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ABSTRACT:  
Software metrics are increasingly playing a central role in the planning and control of software 

development projects. Coupling measures have important applications in software development and 

maintenance. Existing literature on software metrics is mainly focused on centralized systems, while work 

in the area of distributed systems, particularly in service-oriented systems, is scarce.  Distributed systems 

with service oriented components are even more heterogeneous networking and execution environment. 

Traditional coupling measures take into account only “static” couplings. They do not account for 

“dynamic” couplings due to polymorphism and may significantly underestimate the complexity of software 

and misjudge the need for code inspection, testing and debugging.  This is expected to result in poor 

predictive accuracy of the quality models in distributed Object Oriented systems that utilize static coupling 

measurements. In order to overcome these issues, we propose a hybrid model in Distributed Object 

Oriented Software for measure the coupling dynamically. In the proposed method, there are three steps 

such as Instrumentation process, Post processing and Coupling measurement. Initially the instrumentation 

process is done. In this process the instrumented JVM that has been modified to trace method calls. During 

this process, three trace files are created namely .prf, .clp, .svp. In the second step, the information in these 

file are merged. At the end of this step, the merged detailed trace of each JVM contains pointers to the 

merged trace files of the other JVM such that the path of every remote call from the client to the server can 

be uniquely identified. Finally, the coupling metrics are measured dynamically. The implementation results 

show that the proposed system will effectively measure the coupling metrics dynamically.  

 

Keywords: 
Distributed Object Oriented (DOO) Systems, Software Engineering, Dynamic coupling, Static coupling, 

Instrumentation, Trace events. 

 

 

1. INTRODUCTION 
 
Software engineering is an engineering discipline that is concerned with all aspects of software 

production. Software products consist of developed programs and associated documentation. 
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Essential product attributes are maintainability, dependability, efficiency and usability.  The 

software process consists of activities that are involved in developing software products. Basic 

activities are software specification, development, validation and evolution. Methods are 

organized ways of producing software. They include suggestions for the process to be followed, 

the notations to be used, rules governing the system descriptions which are produced and design 

guidelines. Object-oriented technology is built upon a sound engineering foundation, whose 

elements are collectively called the object model [1]. This model encompasses many useful 

software construction features such as abstraction, encapsulation, modularity, inheritance, typing, 

genericity and dynamic binding. Therefore, object model is useful for understanding problems, 

communicating with application experts and modelling complex enterprises into a software 

design [2]. This technology also helps to promote software reusability, maintainability, reliability 

and performance [3].The popularity of the internet coupled with advances in local area network 

and high speed network technologies have introduced many new distributed applications. 

Examples include software in the area of computer supported collaborative work, airline and 

hotel reservation systems, and banking systems - to name just a few. Object-oriented techniques 

are often used to cope with the complexity of developing these software systems which have 

come to be known as distributed object-oriented software systems (DOOSS) [4].  

 

Distributed systems have also become increasingly common as more and more organizations use 

networks to share resources, enhance communication and increase performance. Examples of 

these systems range from the Internet, to workstations in a local area network within a building, 

to processors within a single multiprocessor [5]. In a distributed object-oriented application, 

classes can run on a separate computer within a network system. So, they should be distributed 

efficiently among different nodes. [6]. A distributed OO application consists mainly of a set of 

interacting objects; each one runs on a separate computer within a network system. There have 

been a large number of projects related to the use of object-oriented approaches for the design of 

problem solving environments for complex applications in various scientific fields [7]. The object 

model and distributed technologies are being amalgamated [8]. The advantage is obvious: the 

complexity and dependencies of the entities can make use of the object model in a distributed 

system to break down the intensive design process into efficient constructs. Many of the concepts 

of object-oriented programming are currently finding widespread application in loosely coupled 

distributed systems.  

 

Coupling measures have important applications in software development and maintenance. They 

are used to help developers, testers and maintainer’s reason about software complexity and 

software quality attributes. The current research on modelling and measuring the relationships 

among software components through coupling analysis is insufficient. Coupling measures are 

incomplete in their precision of definition and quantitative computation. In particular, current 

coupling measures do not reflect the differences in and the connections between design level 

relationships and implementation level connections. Hence, the way coupling is used to solve 

problems is not satisfactory. Traditional coupling measures take into account only”static” 

couplings. They do not account for “dynamic” couplings due to polymorphism and may 

significantly underestimate the complexity of software and misjudge the need for code inspection, 

testing and debugging. Due to inheritance, the class of the object sending or receiving a message 

may be different from the class implementing the corresponding method.  

 

As the use of object-oriented design and programming matures in industry, we observe that 

inheritance and polymorphism are used more frequently to improve internal reuse in a system and 

facilitate maintenance. Though no formal survey exists on this matter, this is visible when 
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analyzing the increasing number of open source projects, application frameworks, and libraries. 

The problem is that the static, coupling measures that represent the core indicators of most 

reported quality models lose precision as more intensive use of inheritance and dynamic binding 

occurs. This is expected to result in poorer predictive accuracy of the quality models that utilize 

static coupling measurement. Static analysis cannot capture all the dimensions of object-level 

coupling, as features of object-oriented programming such as polymorphism, dynamic binding 

and inheritance in evaluating the run-time behaviour of an application [9]. As per the previous 

research and experiments, dynamic coupling is more precise than static coupling for systems with 

unused code [10]. 

