
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

DOI : 10.5121/ijcsea.2012.2301 1

RSDC (RELIABLE SCHEDULINGDISTRIBUTED IN
CLOUDCOMPUTING)

Arash Ghorbannia Delavar,Mahdi Javanmard , Mehrdad Barzegar Shabestari and
Marjan Khosravi Talebi

Department of Computer, Payame Noor Universtiy, PO BOX 19395-3697, Tehran, IRAN
a_ghorbannia@pnu.ac.ir , info@javanmard.com ,

shabestari.sanjesh@gmail.com , khosravitalebi5@gmail.com

ABSTRACT

In this paper we will present a reliable scheduling algorithm in cloud computing environment. In this
algorithm we create a new algorithm by means of a new technique and with classification and considering
request and acknowledge time of jobs in a qualification function. By evaluating the previous algorithms, we
understand that the scheduling jobs have been performed by parameters that are associated with a failure
rate. Therefore in the proposed algorithm, in addition to previous parameters, some other important
parameters are used so we can gain the jobs with different scheduling based on these parameters. This
work is associated with a mechanism. The major job is divided to sub jobs. In order to balance the jobs we
should calculate the request and acknowledge time separately. Then we create the scheduling of each job
by calculating the request and acknowledge time in the form of a shared job. Finally efficiency of the
system is increased. So the real time of this algorithm will be improved in comparison with the other
algorithms. Finally by the mechanism presented, the total time of processing in cloud computing is
improved in comparison with the other algorithms.

KEYWORDS

Scheduling Algorithm, Cloud Computing, RSDC, PPDD

1. INTRODUCTION

In 2000 years, conditions improved in quality as the essential component systems have been
established, but to shape the quality of infrastructure must provide hardware and software and the
hardware and software infrastructure can be associated with conditions. The problem is that we
can increase the concurrency and transaction system for high quality we have [2]. 2000 scientific
experts from the raise edge technology in mechanized systems seek to change with new methods
and algorithms will be able to provide technology in organizations with information technology
education levels increase [3]. Information technology is an attempt to integrate combined
methods for providing a suitable solution that increases customer satisfaction level is [2].
Environmental conditions for entering customers are among powerful managerial tools which are
used in information technology [10]. The main idea behind cloud computing is not a new one.
John McCarthy envisioned that computing facilities will be provided to the general public like a
utility. NIST definition of cloud computing: Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources (e.g. ,networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [4]. In different cases, there are many

mailto:a_ghorbannia@pnu.ac
mailto:info@javanmard.com
mailto:sanjesh@gmail.com
mailto:khosravitalebi5@gmail.com

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

2

examples of using cloud computing for simulation. The first application is a Bones Structure
Simulation (Bones) which is used to simulate the stiffness of human bones. The second
application is a Next Generation Sequencing Analysis Workflow (GSA) for mRNA. This
workflow is based on the whole shotgun sequencing [5].

One of algorithms that be used in cloud computing is genetic algorithm. Indeed , genetic
algorithms are resolution systems base of computer and they use calculation models in some basic
elements of gradual evolution in design and performance [9]. In the grid and cloud environments
is a hardware and software infrastructure that provides dependable, consistent, pervasive and
inexpensive access to high-end computational capabilities [6]. Scheduling is an important tool for
production and engineering. In distributed systems such as grids, that there are various sources in
them, deciding about task regularity and selecting the computing node is done by a part of system
calls scheduler. The purpose of this part is maximizing the efficiency and minimizing the costs
[7]. Scheduling a group of independent tasks on heterogeneous processed resources in grid and
cloud has been studied by a lot of researchers. And to obtain the optimal answer in the acceptable
time by the heuristic search techniques for scheduling grid and cloud resources, such as GA, Tabu
search, simulated Annealing [8]. Parallel and distributed heterogeneous computing has become an
efficient solution methodology for various real world applications in science, engineering and
business. One of the key issues is how to partition and schedule jobs that arrive at processing
nodes among the available system resources so that the best performance is achieved with respect
to the finish time of all input tasks [1]. Here the optimality, involving solution time and speed up,
is derived in the context of specific scheduling policy and interconnection topology. The
formulation usually generates optimal solution via a set of linear recursive equations. The model
takes into account the heterogeneity of processor and link speeds as well as relative computation
and communication intensity. Front end processors allow a processor to both communicate and
compute simultaneously by assuming communication duties [1].

