
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

DOI : 10.5121/ijcsea.2011.1503 21

Adaptive modified backpropagation algorithm
based on differential errors

S.Jeyaseeli Subavathi

a
 and T.Kathirvalavakumar

b

a
Department of Information Technology, Sri Kaliswari College, Sivakasi – 626130,

Tamilnadu, India

b
Department of Computer Science, V.H.N.S.N. College, Virudhunagar – 626001,

Tamilnadu, India

Abstract

A new efficient modified back propagation algorithm with adaptive learning rate is proposed to increase

the convergence speed and to minimize the error. The method eliminates initial fixing of learning rate

through trial and error and replaces by adaptive learning rate. In each iteration, adaptive learning rate for

output and hidden layer are determined by calculating differential linear and nonlinear errors of output

layer and hidden layer separately. In this method, each layer has different learning rate in each iteration.

The performance of the proposed algorithm is verified by the simulation results.

Keywords

Adaptive learning rate, Differential error, Linear error, Modified standard back propagation, Nonlinear

error.

1. Introduction

The classical method for training feedforward neural network (FNN) is the backpropagation

algorithm (BP) [9] which is based on the steepest descent optimization technique. Training is

usually carried out by iterative updating of weights based on the error signal. BP is a

descent algorithm which attempts to minimize the error at each iteration. The weights of

the network are adjusted by the algorithm such that the error is decreased along a descent

direction [18]. Traditionally two parameters called learning rate and momentum factor are

used for controlling the weight adjustment along the descent direction. Finding initial

learning rate and fixed learning rate must be done with great care. If the learning rate is very

large, then the learning may become unstable. If it is small, then often it is very slow for practical

applications which leads to finding of fast learning algorithms [13].

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

22

Many techniques have been proposed to increase the convergence speed. Abid et al. [1] described

modified BP algorithm (MBP) based on sum of linear and nonlinear errors of output neurons to

improve the speed of convergence in minimum iterations. The algorithm converges faster than the

standard BP algorithm. Some researchers focused on selection of better energy function [2,14]

and selection of suitable learning rate and momentum [6,9,16,17]. Learning rate adaptation by

sign changes will adapt the step size by having a separate learning rate for each connection [12]

A problem with all of these techniques is their convergence to local minima. To solve this

problem, global search algorithm like genetic algorithm have to be applied [4]. But searching for

the global minimum may be trapped at local minima during gradient descent. Also if the network

is trained with disturbances in the input, then global minimum point can not be found. So fast

convergence and strong robustness may not be guaranteed. To solve these problems adaptive

learning algorithms have been developed recently.

Jeong and Lee [7] have proposed an adaptive algorithm based on first and second order

derivatives of neural activation at hidden layers which results in hybrid learning rules. Sha and

Bajic [13] have proposed an adaptive learning rate algorithm for I/O identification based on two

ANNs using convergence analysis of the conventional gradient descent method. Xie and Zhang

[15] have proposed variable learning rate LMS algorithm using Lyapunav method especially

when there is noise in the input signal. Behera et al. [3] have described new learning algorithms

LFI and LF II based on Lyapunov function for the training of feeforward neural networks. In this

algorithm fixed learning parameters are replaced with adaptive learning parameters using

convergence theorem based on Lyapunov stability theory.]. Zhihong Man et al [19] proposed

a new adaptive backpropagation algorithm based on lyapunov stability theory for neural

networks. They showed that the candidate of a lyapunov function of the tracking error

between the output of a neural network and the desired reference signal is chosen first, and

the weights of a neural network are then updated from the output layer to input layer.

Our previous work [8] describes a modified backpropagation algorithm in neighborhood based

network by replacing fixed learning parameters by adaptive learning parameters. Here the

parameters are calculated using convergence theorem based on Lyapunov stability theory.

Iranmanesh and Mahdavi [11] have proposed a learning method using differential adaptive

learning rate. In each iteration, the learning rate is updated according to the error of the output

layer. The learning rate of the output layer is computed by differentiating the error of the output

layer. The differentiation of the sigmoidal function of the sum of multiplication of error of each

output layer neuron with corresponding weights is divided by the number of hidden neurons is

used as an adaptive learning rate of hidden layer.