 

In the proposed system, we are going to calculate the coupling measures dynamically in a 

Distributed Object Oriented (DOO) system. Dynamic coupling in DOO system means, 

calculating the coupling dynamically on both clients and server.  The rest of the paper is 

organized as follows: Section 2 deals with some of the recent research works related to the 

proposed technique. Section 3 explains the Distributed Object Oriented Systems. Section 4 

describes the proposed technique for coupling measurement with all necessary mathematical 

formulations and figures. Section 5 discusses about the experimentation and evaluation results 

with necessary tables and graphs and section 6 concludes the paper. 

 

2. DYNAMIC COUPLING MEASUREMENT 
 

2.1 Definitions 

 
Before defining dynamic coupling measures, we introduce below the formal framework that will 

allow us to provide precise and unambiguous definitions. Not only do such definitions ensure that 

the reader understands the measures precisely, but they are also easily amenable to the analysis of 

their properties and facilitate the development of a dynamic analyzer by providing precise 

specifications. We provide a set of generic definitions that are based on the data model in Fig. 1, 

which models the type of information to be collected. Each class and association in the class 

diagram corresponds to a set and a mathematical relation, respectively. The inheritance 

relationship corresponds to a set partition. Based on this, we define the measures using set theory 

and first order logic. 

 

A few details of the class diagram in Fig. 1 need to be discussed. Most role names are not shown, 

to avoid unnecessary cluttering of the class diagram. When no role name is provided, the meaning 

of associations is quite clear from the source and target classes. For example, methods are defined 

in a class, method invocations consist of a caller method in a source class and a callee method in a 

target class. Some of the key attributes are shown. One notable detail is that the line number 

where the target method is invoked is an attribute of a message that serves to uniquely identify it, 

as specified by the OCL constraint shown in the class diagram. This is necessary because the 

same target method may be invoked in different statements and control flow paths in the same 

source method. Messages bearing those different invocations are considered distinct because they 

are considered to provide different contexts of invocation for the method. 

 

Furthermore, associations with role names caller, source, and sender should show an {exclusive 

or} constraint dependency to associations with role names callee, target, and receiver, 

respectively. These constraints are not shown to avoid   cluttering the diagram but are important 

as, in our context, distinct methods, classes, and objects must be involved in the links 
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corresponding to those associations. In other words, in the context of our coupling measurement, 

method invocations are linked to two distinct class instances and two distinct method instances 

and messages involve two distinct objects. As expected, method invocations between classes are 

differentiated from messages between objects. A method name and signature uniquely identifies a 

method in the context of a specific class and a method invocation must be clearly linked to a 

method. This is why MethInvocation has associations with both Class and Method.  

 

2.1.1 Sets 

 
The first step is to define the basic sets on which to build our definitions. These sets are derived 

from the data model in Fig.1. 

 

C: Set of classes in the system. C can be partitioned into the subsets of application classes (AC), 

library classes (LC), and framework classes (FC). Some of these subsets may be empty, C= AC ∪ 

LC ∪ FC and AC ∩ LC ∩ FC = ϕ ;. Distinguishing such subsets may be important for defining 

the scope of measurement, as discussed above. 

 

O: Set of objects instantiated by the system while executing all scenarios of all use cases 

(including exceptional use cases, e.g., treating error conditions, which are usually modeled as use 

cases extending base use cases). 

 

M: Set of methods in the system (as identified by their signature). . Lines of code are defined on 

the set of natural numbers (N). 

 

 
Fig.1. Class diagram capturing a data model of the dynamic analysis information. 
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2.1.2 Relations 
 

We now introduce mathematical relations on the sets that are fundamental to the definitions of 

our measures 

 

D and A are relations onto C(⊆ C x C). D is the set of descendent classes of a class and A is the 

set of ancestors of a class. 

 

ME is the set of possible messages in the system:  ME ⊆ O x M x N x O x M. Indicated by the 

domain of ME, a message is described by a source object and method sending the message, a line 

of code (N), and a target object and method. Note that the sending of a message may not only 

correspond to a method invocation, but also to the sending of a signal. The message is then 

asynchronous and on receipt of the signal, the target object triggers the execution of the target 

method. In Java, an active object (with its own thread of control) would typically have a run() 

method reading from a queue of signal objects and invoke the appropriate method after reading 

the next signal in the queue. 

 

IV is the set of possible method invocations in the system: IV ⊆ M x C x M x C. An invocation is 

characterized by the invoking class and method and the class and method being invoked. Other 

binary relations will be used in the text and their semantics can be easily derived from their 

domain and are denoted RDomain. For example, RMC ⊆ M x C refers to methods being defined in 

classes, a binary relation from the set of methods to 

the set of classes. 

 

2.1.3 Consistency Rule 
 

The relations IV and ME play a fundamental role in all our measures. In practice, an analysis of 

sequence diagrams or a dynamic analysis of the code allows us to construct ME. From that 

information, IV must be derived, but this is not trivial as polymorphism and dynamic binding 

tend to complicate the mapping. The consistency rule below specifies the dependencies between 

the two relations and can be used to develop algorithms that derive IV from ME. 