So due to defects in systems that have been studied, the proposed algorithm (RSDC) can help us
improve scheduling problem. Now we are going to study the works that is done in scheduling.

2. PPDD ALGORITHM

Parallel and distributed heterogeneous computing has become an efficient solution methodology
for various real world applications in science, engineering, and business.

One of the key issues is how to partition and schedule jobs/loads that arrive at processing nodes
among the available system resources so that the best performance is achieved with respect to the
finish time of all input tasks.

To efficiently utilize the computing resources, researchers have contributed a large amount of
load/task scheduling and balancing strategies in the literature. Recent efforts have been focused
on resource sharing and coordination across multi-site resources (multiple supercomputer centers
or virtual organizations).

For divisible load scheduling problems, research since 1988 has established that the optimal
workload allocation

and scheduling to processors and links can be solved through the use of a very tractable linear
model formulation, referred to as Divisible Load Theory (DLT). DLT features easy computation,
a schematic language, equivalent network element modeling, results for infinite sized networks
and numerous applications.[1]

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

3

This theoretical formulation opens up attractive modeling possibilities for systems incorporating
communication and computation issues, as in parallel, distributed, and Grid environments.

Here, the optimality, involving solution time and speedup, is derived in the context of a specific
scheduling policy and interconnection topology.

The formulation usually generates optimal solutions via a set of linear recursive equations. In
simpler models, recursive algebra also produces optimal solutions.

The model takes into account the heterogeneity of processor and link speeds as well as relative
computation and communication intensity.

DLT can model a wide variety of approaches with respect to load distribution (sequential or
concurrent), communications (store and forward and virtual cut-through switching) hardware
availability (presence or absence of front end processors).

Front end processors allow a processor to both communicate and compute simultaneously by
assuming communication duties.

A recent survey of DLT research can be found in . The DLT paradigm has been proven to be
remarkably flexible in handling a wide range of applications.

Since the early days of DLT research, the research has spanned from addressing general optimal
scheduling problems on different network topologies to various scenarios with practical
constraints, such as time-varying channels, minimizing cost factors, resource management in Grid
environments and distributed image processing. Load partitioning of intensive computations of
large matrix-vector products in a multicast bus network was theoretically investigated in.
Research efforts after 1996 particularly started focusing on including practical issues such as,
scheduling multiple divisible loads, scheduling divisible loads with arbitrary processor release
times in linear networks, consideration of communication startup time, buffer constraints.[1]

Some of the proposed algorithms were tested using experiments on real-life application problems
such as image processing , matrix-vector product computations, and database operations. Various
experimental works have been done using the divisible load paradigm such as for matrix-vector
computation on PC clusters and for other applications on a network of workstations.

Recent work in DLT also attempted to use adaptive techniques when computation needs to be
performed under unknown speeds of the nodes and the links. This study used bus networks as the
underlying topology. Beaumont et al. consolidates the results for single-level tree and bus
topologies and presents extensive discussions on some open problems in this domain.

A few new applications and solutions in DLT have been investigated in recent years.
Bioinformatics, multimedia streaming, sensor networks, economic and game-theoretic
approaches.

Although most of the contributions in DLT literature consider only a single load originated at one
processor, scheduling multiple loads has been considered in.

Work presented in considers processing divisible loads originating from an arbitrary site on a
arbitrary graph.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

4

However, there is considered merely a single-site multi-load scheduling problem and don’t
address multiple loads originated at arbitrary multiple sites/nodes in networks.
The point of load origination imposes a significant influence on the performance.

In addition, when one considers multiple loads originating from several nodes/sites, it becomes
much more challenging to design efficient scheduling strategies.

This study investigated load scheduling and migration problems without synchronization delays
in a bus network by assuming that all processors have front-ends and the communication channel
can be dynamically partitioned. Front-ends are communication coprocessors, handling
communication without involving processors so that communication and computation can be
fully overlapped and concurrent.