We propose a new adaptive learning rate algorithm to speed up the learning process of the neural

network. In the proposed algorithm separate adaptive learning rate is used in both hidden and

output layers. In this, linear and nonlinear errors for each neuron in the output layer are multiplied

with derivative of the corresponding neuron’s activation function, added and then differentiated

to get the adaptive learning rate for the output layer. Linear and nonlinear error of each hidden

neuron is multiplied with its corresponding output layer weights separately and then added. Then

the value is divided by number of hidden neurons. The differentiation of the sigmoidal function of

this value is used as a learning rate for the hidden layer. The efficiency of the proposed algorithm

in terms of time and epochs shown by simulating the benchmark problems such as XOR, 3-bit

parity, nonlinear function approximation problem and iris data sets.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

23

The remaining of the paper is organized as follows: section 2 describes adaptive learning rate

algorithm, section 3 describes the proposed algorithm and section 4 discusses the simulation

results.

2. Training of Neural network

Consider a single hidden layer feedforward neural network shown in Figure 1. A bias node is

included in the input layer. Let X = (xi) be the input vector, Y = (yj) be the output vector and wji
[s]

be the weight of the i
th

unit in the (s-1)
th

layer to the j
th

unit in the s
th

layer. The activation function

of both hidden and output layer neurons are assumed to be sigmoidal. Sequential mode training is

applied here.

Figure 1. Single hidden layer neural network
.

Standard BP (SBP)

For each input pattern nonlinear output of the j
th

 neuron of the output layer network is

calculated as follows:

 1

1

)1(

−

=

∑
−

= s

i

n

i

s

ji

s

j ywu
s

 (1)

 ()
s

ju

s

j d
e

uf
s
j

=
+

=
−

1

1
)((2)

where n(s-1) represents number of neurons in the (s-1)
th

layer.

 SBP minimizes the following criterion equals to the sum of the squares of the errors

between the actual
s

jy and the desired
s

jd outputs for a pattern p.

 ()∑
=

=
sn

j

s

jp eE
1

2

1 (3)

where the nonlinear error signal is

)(1

s

j

s

j

s

j dye −= (4)

X1

Xn

:

:

 X0

(Bias)

s-2 s-1 s

Y1

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

24

The weight update rule is

s

ji

ps

ji
w

E
w

∂

∂
−=∆ µ (5)

where µ is the fixed learning rate selected by trial and error. Substituting (3) in (5), the weight

update rule becomes,

s

ji

s

js

j

s

ji
w

y
ew

∂

∂
=∆ 1µ

s

ji

s

j

s

j

s

js

j

s

ji
w

u

u

y
ew

∂

∂

∂

∂
=∆ 1µ

 () 1

1 ' −=∆ s

i

s

j

s

j

s

ji yufew µ (6)

The estimated nonlinear error of the hidden layer (s-1) is as follows:

 () s

rj

s

r

n

r

s

r

s

j weufe
s

1

1

1

1 ∑
=

− ′= (7)

The weight update rule of the hidden layer is

)1(

)1(

−

−

∂

∂
−=∆

s

ji

ps

ji
w

E
w µ (8)

 ())2()1()1(

1

)1(' −−−− =∆ s

i

s

j

s

j

s

ji yufew µ (9)

Now the weights of both hidden and output layer are updated using

 jijiji wtwtw ∆+=−)()1((10)

Modified BP

For each input pattern the linear and nonlinear outputs of the j

th
 neuron in output layer s of the

network are calculated respectively as follows:

 1

1

)1(

−

=

∑
−

= s

i

n

i

s

ji

s

j ywu
s

 (11)

 ()
s

ju

s

j d
e

uf
s
j

=
+

=
−

1

1
)((12)

where n(s-1) represents number of neurons in the (s-1)
th

layer. The MBP approach minimizes

modified form of criterion Ep used in standard BP algorithm. The criteria Ep is sum of the linear

and nonlinear quadratic errors of the output neuron for the current pattern p.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

25

 () ()∑∑
==

+=
ss s

j

s

j

n

j

s

jp eeE
1

2

2

1

2

1
2

1

2

1
λ (13)

where the nonlinear error signal is

)(1

s

j

s

j

s

j dye −= (14)

and the linear error signal is

)(2

s

j

s

j

s

j ulye −= (15)