 

(∃(o1c1),(o2c2) ∈ Roc) (∃1∈N) (o1m1|o2m2) ∈ ME ⇒ (∃c3∈A (c1) ∪ {c1}, c4∈ A(c2) ∪ 

{c2}) 

((m1c3) ∈ RMC ∧ ((∀c5∈A (c1) –{c3})(m1c5) ∈ RMC ⇒ c5∈ A(c3))) ∧  

((m2c4) ∈ RMC ) ∧ ((∀c6 ∈ A (c2) – {c4}) (m2c6) ∈ RMC ⇒ c6 ∈ A (c4))) ∧ (m1c3, m2c4) ∈ IV.  

 

2.1.4 Working Example 
 

We now use a small working example, as shown in Fig. 2, to illustrate the definitions above. 

Though it is assumed that our measures are collected through static and dynamic analysis of code, 

we use UML to describe a fictitious example, because it is more legible than pseudo code. This 

example is designed to illustrate the subtleties arising from polymorphism and dynamic binding. 

Other aspects, such as method signatures, have been intentionally kept simple to focus on 

polymorphism and dynamic binding. 
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Fig.2. Working class diagram example (UML notation). 

 

The following sets can be derived from Fig. 2: 

 

C = {c1, c2, c3, c4, c5} 

M = {m1, m2, m3} 

RMC = {(m1, c1), (m2, c2), (m3, c3)}: 

 

In order to derive other relevant sets and relations, let us introduce the sequence diagrams in Fig. 

3, where each message is numbered. As our fictitious example is represented with UML 

diagrams, objects are referred to by using the sequence diagram number where they appear and 

their own identification number (i.e., SDi:objectid). Similarly, we denote the line of code of the 

method invocation in message tuples as l (SDi:messageid). In the example, we assume that the 

line of code of the method invocations m3ðÞ in messages SD1:1:1, SD1:1:2, and SD1:1:3 are 

different. Furthermore, since the sequence diagrams do not specify the sender object, source class 

and source method of the method invocations m1ðÞ in messages SD1:1 and SD2:1, the example 

sets derived below account for only the four (completely specified) messages SD1:1:1, SD1:1:2, 

SD1:1:3, and SD2:1:1: 

 

O = {SD1 : 1; SD1 : 2; SD1 : 3; SD2 : 1; SD2 : 2} 

ROC = {(SD1 : 1; c1) ; (SD1 : 2; c4) ; (SD1 : 3; c5) ; (SD2 : 1; c1) ; (SD2 : 2; c2)} 

ME = {(SD1 : 1; m1; l(SD1 : 1:1) ; SD1 : 2; m3); (SD1 : 1; m1; l(SD1 : 1:2) ; SD1 : 3; m3);               

(SD1 : 1; m1; l(SD1 : 1:3); SD1 : 3; m3); (SD2 : 1; m1; l(SD2 : 1:1); SD2 : 2; m2)} 

IV = {(m1; c1; m3; c3) ; (m1; c1; m2; c2)}: 

 

2.1.5 Definitions of Measures 
 

The measures are all defined as cardinalities of specific sets. They are therefore defined on an 

absolute scale and are amenable, as far as measurement theory is concerned, to the type of 

regression analysis performed in Section 4. Those sets are defined below and are given self-

explanatory names, following the notation summarized in Table 2. First, as mentioned above, we 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011 

17 

differentiate the cases where the entity of measurement is the object or the class. Second, as in 

previous static coupling frameworks [11], we differentiate import from export coupling, that is 

the direction of coupling for a class or object. For example, we differentiate whether a method 

executed on an object calls (imports) or is called by (exports) another object’s method. 

Furthermore, orthogonal to the entity of measurement and direction of coupling considered, there 

are at least three different ways in which the strength of coupling can be measured. First, we 

provide definitions for import and export coupling when the entity of measurement is the object 

and the granularity level is the class. Phrases outside and between parentheses capture the 

situations for import and export coupling, respectively. 

 

Dynamic messages. Within a runtime session, it is possible to count the total number of distinct 

messages sent from (received by) one object to (from) other objects, within the scope considered. 

That information is then aggregated for all the objects of each class. Two messages are 

considered to be the same if  their source and target classes, the method invoked in the target 

class, and the statement from which it is invoked in the source class are the same. The latter 

condition reflects the fact that a different context of invocation is considered to imply a different 

message. In a UML sequence diagram, this would be represented as distinct messages with 

identical method invocations but different guard conditions 

 

 

Fig. 3. Two hypothetical sequence diagrams related to Fig. 2. 
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TABLE 1 : Summary of Dynamic Coupling Measures 

. 

Distinct method invocations. A simpler alternative is to count the number of distinct methods 

invoked by each method in each object (that invokes methods in each object). Note that this is 

different from simply counting method invocations as we count each distinct method only once. 

That information is then aggregated for all the objects of each class. 

 

Distinct classes. It is also possible to count only the number of distinct server (client) classes that 

a method in a given object uses (is used by). That information is then aggregated for all the 

objects of each class.  