In this case, load distribution without any consideration of synchronization delay is quite
straightforward as will be shown later.[1] However, in practice, it would be unreasonable to
assume that the channel can be dynamically partitioned.

Especially, in the application of distributed sensor systems, front-end modules may be absent
from the processing elements.

Recently, PPDD algorithm investigates the case of two load origination sources in a linear daisy
chain architecture. The divisible load scheduling problems with multiple load sources in Grid
environments have been studied in.

PPDD algorithm discusses about a general load scheduling and balancing problem with multiple
loads originating from multiple processors in a single-level tree network.

This scenario happens commonly in realistic situations, such as applications in distributed real-
time systems, collaborative grid systems (where each virtual organization can be abstracted as a
resource site or a local hierarchical network), and in general load balancing and sharing
applications.

In Grid environments, the proposed model can be applied to the following scenario: PPDD
algorithm has a super-scheduler across multiple sites and local schedulers for each site; multiple
jobs are submitted to local schedulers and possibly partitioned and migrated across multiple sites
by the super scheduler for resource sharing, load balancing, and high performance throughput.
PPDD algorithm addresses a realistic situation in a distributed network of processors where in the
computational load can originate at any processor on the network.

Thus, when there is more than one load to be processed in the system, unless a clever strategy for
load distribution is carried out, the processors may not be efficiently utilized. In the existing DLT
literature, processing multiple loads on distributed networks is addressed; however, it was
assumed that all the loads originate at the central scheduler (bus controller unit in the case of bus
networks). The formulation considers loads originating at different processors on the network.

PPDD algorithm proposed load distribution and communication strategies for the case when the
processors are equipped with front-ends. For the case with front-ends, the algorithm simply uses
to obtain the loads exchanged among processors to obtain the final load distribution li , i = 1, 2, . .
., K.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

5

The PPDD algorithm takes advantage of the optimality principle to minimize the overall
processing time. The PPDD algorithm guarantees to determine the near-optimal solution in finite
number of steps.[1]

Since the load partitioning phase does not account the communication delays that will be
encountered during the actual load communication, the algorithm obtains the near-optimal
solution.
When there is considered the actual load transferring to the processors, PPDD algorithm is
guaranteed to produce a near-optimal solution for homogeneous systems.

However, in heterogeneous systems use only the communication speed of the corresponding
receiving link, thus causing imprecise results (when the actual load transfer takes place).

This minor discrepancy in the results is due to the fact that communication speeds are different
between the active sending and receiving links, whereas the actual load transferring time is
determined solely by the slowest link and not by the receiving link.

One may relaxes this assumption and considers the combined effect of both the link delays in
PPDD algorithm, however, the ultimate solution may not be drastically different from what is
proposed by PPDD under the current model. A significant advantage of PPDD in its current form
is its simplicity to design and implement a scheduler at the root processor p0.

However, one may attempt to use other strategies to schedule and transfer loads among
processors to minimize the processing time.

In these works, scheduling strategies for multiple loads arriving at a bus controller unit (BCU)
were studied. However, in PPDD algorithm, there is considered the case where multiple loads
originate at different sites. In any case, the algorithm can apply the previous scheduling strategies
in the literature to the problem context.

At first, there is considered a single-level tree network with only one load originating on a
processor. Using the following equations, the algorithm obtains a near-optimal load distribution
for a single load.

Then, PPDD algorithm may repeat this procedure for all the loads residing at other sites. For the
case with front-ends one may follow a similar procedure.

Thus, to balance the load among all processors in such a way that it is finished processing at the
same time, is the fraction of load L assigned to processor pi.

Another algorithm is RSA algorithm which is an extension of the load scheduling strategy for a
single load. Note that when the algorithm schedules a load among all processors, processors
which are not engaged in communication can process its load independently. In every iteration, in
a step-by-step fashion, each processor distributes its load among all processors.

Further, each processor attempts to balance all the loads among all the processors such that they
finish processing at the same time.

To compare the time performance of RSA and PPDD strategies, it is presented an example
through numerical analysis. On comparison of the solutions using these two load scheduling

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

6

strategies, it is observed that the overall processing time using RSA is much greater than that
obtained using PPDD algorithm.