Here

 ()s

j

s

j yfly
1−= (16)

where
s

jy and
s

jd respectively are desired and current output for j
th

unit in the s
th
 layer. p in (13)

denotes the p
th
 pattern and λ is the weighting coefficient. In the output layer the linear and

nonlinear errors are known [1]. So the weight update rule [1] for the output layer is

s

ji

ps

ji
w

E
w

∂

∂
−=∆ µ (17)

where µ is the fixed learning rate selected by trial and error. Substituting (13) in (17), the weight

update rule becomes,

s

ji

s

js

js

ji

s

js

j

s

ji
w

u
e

w

y
ew

∂

∂
+

∂

∂
=∆ 21 µλµ

 1

21

−+
∂

∂

∂

∂
=∆ s

i

s

js

ji

s

j

s

j

s

js

j

s

ji ye
w

u

u

y
ew µλµ

 () 1

2

1

1 ' −− +=∆ s

i

s

j

s

i

s

j

s

j

s

ji yeyufew µλµ (18)

In the hidden layer, the linear and nonlinear errors are unknown and must be calculated [1]. The

estimated nonlinear and linear error [1] of the hidden layer (s-1) are respectively as follows:

 () s

rj

s

r

n

r

s

r

s

j weufe
s

1

1

1

1 ∑
=

− ′= (19)

 () s

rj

n

r

s

r

s

j

s

j weufe
s

∑
=

−− ′=
1

2

11

2 (20)

The weight update rule of the hidden layer is

)1(

)1(

−

−

∂

∂
−=∆

s

ji

ps

ji
w

E
w µ (21)

 ())2()1(

2

)2()1()1(

1

)1(' −−−−−− +=∆ s

i

s

j

s

i

s

j

s

j

s

ji yeyufew µλµ (22)

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

26

Now the weights of both hidden and output layer are updated using

 jijiji wtwtw ∆+=−)()1((23)

where t represents iteration. In order to increase the convergence speed and to make the learning

rate µ adaptive , we propose a new technique based on differential linear and nonlinear errors of

output layer and hidden layer.

Adaptive Modified BP

In the proposed technique first linear and nonlinear errors of j

th
neuron in the output layer s are

calculated using (14), (15) and (16). Then all the linear and nonlinear errors of the neurons are

multiplied with the derivative of the corresponding neuron’s activation function and added

separately as shown below:

)(
1

11

s

j

n

j

s

jo ufe
s

′=∑
=

δ (24)

)(
1

22

s

j

n

j

s

jo ufe
s

′=∑
=

δ (25)

Then 1oδ and 2oδ are added to get the total error

 21 ooo δδδ += (26)

Now the total error is divided by the total number of output neurons known as
aδ

s

a
a

n

δ
δ = (27)

and the outµ of the output layer s is computed as follows:

 ()a

out f δµ ′= (28)

where f is a sigmoidal activation function given by

 ()
()a

e
f

a

δ
δ

−+
=

1

1
 (29)

with property

 () () ()()aaa fff δδδ −=′ 1 (30)

Then the change of weights are calculated using

 () 1

2

1

1 ' −− +=∆ s

i

s

jout

s

i

s

j

s

jout

s

ji yeyufew λµµ (31)

Similarly for the hidden layer (s-1) the same procedure is applied to calculate adaptive learning

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

27

rate hidµ . First nonlinear errors
)1(

1

−s

je and linear errors
)1(

2

−s

je of all hidden neurons are calculated

using (19) and (20). Then nonlinear errors 1hδ and 2hδ respectively are

 s

ji

n

i

n

j

s

jh we
s s

∑∑
−

= =

−=
)1(

1 1

)1(

11δ (32)

 s

ji

n

i

n

j

s

jh we
s s

∑∑
−

= =

−=
)1(

1 1

)1(

22δ (33)

and then both 1hδ and 2hδ are added to get the total error hδ as below:

 21 hhh δδδ += (34)

Now the total error is divided by the total number of hidden neurons known as
bδ

)1(−

=
s

hb

n

δ
δ (35)

and then hidµ is computed as follows:

 ()b

hid f δµ ′= (36)

where f is a sigmoidal activation function. Then the change of weights are calculated using the

following equation.

())2()1(

2

)2()1()1(

1

1(' −−−−−− +=∆ s

i

s

jhid

s

i

s

j

s

jhid

s

ji yeyufew λµµ (37)

Now the weights of both hidden and output layer are updated using (23).

3. Algorithm

1. Define network structure and assign initial weights randomly.

2. Select a pattern to be processed in the network.

3. For each node in the hidden layer, compute

a. Net value using Eq (11).

b. Output value using Eq (12).