 

If we now look at where the calling and called methods are defined and implemented, the entity 

of measurement is the class and we can provide similar definitions. We then count the number of 

distinct messages originating from (triggering the executions of) methods in the class, the number 

of distinct methods invoked by (that invoke) the class methods, and the number of distinct classes 

from which the class is using methods (that uses its methods). 

 

Table 1 show the formal set definitions of the measures when the granularity is the class, and the 

scope is the system. We provide an intuitive textual explanation only for the first set: IC_OM(c). 

Other sets can be interpreted in a similar manner. 
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IC_OM(c): A set containing all tuples (source method, source class, target method, target class) 

such that there exists an object o instantiating c (whose coupling is being measured) that sends a 

message to at least one instance of the target class in order to trigger the execution of the target 

method. The corresponding metric is simply the cardinality of this set. Note that the source class 

must be different from the target class (c1≠ c2), because we are focusing on dependencies that 

contribute to coupling between classes, not their cohesion (as further discussed in [11], 

[12].Reflexive method invocations are therefore excluded. 

 

 

TABLE 2: Example Coupling Sets When the Entity of Measurement is the Class 

 

 

TABLE 3: Example Coupling Sets When the Entity of Measurement is the Object 

 

 

TABLE 4: Changed Import Coupling Sets after Adding a New Implementation of m3() in c5 

 

2.1.6 Higher Granularities 

 

If we want to measure dynamic coupling at higher levels of granularity, this can be easily defined 

by performing the union of the coupling sets of a set of classes or objects, depending on the entity 

of measurement. For example, if  the entity of measurement is the class and the level of 

granularity is the subsystem, then for each subsystem SS there corresponds a subset of classes 

that it contains, SC ∈ 2
C
, and we can define: 
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IC_CM (SS) = ∪(all o ∈ SC) IC_CM(c): 

 

Similarly, when the entity of measurement is the object: For each use case UC there corresponds 

a set of participating objects SO ∈ 2
O
 (that are involved in the UC’s sequence diagram(s)), and 

we can define: 

IC_CM (UC) = ∪(all o ∈ SO) IC_CM (o): 

 

Similar definitions can be provided for all levels of granularity. 

 

2.1.7 Example 
 

Returning to our working example in Figs. 2 and 3, we provide below all the nonempty coupling 

sets. When the entity of measurement as well as the granularity is the class, we obtain the import 

and export coupling sets illustrated in Table 2. When the entity of measurement is the object, and 

the granularity is the class, we obtain the coupling sets in Table 4. The export coupling sets for c1 

as well as the import coupling sets for c2, c3, c4, and c5 are empty. 

  

To gain a better insight into the impact of polymorphism on coupling, let us change the class 

diagram in Fig. 2 by adding a new implementation of method m3() in c5: RMC = {(m1; c1); (m3; 

c3); (m3; c5); (m2; c2)}, while keeping the sequence diagrams in Fig.3 unchanged. This results in 

a new element in IV : 

 

IV = {(m1; c1; m3; c3); (m1; c1;m3; c5); (m1; c1; m2; c2)}: 

 

The other sets (C, M, O, ROC, and ME) remain unchanged. When the entity of measurement is the 

class, the new method implementation results in significantly changed import coupling sets for 

class c1 (see Table 4, where removed elements are struck through, whereas new elements are 

bolded). Adding a new implementation of an existing method in a subclass has resulted in 

increased import coupling for class c1. This is because class c1 now imports from one additional 

class (c5), one additional method (m3() in c5), and one additional distinct method invocation. 

However, object import coupling (IC_ Ox(c)) remains unchanged, as at the object level, instances 

of c1 were already importing from c5. 

 

In a similar way, the export coupling of class c3 has decreased and the export coupling of class c5 

has increased (see Table 5). 

 

 

TABLE 5: Changed Export Coupling Sets after Adding a New Implementation of m3() in c5 
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2.2 Analysis of Properties 
 

We show here that the five coupling properties presented in [9] are valid for our dynamic 

coupling measures. The motivation is to perform an initial theoretical validation by demonstrating 

that our measures have intuitive properties that can be justified. We use IC_OM and IC_CM at 

the lowest granularity level (object, class) and system level as examples, but the demonstrations 

below can be performed in a similar way for all coupling measures, at all levels of granularity. 

 

Non Negativity. It is not possible for the dynamic coupling measures to be negative because they 

measure the cardinality of sets, e.g., IC_OM returns a set of tuples (m, c, m’, c’) ∈ M X C X M X 

C. 

 

Null values. At the system level, if S is the set that includes all the objects that participate in all 

the use cases of  the system, IC_OM(S) is empty (and coupling equal to 0) if and only if the set of 

messages in S is empty: 

ME = 0 ⇔ IC_OM (S) = 0: 

 

This is consistent with our intuition as this should be the only case where we get a null coupling 

value. Since ME = 0 ⇔  IV = 0 (consistency rule), we also have: 

 

ME = 0 ⇔ IC_CM(S) = 0  

 

At the object level, for IC_OM (o), we have: 

 

(∀o ∈ O, m ∈ M, l ∈ N, o’ ∈ O, m’ ∈ M) 

(o, m, l, o’, m’) ∉ ME ⇔ IC_OM (o) = 0. 