It is also observed that, in RSA strategy, the last processor to distribute is P1 and it is the first one
to finish processing its load.

The reason is that, at the last iteration, P1 lets all other processors finish processing its remaining
load at the same time while other processors have their own load during that time. At the end of
the load communication phase, the remaining load at P1 is smallest than before. Thus, all the other
processors need more time to finish their loads than P1 after the end of load communication.
A natural improvement is to repeat round-robin scheduling until the finish times of all processors
are sufficiently close.[1] But RSA cannot avoid any additional time delays (overhead) incurred
due to shuttling of load from and to the same processor. a load fraction transferred from Pi to Pj

in previous iterations may be transferred back to Pi from Pj or Pk , thus wasting the
communication resources.

Since there is no front-end to overlap communication and computation, such kind of unnecessary
load “wandering” greatly prolongs the overall processing time.

On the other hand, RSA always needs m iterations to obtain the final solution while PPDD
algorithm needs only (m − k) iterations. For example RSA needs five iterations while PPDD
algorithm needs only one iteration to obtain a better solution.

If they improve RSA through repeating the round-robin scheduling, RSA needs more iterations to
obtain a better solution. However, even in this case, improved version of RSA cannot avoid load
wandering from and back to a processor either.

In PPDD algorithm it have been addressed the problem of scheduling strategies for divisible loads
originating from multiple sites in single-level tree networks.

The formulation presented a general scenario with multi-site divisible loads, demanding several
processors to share their loads for processing.

It is designed a load distribution strategy and communication strategy to carry out the processing
of all the loads submitted at various sites. A two phase approach is taken to attack the problem. a
load partitioning phase and the actual communication of load fractions to the respective
processors (communication strategy). In the first phase, it is derived the near-optimal load
distribution; in the second phase, it is considered the actual communication delay in transferring
the load fractions to the processors, by assuming that the overall delay is contributed by the
slowest link between the sending and receiving processors.

As a first step, one can relax this assumption and analyze the performance and the proposed
scheduling strategies are flexible in adapting to such relaxed assumptions. For the case with front-
ends, they propose a scheduling strategy, PPDD algorithm, to achieve a near-optimal processing
time of all loads.

Several significant properties of PPDD algorithm are proven in lemmas and detailed analysis of
time performance of PPDD algorithm was conducted.

The above analysis is also extended to homogeneous systems wherein they have shown that the
time performance of PPDD algorithm with respect to various communication-computation ratios.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

7

To implement the load distribution strategy obtained through PPDD algorithm, it is proposed a
simple load communication strategy. It was demonstrated that the overall processing time
obtained using PPDD algorithm is sufficiently close to the result following the actual load
communication strategy proposed.[1]

To further demonstrate the efficiency of PPDD algorithm, it is also compared the time
performance of PPDD algorithm with another algorithm, Round-robin Scheduling Algorithm
(RSA).

The proposed load scheduling strategies can be readily extended to other network topologies in a
similar way. Another interesting extension is to further study the case with multiple load arrivals
at each processor, which models dynamic scheduling scenarios in grid or cloud computing
environments.[1] PPDD (Processor – Set Partitioning & Data Distribution Algorithm) With Front
End algorithm is presented as follows.

We consider a single-level tree network with a root processor P0, also referred to as a scheduler
for the system, and m processors denoted as P1, . . . , Pm connected via links l1, . . . , lm,
respectively [1]. P0 is considered as a router. If we do not schedule each of the loads among the
set of processors, then the overall processing time of all the loads is determined by the time when
the last processor finishes processing its own load.

In order to minimize the overall finish time, we should carefully re-schedule and balance the
loads among all processors. Of course the processing time of each processor is clear. PPDD
algorithm is described in Table 1 [1].

Table 1. PPDD algorithm [1]

In PPDD algorithm that mentioned in Table 1 the final processing rate for each processor is
determined. This algorithm is much more efficient than other algorithms such as RSA algorithm.
But the initial processing time that is considered for each processor is not the actual processing
time. Because the important factors such as the time to process and the time to prepare for the
process is not considered. In fact, the time that has been used as the initial time for load
processing is considered without attention to the request and acknowledge time. What we did in
this article is adding the request and acknowledges time to the load processing time, which is an
important factor in calculating the run time.