4. For the output layer, compute

a. Net value using Eq (11) and output value using Eq (12).

b. Non Linear and linear errors using Eq (14), Eq (15) and Eq (16).

c. Adaptive learning rate outµ using Eq (24) to Eq (30).

d. Change of weight using Eq (31).

5. For the hidden layer, compute

a. Non Linear error using Eq (19).

b. Linear error using Eq (20).

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

28

c. Adaptive learning rate hidµ using Eq (32) to Eq (36).

d. Change of weight using Eq (37)

6. Update weights of output and hidden layer using Eq (23).

7. Repeat the steps 2 to 6 for all the patterns.

8. Evaluate network error with new weights.

9. Stop training if termination condition is reached. Otherwise repeat the steps 3

to 9.

4. Simulation Results and discussions

The performance of the proposed algorithm is verified by simulating the benchmark problem

such as XOR, 3-Bit parity, Nonlinear function approximation function problem and Iris data set.

All the problems are simulated using language C on a Pentium IV with 2.40 GHz. The

convergence property of the proposed algorithm is compared with MBP [1], Backpropagation

with momentum (BPM) [9] and backpropagation algorithm [10]. Each time all the patterns in the

problem have been used once in the network during training is called an epoch. Mean squared

error (MSE) of the network is calculated by dividing the sum of squared linear error in each

epoch by twice the number of patterns. Network structure, parameter values and termination

condition are considered as constant for all the algorithms to have better comparison. Network

weights are randomly and uniformly generated from the range [-5, +5]. The weighting coefficient

λ is assigned the value 3.7. The convergence of the proposed algorithm is shown by the

learning curve.

XOR

The network structure considered in this problem has 3 input neurons including bias, 4 hidden

neurons and one output neuron. The termination condition fixed for convergence is MSE 0.001.

The results obtained are tabulated in Table 1.

Table 1: Comparison table for XOR problem

ALGORITHM PARAMETERS EPOCHS TRAINING TIME

 MSE IN

 MSECS

BP µ=1.15 754 0.000998 176

BPM µ=1.15 α=0.01 710 0.001 151

MBP µ=0.25 λ=0.01 501 0.001 115

Proposed λ=3.7 237 0.000987 49

It has been observed that the BP algorithm takes 176 msecs and 754 epochs to reach the

minimum error. The proposed algorithm converges faster even the learning rate is not fixed in the

beginning. Since the learning rate is adapted based on the error of output and hidden layers it

takes minimum time of 49 msecs and minimum epochs of 237 for convergence. The learning

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

29

curve obtained is shown in Figure 2 for the proposed algorithm. The adaptive learning rate

obtained based on the error of output layer and hidden layer are shown in Figure 3 and Figure 4.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200 250

Epochs

M
S
E

Figure 2. Learning curve based on MSE and Epochs of XOR problem for the proposed

algorithm

0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000

Iterations

M
u
o
u
t

Figure 3. Adaptive learning rate of hidden layer.

0.243

0.244

0.245

0.246

0.247

0.248

0.249

0.25

0.251

0 200 400 600 800 1000

Iterations

M
u
h
id

d
e
n

Figure 4. Adaptive learning rate of output layer.

3-bit parity

We used 4-9-1 ANN including one bias in input layer to simulate the 3-bit parity problem. The

results obtained are tabulated in Table 2.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

30

Table 2. Comparison table for the 3-bit parity problem

ALGORITHM PARAMETERS EPOCHS TRAINING TIME

 MSE IN

 MSECS

BP µ=1.15 1570 0.000999 379

BPM µ=1.15 α=0.01 1450 0.000998 364

MBP µ=0.25 λ=0.01 520 0.000995 126

Proposed λ=3.7 298 0.000997 77

From the table it has been observed that the proposed algorithm converges quickly within 77

msecs in 298 epochs. But the algorithm BP, BPM and MBP require 1570, 1450 and 520 epochs

for convergence respectively. Also they require 379 msecs, 364 msecs and 126 msecs time to

reach the termination condition MSE 0.001. All the algorithm except proposed algorithm take

time to fix the learning rate. The best performance of the proposed algorithm is shown in Figure