 

Again, this is intuitive, as we should only obtain a null value if and only if object o does not 

participate in any message as sender or receiver. Similarly, at the class level, we obtain: 

 

(∀o ∈ O, c ∈ C, (o, c) ∈ Roc) IC_OM (o) = 0 

⇔IC_CM(c) = 0 (consistency rule): 

 

Monotonicity. If a class c is modified such that at least one instance o sends/receives more 

messages, its import/ export coupling can only increase or stay the same, for any of the coupling 

measures defined above. 

 

If object o ∈ O sends an additional message (o, m, l, o’, m’) ∈ME, this cannot reduce the number 

of pairs (method, class)  ∈RMC that are part of the sets IC_OM(o) or IC_OM(S). The same can be 

said for export coupling if object o ∈ O receives an additional message. 
 

Adding a message to ME may or may not lead to a new method invocation in IV. But, even if this 

is the case, the sets IC_CM(c) and IC_CM(S) cannot possibly lose any elements. 
 

Similar arguments can be provided for all coupling measures, at all levels of granularity. To 

conclude, by adding messages and method invocations in a system, object and class coupling 

measures cannot decrease, respectively, thus complying with the monotonicity property. 
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Impact of merging classes. Assuming c0 is the result of merging c1 and c2, thus transforming 

system S into S0, for any Coupling measure, we want the following properties to hold at the class 

and system levels: 

Coupling (c1) + Coupling (c2) ≥ Coupling (c0) 

Coupling (S) ≥ Coupling (S’): 

 

Taking IC_ CD as an example, we can easily show this property holds: All instances of c1 and c2 

in IV ’s tuples are substituted with c’. If there exist tuples of the type (m1; c1; m2; c2) in IV, then 

they are transformed into tuples of the form (m1; c’; m2; c’). For IC_Cx measures, since we 

exclude reflexive method invocations because they do not contribute to coupling then tuples of 

the form (m1; c’; m2; c’) disappear because of the merging. Hence: 

 

|IC_CD (c’)| ≤ |IC_CD (c1)| + |IC_CD (c2)| 

 

Similar arguments can be made for all other coupling measures.  

 

3. COLLECTING DYNAMIC COUPLING DATA AT DISTRIBUTED 

ENVIRONMENT: 
 

Here we propose a hybrid model in Distributed object oriented Software for coupling 

measurements dynamically. In the proposed method, there are three steps such as Instrumentation 

process, Post processing and Coupling measurement. Initially the instrumentation process is done. 

In this process the instrumented JVM that has been modified to trace method calls. During this 

process, three trace files are created namely .prf, .clp, .svp. In the second step, the information in 

these file are merged. At the end of this step, the merged detailed trace of each JVMs contains 

pointers to the merged trace files of the other JVMs such that the path of every remote call from 

the client to the server can be uniquely identified. Finally, the coupling metrics are measured 

dynamically. The brief explanation of the proposed method is described as follows  

 

3.1 Introspection Process 
 

There are several different techniques for collecting run-time execution information, including 

techniques such as sampling and direct instrumentation. Sampling requires the running 

application to be stopped periodically to obtain information on methods that are currently being 

executed. The accuracy of the information obtained through sampling is determined by the 

sampling frequency. A higher sampling frequency can provide more detailed information, but this 

greater detail comes at the expense of greater perturbation of the executing program. Direct 

instrumentation, on the other hand, adds code to the JVM to directly measure method execution 

times. This approach provides more precise information than sampling, since no execution steps 

are missed. However, the additional instrumentation code may produce greater perturbations than 

sampling. When humans introspect, they look inside themselves. When our programs introspect, 

they also look inside themselves, but in a different way.  

 

In object-oriented languages, introspection is the idea that program code can get information on 

itself. In object-oriented languages, introspection permits programs to get and use information on 

classes and objects at run-time. Using introspection, one can ask an object for its class, ask a class 

for its methods and constructors find out the details of those methods and constructors, and tell 

those methods to execute. Introspection is otherwise known as instrumentation process. The java 
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class files are executed by instrumented JVM to generate the execution events. Introspection 

allows the main application to examine each of its plug-ins for the methods it supports and then 

call them when appropriate. Without introspection, it could not determine the names and 

parameter types of those methods. To minimize perturbation, the JVM was modified only to the 

extent necessary to generate enough trace information to visualize the execution call graph. 

Introspection procedure is:- 

 

1. First we have to compile the source code. 

2. Then use Reflection to retrieve data members and methods. 

Finally maintain a Vector to store the retrieved information. 

 

3.2 Trace Events 

 
The trace generation module of the JVM is modified to record every invocation of a method using 

time stamps that show the start and end times of the method with microsecond resolution. As a 

Java program is executed by the instrumented JVM, three trace files are generated, i.e., .prf, .clp 

and .svp files.  

 

.prf file 
 

The .prf file contains detailed trace information that records call and return time stamps for every 

method executed. Invocations of the same method executed under different threads are 

distinguished from one another by their unique thread identifiers. The other two files record the 

client/server interaction, if any, that occurs on the JVM as the program is being executed. 

 

.clp file 
 

The .clp file contains information about all of the outgoing RMI calls from the running JVM, i.e., 

identifying information for remote methods invoked by this JVM.  

