaptive learning rate 

obtained based on the error of output layer and hidden layer are shown in Figure 3 and Figure 4. 
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Figure 2. Learning curve based on MSE and Epochs of XOR problem for the proposed 

algorithm 
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Figure 3. Adaptive learning rate of hidden layer. 
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Figure 4. Adaptive learning rate of output layer. 

3-bit parity  
 

We used 4-9-1 ANN including one bias in input layer to simulate the 3-bit parity problem. The 

results obtained are tabulated in Table 2.  
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Table 2.  Comparison table for the 3-bit parity problem 

 

ALGORITHM      PARAMETERS     EPOCHS      TRAINING    TIME                 

                                                                                             MSE             IN       

                                                                                                               MSECS                                                       

BP                          µ=1.15            1570        0.000999       379 

BPM                   µ=1.15  α=0.01  1450        0.000998       364  

MBP                   µ=0.25 λ=0.01   520          0.000995       126 

Proposed                  λ=3.7             298         0.000997        77 

 
From the table it has been observed that the proposed algorithm converges quickly within 77 

msecs in 298 epochs. But the algorithm BP, BPM and MBP require 1570, 1450 and 520 epochs 

for convergence respectively. Also they require 379 msecs, 364 msecs and 126 msecs time to 

reach the termination condition MSE 0.001. All the algorithm except proposed algorithm take 

time to fix the learning rate. The best performance of the proposed algorithm is shown in Figure 

5. 
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Figure 5. Learning curve based on MSE and Epochs of 3-bit parity problem for the 

proposed Algorithm 
 

Nonlinear function approximation problem 

 
A nonlinear function approximation with 8 input values xi is defined in this problem. The three 

output quantities yi are defined by the following equations   

( ) 4876543211 xxxxxxxxy +++=  

( ) 8876543212 xxxxxxxxy +++++++=
   

 

( ) 21

13 1 yy −=  

500 number of input values xi ε (0,1) are randomly generated and the corresponding yi   are 

calculated using the above equation. All the algorithms taken for comparison are assumed to have 

the network structure with 9 neurons in the input layer including bias, 5 neurons in the hidden 

layer and 3 neurons in the output layer. All the algorithms including proposed is fixed with the 

minimum error of MSE 0.004. The results obtained are tabulated in Table 3.  It shows that the 

algorithms BP and BPM converge to MSE 0.004 in 590 epochs and 389 epochs within 612 msecs 

and 487 msecs respectively. But MBP converges to the termination condition with the maximum 
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of 75 epochs within 89 msecs. The proposed algorithm converges quickly in 25 epochs within 51 

msecs. 

 

Table 3.  Comparison table for the nonlinear function approximation problem. 
 

ALGORITHM      PARAMETERS     EPOCHS      TRAINING   TESTING        TIME                 

                                                                                             MSE            MSE                  IN       

                                                                                                                                      MSECS                                                       

BP                    µ=1.15           590       0.003990   0.004285    612 

BPM            µ=1.15  α=0.01  389       0.003995   0.004125    487 

MBP            µ=0.25 λ=0.01     75       0.003574   0.003913      89 

Proposed          λ=3.7               25       0.003796   0.003835      51 

 
The learning curve of the proposed algorithm is shown in Figure 6. Another set of 500 patterns 

are generated for testing. The testing MSE obtained for the proposed is 0.003835 and for the 

MBP is 0.003913. 
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Figure 6. Learning curve based on MSE and Epochs of Non linear function approximation 

problem for the proposed algorithm 

 

Iris data set 

 
The Iris data [5], is one of the best known databases in the pattern recognition literature. The data 

set contains three classes. Each class has 50 instances, totally 150 patterns are used. Among 75 

patterns are used for training and the remaining for testing. All the values are normalized by 

dividing the value by 10. The network structure considered is 5-10-1 including one bias in the 

input layer. Table 4 shows the results obtained for all the algorithms taken for comparison.  
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Table 4.  Comparison table for the Iris data set problem. 

 
ALGORITHM      PARAMETERS     EPOCHS      TRAINING   TESTING        TIME                 

                                                                                             MSE            MSE                  IN       

                                                                                                                                      MSECS                                                       

BP                    µ=1.15            491       0.0003    0.008172     193 

BPM           µ=1.15  α=0.01    414       0.0003     0.008155     165 

MBP           µ=0.25 λ=0.01     368       0.0003     0.006869     143 

Proposed          λ=3.7                95       0.00029  0.006654        33 

 
The proposed algorithm and MBP take minimum epochs of 95 and 368 and minimum time of 33 

msecs and 143 msecs respectively. But BP and BP with momentum require 491 and 414 epochs 

and 193 msecs and 165 msecs respectively to reach the termination condition MSE 0.0003. Also 

the testing MSE obtained for the proposed algorithm is minimum. The learning curve drawn 

against epochs and MSE for the proposed algorithm is shown in Figure 7. 
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Figure 7. Learning curve based on MSE and epochs of Iris data set problem for the 

proposed algorithm. 

 

4. Conclusion 
 
An efficient technique for adapting the learning rate in modified backpropagation algorithm for 

training sequential FNN is proposed. Here, the learning rate is adapted based on the differential 

linear and nonlinear errors of output and hidden layers. Separate adaptive learning rate is used for 

both hidden and output layer in each iteration. The time required to fix the learning rate by trial 

and error is saved. The proposed algorithm improves the convergence speed in terms of time and 

epochs which is shown by simulating four different problems. The main advantage of the 

proposed algorithm is no need to put effort to tune the learning parameter to obtain optimal 

convergence.  The proposed algorithm is easy to implement and easy to compute learning rate for 

both hidden and output layer which modifies the values of weights and increases the convergence 

speed. The learning curve show that the convergence is guaranteed. 
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