5.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 100 200 300 400

Epochs

M
S
E

Figure 5. Learning curve based on MSE and Epochs of 3-bit parity problem for the

proposed Algorithm

Nonlinear function approximation problem

A nonlinear function approximation with 8 input values xi is defined in this problem. The three

output quantities yi are defined by the following equations

() 4876543211 xxxxxxxxy +++=

() 8876543212 xxxxxxxxy +++++++=

() 21

13 1 yy −=

500 number of input values xi ε (0,1) are randomly generated and the corresponding yi are

calculated using the above equation. All the algorithms taken for comparison are assumed to have

the network structure with 9 neurons in the input layer including bias, 5 neurons in the hidden

layer and 3 neurons in the output layer. All the algorithms including proposed is fixed with the

minimum error of MSE 0.004. The results obtained are tabulated in Table 3. It shows that the

algorithms BP and BPM converge to MSE 0.004 in 590 epochs and 389 epochs within 612 msecs

and 487 msecs respectively. But MBP converges to the termination condition with the maximum

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

31

of 75 epochs within 89 msecs. The proposed algorithm converges quickly in 25 epochs within 51

msecs.

Table 3. Comparison table for the nonlinear function approximation problem.

ALGORITHM PARAMETERS EPOCHS TRAINING TESTING TIME

 MSE MSE IN

 MSECS

BP µ=1.15 590 0.003990 0.004285 612

BPM µ=1.15 α=0.01 389 0.003995 0.004125 487

MBP µ=0.25 λ=0.01 75 0.003574 0.003913 89

Proposed λ=3.7 25 0.003796 0.003835 51

The learning curve of the proposed algorithm is shown in Figure 6. Another set of 500 patterns

are generated for testing. The testing MSE obtained for the proposed is 0.003835 and for the

MBP is 0.003913.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 5 10 15 20 25

Epochs

M
S
E

Figure 6. Learning curve based on MSE and Epochs of Non linear function approximation

problem for the proposed algorithm

Iris data set

The Iris data [5], is one of the best known databases in the pattern recognition literature. The data

set contains three classes. Each class has 50 instances, totally 150 patterns are used. Among 75

patterns are used for training and the remaining for testing. All the values are normalized by

dividing the value by 10. The network structure considered is 5-10-1 including one bias in the

input layer. Table 4 shows the results obtained for all the algorithms taken for comparison.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

32

Table 4. Comparison table for the Iris data set problem.

ALGORITHM PARAMETERS EPOCHS TRAINING TESTING TIME

 MSE MSE IN

 MSECS

BP µ=1.15 491 0.0003 0.008172 193

BPM µ=1.15 α=0.01 414 0.0003 0.008155 165

MBP µ=0.25 λ=0.01 368 0.0003 0.006869 143

Proposed λ=3.7 95 0.00029 0.006654 33

The proposed algorithm and MBP take minimum epochs of 95 and 368 and minimum time of 33

msecs and 143 msecs respectively. But BP and BP with momentum require 491 and 414 epochs

and 193 msecs and 165 msecs respectively to reach the termination condition MSE 0.0003. Also

the testing MSE obtained for the proposed algorithm is minimum. The learning curve drawn

against epochs and MSE for the proposed algorithm is shown in Figure 7.

0

0.0005

0.001

0.0015

0.002

0.0025

0 50 100 150

Epochs

M
S
E

Figure 7. Learning curve based on MSE and epochs of Iris data set problem for the

proposed algorithm.

4. Conclusion

An efficient technique for adapting the learning rate in modified backpropagation algorithm for

training sequential FNN is proposed. Here, the learning rate is adapted based on the differential

linear and nonlinear errors of output and hidden layers. Separate adaptive learning rate is used for

both hidden and output layer in each iteration. The time required to fix the learning rate by trial

and error is saved. The proposed algorithm improves the convergence speed in terms of time and

epochs which is shown by simulating four different problems. The main advantage of the

proposed algorithm is no need to put effort to tune the learning parameter to obtain optimal

convergence. The proposed algorithm is easy to implement and easy to compute learning rate for

both hidden and output layer which modifies the values of weights and increases the convergence

speed. The learning curve show that the convergence is guaranteed.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

33

References

 [1] Abid S, Fnaiech F, Najim M, (2001), “A fast feedforward training algorithm using a modified form of

the standard backpropagation algorithm,” IEEE Trans. Neural Networks 12 424-430.

 [2] Ahmad M, Salam F.M, (1992) “Supervised learning using cauchy energy function,” Proc. 2nd Int.