 

.svp file 
 

The .svp file records information about all incoming RMI calls, i.e., all of the methods remotely 

invoked on this JVM by other JVMs. The .clp file is referred to as the client profile of remote 

methods for which the JVM acts as a client, and the .svp file is referred to as the server profile of 

remote methods for which the JVM acts as a server. Note that a server JVM may also execute 

client- type functions and a client JVM may also act as a server to other JVMs.  

 

The trace generation module of the JVM is modified to record every invocation of a method using 

time stamps that show the start and end times of the method with microsecond resolution. 

Additionally, a thread identifier is recorded to uniquely identify the thread executing the method. 

The profiling function creates a new trace record in a buffer for each method entry or exit event. 

For faster processing, the trace information is stored in main memory and written to external files 

only when the buffer overflows. Since disk operations are time consuming, it is important to 

minimize the number of rights to the external file. Since the number of methods called within a 

program can be quite large, and since each instance of a method generates a trace entry, the 

amount of trace data generated for a large application would be enormous. Filtering options are 

provided with the instrumented JVM to reduce the amount of trace data collected. The second 
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filtering option specifies a list of classes to be traced. For this option, the class hierarchy of the 

object on which the current method is invoked is checked to see whether it belongs to any of the 

classes specified. If so, the method is traced. Otherwise, the method invocation is simply ignored. 

 

Client/server traces generation. The Java remote method invocation (RMI) facility allows one 

JVM to execute a method on another JVM, which may be executing on a physically distributed 

processor. To match corresponding entries in the server and client profiles, the modified JVM 

also records the machine (JVM) names. On the client side, the server machine name on which the 

call was invoked is recorded. On the server side, the client machine name from which the call 

originated is also recorded. The client-side port number of the TCP/IP connection used for the 

remote call is recorded in both the server and the client profiles. The port number is needed to 

distinguish between remote calls made to the same server from different client JVMs residing on 

the same physical machine. The identifier of the thread that invoked the remote call is recorded 

on the client side in order to map the detailed trace entry of the remote method invocation to the 

corresponding client profile entry. Similarly, the identifier of the thread where the remote call is 

received is recorded on the server side. Finally, the time stamps the time at which the remote call 

was invoked on the client and the time at which the call was received on the server are also 

recorded. 

 

3.3 Post processing 
 

The post processing step takes the detailed .prf profile of each JVM, along with the .clp and the 

.svp files, as input. The merge and tree generation sub steps process these input files to produce a 

dynamic execution tree for the desired client or server. The details of these steps are described in 

the following subsections.  

 

3.4 Merge Step 
 

The main part of the merge process is to link client calls recorded in the client profile of a client 

JVM to the appropriate entry in the server profile of the remote server JVM where the method 

was actually executed. To see how the corresponding client- and server-side entries are matched, 

consider a simple scenario where there is one client JVM interacting with one server JVM. In a 

single-threaded application, multiple calls made from the client to the same remote object and 

method on the server can easily be matched using remote object and remote method identifiers 

recorded in the client- and server-profile entries. The entries with the same remote object and 

remote method identifiers on both sides can be aligned in chronological order and the entries 

matched in that order. Since the JVM is multithreaded, however, there could be a second call 

made to the server from the client through another thread before the first call even begins, if Java 

threads are mapped to different native threads in the JVM implementation. Thus, the second call 

may arrive at the server before the first one. The remote object and remote method identifiers are 

not sufficient to unambiguously link the appropriate calls in this case. Consequently, the port 

number of the TCP/IP connection is used to resolve this ambiguity. 
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Fig.1: Dynamic Coupling Measurement 

4 CASE STUDY 
 

This section presents the results of a case study whose objectives are to provide a first empirical 

validation of the dynamic coupling measures presented above. The first subsection explains in 

more detail our objectives, the study settings, and the methodology we follow. In subsequent 

sections quantitative results are presented and interpreted. 

 

4.1 Objectives and Methodology 
 

We selected an open-source software system called Velocity to evaluate the dynamic coupling 

measures. Velocity is part of the Apache Jakarta Project [13]. Velocity can be used to generate 

web pages, SQL, PostScript, and other outputs from template documents. It can be used either as 

a standalone utility or as an integrated component of other systems. A total of 17 consecutive 

versions (versions 1.0b1 to version 1.3.1) of Velocity were available for analysis. The versions 

were released within a time span of approximately two years. The versions used in the actual 

analysis were four subsequent sub releases (called “release candidates” in Velocity) within one 

major release of the Velocity system (version 1.2). The first sub release, 1.2rc1, consists of 

17,210 source lines of code (SLOC) in 136 core application classes in addition to 408 library 

classes. There were 65 inheritance relationships and 149 instances of method overriding in the 

first release candidate, thus showing substantial use of polymorphism and dynamic binding. 

Further descriptive statistics of the classes are provided in [14]. 

 

Several types of data were collected from the system. First, change data (i.e., using a class-level 

source code diff) was collected for each application class. Based on the change data, the amount 
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of change (in SLOC added and deleted) of each class within a given set of consecutive versions 

was computed. Second, to collect the dynamic coupling measures, test cases provided with the 

Velocity source code were used to exercise each version of the system. Each test case was 

executed while the dynamic coupling tracer tool computed the dynamic coupling measures. 