Initial stage:
From (1) and (2), we obtain the initial delimiter K which
separates the sender and receiver sets.
Load distribution:
The load assigned to pi is li = Li + ∆Li , i = 1, 2, . . ., K and
li = Li − ∆Li , i = K +1, K +2, . . .,m.
Overall processing time:
The finish time for processor pi is given by, Ti (m) = liEi .
Thus, we obtain the overall processing time T(m) =
max{Ti(m)}, i = 1, 2, . . . , m.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

8

3. RSDC ALGORITHM

RSDC algorithm is presented in cloud computing environment as follows. In our formulation, we
consider a single-level tree network with m processors and a scheduler P0. Each processor Pi has
its own divisible load of size Hi to process. The goal is to design an efficient scheduling strategy
to minimize the overall processing time of all the loads by partitioning and distributing the loads
among all the m processors [1].

Ti (m), the total processing time at Pi, is a function of TPi, the processing time of each processor,
and li, the link time over the processors, and Hi, the amount of load for each processor, that is
considered HiTPi for the processing time of each processor and Hili for the link time over
processors. In network, generally, the final time depends on the lowest link. So if li ≤ lj then we
assume that the link time taken to reach the destination via the links li and lj is simply H lj.
However it may be noted that is assumption does not affect the way in which the strategy is
designed. In fact we will show that this assumption eases analytical tractability without loss of
generality.

Since a divisible load is assumed to be computationally intensive, a natural assumption is that the
computation time for a given load is much larger than the link time that is TPi > li. In this strategy
we consider that the link time between processor loads are minimized. So in RSDC algorithm we
consider only processing time, not link time, for calculating the final time of process. Also we
consider the request and acknowledge time, too. The strategy involves two phases. In the first
phase the entire set of loads are partitioned and distributed. In the second phase the partitioned
loads are transferred from one processor to another following a communication strategy. These
two phases will be carried out for with front end cases. In the first phase, the scheduler P0 collects
all load distribution information about all slave processors and applies the algorithm to obtain the
optimal load partitions. In the second phase the set of overload processors initiate sending data
and the set of under load processors initiate receiving data. The scheduler coordinates these slaves
sending or receiving operations by routing data among them. Note that although the algorithm
appears iterative to obtain the optimal data partition, the amount of load migration or partition for
each processor will be adjusted only once.

We consider m processors: p1, p2, p3,…, pm. p0 processor works as a router. If the loads are not
scheduled, the final processing time is equal to the time that the last processor finishes its loads.
To minimize the final time, we must schedule and balance job allocation between processors.
Scheduling strategy is to allocating more jobs to rapid processors and fewer jobs to slow
processors. Until the volume of jobs and the processing time on different processors are not
identified, we face a complex issue to find the optimal solution. In job distribution, the important
point is transferring additional loads from overload processors to under load processors.

Of course the processing time for all the processors is determined. This mechanism is used to
divide the loads. How to divide and use the loads is presented in Figure 1.

H1

H2

H3

Hm

P1

P2
P3

Pm

P0

Figure 1. Single-level tree attribution of loads

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

9

In the previous proposed algorithm including PPDD algorithm, just the running time of
processors has been considered whilst in the algorithm that is proposed in this paper (RSDC)
request and acknowledge time is considered, too. RSDC flowchart is presented in Figure 2.

Figure 2. RSDC Flowchart

Yes

No

β= TRi + TAcki

T*
ideal =

∑

∑

=

=

+

m

i

m

i

Tpi

Hi

1

1

1



H*
i =
+Tpi

Tideal

*

Start

Input Hi, Tpi, TRi, TAcki for each
processor

∆Hi = | Hi– H*
i |

Hi ≥ H*
i

Sover = { Hi }
 hi = Hi - ∆Hi

Sunder = { Hi }
 hi= Hi+ ∆Hi

Tpi = Tpi–β

Ti (m) = Tpi × hi

T (m) = max { Ti (m) }

Stop

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

10

Following items are used in flowchart.
m : number of processors
Hi : initial loads for each processor
TPi : processing time for each processor
TRi : request time for each processor
TAcki : acknowledge time for each processor
H*

i : average processing for each processor
∆Hi : Hi – H*

i the deviation from the average
Sunder : the set of under load processors
Sover : the set of overload processors
hi : the amount of balanced loads for each processor
Ti (m): the balanced processing time for each processor
T (m): the final time of processing the processors