Conf. Fuzzy logic neural networks, lizuka, Japan, 721-724.

 [3] Behera L, Kumar S, Patnaik A, (2006) “On adaptive learning rate that guarantees convergence in

feedforward networks,” IEEE Trans. Neural Networks 17 1116-1125.

 [4] Bengio S, Bengio Y, Cloutier J, (1994) “Use of genetic programming for the search of a new learning

rule for neural networks,” Proc.IEEE World Congr. Computational Intelligence and Evolutionary,

324-327

 [5] Fisher R.A, (1936) “The use of multiple measurements in taxonomic problems,” Annual Eugenics 7

179-188.

 [6] Jacobs R.A, (1988) “Increased rates of convergence through learning rate adaptation,” Neural

networks 1 295-307..

 [7] Jeong S.Y, Lee S.Y, (2000) “Adaptive learning algorithms to incorporate additiona functional

constraints into neural networks,” Neurocomputing 35 73-90.

 [8] Kathirvalavakumar T, Subavathi S.J, (2009) “Neighborhood based modified backpropagation

algorithm using adaptive learning parameters for training feedforward neural networks,”

Neurocomputing 72 3915-3921.

 [9] Rojas R, (1996) “Neural networks : a systematic introduction,”. Berlin. Springer verlag; 424-430.

[10] Rumelhart DE, Hinton GE, Williams RJ, 1 (1986) “Learning internal representations by error

propagations,” Parallel distributed processing: explorations in the microstructures of cognition,

Cambridge(MA): MIT Press; 62-318.

[11] Saeid Iranmanesh, Amin Mahadevi M, (2009) “Differential adaptive learning rate method for back

propagation neural networks,” World Academy of Science, Engineering and Technology 50 285-288.

[12] Sarkar D, (1995) “Methods to speed up error back propagation learning algorithm,” ACM Comput.

Surv., 27 519-544

[13] Sha D, Bajic V.B, (1999) “Adaptive on-line ANN learning algorithm and application to identification

of non-linear systems,” Informatica 23 521-529

[14] Van Ooyen A, Nienhuis B, (1992) “Improving the convergence of the backpropagation algorithm,

Neural networks,” 5 465-471

[15] Xie S, Zhang C, (2006) “Variable learning rate LMS based linear adaptive inverse control,” Journal

of information and computing science 1 139-148

[16] Yu C.C, Liu B.D, (2002) “A backpropagation algorithm with adaptive learning rate and momentum

coefficient,” Proc.Int.Joint Conf. Neural networks(IJCNN'02), 2 1218-1223

[17] Yu X.H, Chen G.A, Cheng S.X, (1993) “Acceleration of backpropagation of learning using optimzed

learning rate and momentum,” Electron.Lett, 29(14) 1288-1289.

[18] Yahya H. Zweiri, (2006) “ Optimization of a three term backpropagation algorithm used for neural

network learning “, International journal of Computational Intelligence 3 322 – 327.

[19] Zhihong Man, Hong Ren Wu, Sophie Liu, Xinghuo Yu, (2006), “ A new adaptive backpropagation

algorithm based on Lyapunov stability thory for neural networks”, IEEE Transactions on Neural

Networks 17 1580-1591.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

34

Authors

T.Kathirvalavakumar received M.Sc. degree in Mathematics from Madurai Kamaraj

University in 1986, Post Graduate Diplomo in Computer Applications from

Bharathidasan University in 1987, M.Phil. degree in Computer Science from Bharathiar

University in 1994 and the Ph.D. degree in Computer Science from University of

Madras in 2004. Since 1987 he has been working as a Lecturer, currently Associate

Professor in Computer Science at V.H.N.Senthikumara Nadar College, Virudhunagar,

Tamilnadu, India. His research interests include Neural Networks and Applications, Pattern recognition and

Data Mining.

S.Jeyaseeli Subavathi received the MCA degree from Madurai Kamaraj University, in

1998 and M.Phil degree in Computer Science, from Mother Teresa Women's University

in 2004. From January 2000 to April 2007 she worked as Lecturer in Computer

Applications at SFR College, India. Since July 2007 she has been working as a Lecturer

in Information Technology, Sri Kaliswari College, Sivakasi, Tamilnadu, India. At

present she is a doctoral candidate in the Department of Computer Science at Madurai

Kamaraj University, India. Her area of interests include Neural Networks and Data structures and

algorithms.