Third, size and a comprehensive set of static coupling measures of Velocity. Thus, coupling 

to/from library and framework classes were not included.  

 

A first objective of the case study was to determine whether the dynamic coupling measures 

capture additional dimensions of coupling when compared with static coupling measures. A 

subsequent, more ambitious objective was to investigate whether dynamic coupling measures are 

significant indicators of a useful, external quality attribute and are complementary to existing 

static measures in explaining its variance. 

 

Following the methodology described in [15], we first analyzed the descriptive statistics of the 

dynamic coupling measures. The motivation was to determine whether they show enough 

variance and whether some of the properties we expected were visible in the data. The next step 

was to perform a principal component analysis (PCA), the goal of which was to identify what 

structural dimensions are captured by the dynamic coupling measures and whether these 

dimensions are at least partly distinct from static coupling measures. It is usual for software 

product measures to show strong correlations and for apparently different measures to capture 

similar structural properties. PCA also helps to interpret what measures actually capture and 

determine whether all measures are necessary for the purpose at hand. In our case, recall that we 

want to determine whether all xx xC, xx xM, and xx xD measures are necessary, that is, to what 

extent they are redundant. Due to size constraints, results from the above analyses are only 

summarized in this paper and fully reported in [14]. 

 

In order to investigate their usefulness as quality indicators, we investigate whether dynamic 

coupling measures are statistically related to change proneness, that is, the extent of change 

across the versions of the system we used as a case study. To do so, we analyzed the changes 

(lines of code added and deleted) across the four sub releases of Velocity 1.2. Our goal was to 

ensure we would only consider correction changes as requirements changes are not driven by 

design characteristics but mainly by external factors. Sub releases in a major release include only 

correction changes3 and we were therefore able to factor out requirements changes and obtain 

more accurate analysis results regarding the impact of coupling on change proneness.  

 

The dependent variable (Change) in this study is the total amount of change (source lines of code 

added and deleted) that has affected each of the 136 application classes participating in the test 

case executions across the four sub releases of Velocity 1.2. Since none of these classes were 

added or deleted during the making of the successive releases, the variable Change is a measure 

of the change proneness of these classes. In this case study context, this can be more precisely 

defined as their tendency to undergo correction changes. Other possible dependent variables 

could have been selected, such as the number of changes, but we wanted our dependent variable 

to somehow reflect the extent of changes as well as their frequency.  

 

The above analysis assumes that there is a cause-effect relationship between coupling and change 

proneness, something which is intuitive because classes that strongly depend on or provide 

services to other classes are more likely to change, through ripple effects, as a result of changes in 

the system [16]. Predicting the change proneness of a class (i.e., its volatility) can be used to aid 
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design refactoring (e.g., removing “hot-spots”), choosing among design alternatives or assessing 

changeability decay [17]. 

 

One important issue is that not only do we want our measures to relate to change proneness in a 

statistically significant way, but we want the effect to be additional or complementary to that of 

static coupling measures and class size [15], [18]. If some of the dynamic coupling measures 

remain statistically significant covariates when the static coupling measures and size measures are 

included as candidate covariates, this subset of dynamic coupling measures is deemed to 

significantly contribute to change proneness. We consider this to be empirical evidence of the 

causal effect between dynamic coupling and change proneness, of their practical usefulness and, 

hence, we consider it to provide an initial empirical validation of the dynamic coupling measures. 

More details are provided in Section 4.4. 

 

4.2 Code Coverage 

 
 One practical drawback of using dynamic analysis is that one has to ensure that the code is 

sufficiently exercised to reflect in a complete manner the interactions that can take place between 

objects. To obtain accurate dynamic coupling data, the complete set of test cases provided with 

Velocity were used to exercise the system. Though this test suite was supposed to be complete, as 

it is used for regression test purposes, we used a code coverage tool and discovered that only 

about 70 percent of the methods were covered by the test cases. A closer inspection of the code 

revealed that a primary reason for this apparent low coverage was that 34 classes contained 

“dead” code. In addition, there were many occurrences of alternative constructors and error 

checking code that were never called. Fortunately, such code does not contribute to coupling. 

After removing the dead code and filtering out alternative constructors and error checking code, 

the test cases covered approximately 90 percent of the methods that might contribute to coupling 

among the application classes in Velocity. Consequently, the code coverage seems to be 

sufficient to obtain fairly accurate dynamic coupling measures for the 136 “live” application 

classes of Velocity 1.2. 

 

4.3 Preliminary Analysis Summary 
 
This subsection summarizes the main results from a number of standard, preliminary data 

analyses that are reported in [14]. 

 

4.3.1 Variability 

 
We first computed descriptive statistics for coupling and class size measures based on the first 

sub-release of the studied release (1.2) of Velocity. One notable result is that the mean values for 

dynamic import coupling measures (e.g., IC OC) are always equal to the mean values of their 

corresponding dynamic export coupling measure (e.g., EC OC). This confirms the symmetry 

property discussed in Section 2.3. For most measures, there are large differences between the 

lower 25th percentile, the median and the 75th percentile, thus showing strong variations in 

import and export coupling across classes. Many of the measures show a large standard deviation 

and mean values that are larger than the median values, with a distribution skewed towards larger 

values. Two of the static coupling measures show (almost) no variation and are not considered in 

the remainder of the analysis [14]. These measures are related to direct access of public attributes 

by methods in other classes, which is considered poor practice. 
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4.3.2 Principal Component Analysis (PCA) 

 
PCA was then used to analyze the covariance structure of the measures and determine the 

underlying dimensions they capture. Detailed results, provided in [14], show that coupling is 

divided along four dimensions: IC Ox, IC Cx, EC Ox, and EC Cx. Thus, all xx xC, xx xM, and xx 

xD measures belong to identical components when they have identical scope, granularity and 

entity of measurement, therefore capturing similar properties. This implies that it may be 

unnecessary to collect all of these measures and, in particular, the xx xD measures that cannot be 

collected on UML diagrams and which require expensive dynamic code analysis [14] may not be 

needed. It is interesting to note that this confirms the PCA results4 in an earlier case study on a 

Smalltalk system.  

 

Overall, the PCA analysis indicates that our dynamic coupling measures (especially when the 

entity of measurement is the object) are not redundant with existing static coupling and size 

measures. 

 

4.3.3 Dynamic Coupling as an Explanatory Variable of Change Proneness 

 

The next step was to analyze the extent to which each of the dynamic coupling measures are 

related to our dependent variable, change proneness (see Section 4.1). However, since the size 

(SLOC) of a class is an obvious explanatory variable of Change (SLOC added+deleted), it may 

be more insightful to determine whether a coupling measure is related to change proneness 

independently of class size. We therefore tested whether the dynamic coupling measures are 

significant additional explanatory variables, over and above what has already been accounted for 

by size. To achieve this, we systematically performed a multiple linear regression involving class 

size (SLOC) and each of the dynamic coupling measures and then determined whether the 

regression coefficient for the coupling measure was statistically significant. Details are reported 

in [14] and can be summarized as follows: There is strong support for the hypotheses that all 

dynamic export coupling measures are clearly related to change proneness, in addition to what 

can be explained by size. On the other hand, dynamic import coupling measures do not seem to 

explain additional variation in change proneness, compared to size alone. Once again, this 

confirms the results obtained in an earlier case study on a Smalltalk system. The following 

section evaluates the extent to which the dynamic coupling measures are useful predictors when 

building the best possible models by using size, static coupling, and dynamic coupling measures 

as possible model covariates. 

 

5. RELATED WORK 
 

Kai Qian et al [19] have presented a service decoupling metrics for service-oriented distributed 

software composition. The proposed metrics can be applied  in the selection of service component 

in the service-oriented software design process and  to evaluate the service-oriented software as a 

whole in term of decoupling quality attribute for better software understandability, 

maintainability, reliability, testability, and reusability.  

 

Liguo Yu [20] had presented a method to correlated evolutionary coupling and reference 

coupling. They studied the evolution of 597 consecutive versions of Linux and measure the 

evolutionary coupling and reference coupling among 12 kernel modules. They compared 12 pairs 

of evolutionary coupling data and reference coupling data. The results showed that linear 
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correlation existed between evolutionary coupling and reference coupling. They concluded that in 

Linux, the dependencies between software components induced via the system architecture had 

noticeable effects on kernel module co-evolution. 

 

Pham Thi Quynh et al. [21] Service-oriented systems have become popular and presented many 

advantages in develop and maintain process. The coupling is the most important attribute of 

services when they are integrated into a system. In this paper, we propose a suite of metrics to 

evaluate service’s quality according to its ability of coupling. We use the coupling metrics to 

measure the maintainability, reliability, testability, and reusability of services. Our proposed 

metrics are operated in run-time which bring more exact results. 

 

Byron J. Williams and Jeffrey C. Carver [22] have described in the proposed work a systematic 

literature review of software architecture change characteristics. The results of the systematic 

review were used to create the Software Architecture Change Characterization Scheme (SACCS). 

The proposed report addressed the key areas involved in making changes to software architecture. 

SACCS’s purpose is to identify the characteristics of a software change that would have an 

impact on the high-level software architecture. 

 

6. CONCLUSION 
 
In this paper, we have proposed a new approach to the computation of dynamic coupling 

measures in DOO systems by introspection and adding trace events into methods. First, we 

provide formal, operational definitions of coupling measures and analysis. We propose dynamic 

coupling measures for distributed object-oriented systems i.e., coupling measurement on both 

clients and server dynamically. We described the classification of dynamic coupling measures. 

The motivation for those measures is to complement existing measures that are based on static 

analysis by actually measuring coupling at runtime in the hope of obtaining better decision and 

prediction models because we account precisely for inheritance, polymorphism and dynamic 

binding. Admittedly, many other applications of dynamic coupling measures can be envisaged. 

However, investigating change proneness was used here to gather initial but tangible evidence of 

the practical interest of such measures.  Finally we propose our dynamic coupling measurement 

techniques which involve Introspection Procedure, Adding trace events into methods of all 

classes and Predicting Dynamic Behaviour while running the source code.  The source code is 

filtered to arrive the Actual Runtime used Source Code which is then given for any standard 

coupling technique to get the Dynamic Coupling. 
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