First the loads and the processing time for each processor should be considered. Then with the
care of processing time and request and acknowledge time, the average amount of loads should be
calculated (T*

ideal(m)). Afterwards the average of loads and the deviation from the average for
each processor are calculated. Finally if the initial processing rate for each processor was higher
than the average it means that there is overload and it is placed in Sover. And if the initial
processing rate was lower than the average it is placed in Sunder. Now, according to the algorithm,
the new loads for processors of Sover and Sunder are calculated. And finally the time for each
processor is computed by using the following formulas.

β = TRi + TAcki

TPi = TPi – β (1)

Ti (m) = TPi × hi

Considering the fact that the used time in PPDD algorithm has some problems, we could improve
it by the proposed algorithm and using indicator parameters in qualification function. The purpose
of the present algorithm is minimizing the time of starvation gap and maximizing the use of the
system. During the work, it is possible that a processor has no data for processing. In this
situation the processor may hold idle without any special activity. This event brings starvation
gap for other processors because the rest of the processors, which have data for processing, want
to start the processing faster. This algorithm relives the processors with fewer loads and the
processors without loads from unemployment with dividing loads among processors and also
relives the processors with extra loads from hard working.

4. IMPLEMENTATION OF RSDC ALGORITHM

After implementation of the algorithm in a programming environment and using data tables
below, the following results were obtained. Table 2 determines data set for RSDC and also PPDD
algorithms. Measurement unit of loads is MB and measurement unit of processing time and
request and acknowledge time is millisecond.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

11

Table 2. First data set using in RSDC and PPDD algorithms

As we can see in Figure 3, by first comparing Ti (m) of RSDC algorithm and Ti (m) of PPDD
algorithm that is calculated in Table 3, processing time in RSDC algorithm is optimized.

Table 3. First results for processing time in two algorithms RSDC and PPDD

RSDC Ti(m) PPDD Ti(m)

6779.7661 7606.0083

6458.3766 7606.0083

6077.3134 7606.0083

6658.1218 7606.0083

6103.5624 7606.0083

Figure 3. First comparing processing time in two algorithms RSDC and PPDD

We compare the processing time of RSDC algorithm with PPDD algorithm in other dataset that is
shown in Table 4. As we can see in Figure 4, by second comparing Ti (m) of RSDC algorithm and
Ti (m) of PPDD algorithm that is calculated in Table 5, processing time in RSDC algorithm is
optimized.

TAckiTRiTPiHi

42.551100

6.5564110

6562120

3.752.544180

6.5879150

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

12

Table 4. Second dataset using in RSDC and PPDD algorithms

Table 5. Second Results for processing time in two algorithms RSDC and PPDD

Figure 4. Second comparing processing time in two algorithms RSDC and PPDD

We compare the processing time of RSDC algorithm with PPDD algorithm in other dataset that is
shown in Table 6. As we can see in Figure 5, by third comparing Ti (m) of RSDC algorithm and
Ti (m) of PPDD algorithm that is calculated in Table 7, processing time in RSDC algorithm is
optimized.

TAckiTRiTPiHi

42.550100

6.5565110

6560120

3.752.545180

6.5880150

RSDC
Ti(m)

PPDD Ti(m)

6816.7377 7608.2993

6124.8685 7608.2993

6153.6350 7608.2993

6617.0636 7608.2993

6076.2065 7608.2993

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 3 4 5

PPDD Ti(m)

RSDC Ti(m)

Pr
oc

es
sin

g t
im

e

Number Of
Processors

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

13

Table 6. Third dataset using in RSDC and PPDD algorithms

Table 7. Third results for processing time in two algorithms RSDC and PPDD

Figure 5. Third comparing processing time in two algorithms RSDC and PPDD

In Table 8 we can see the processing and request and acknowledge time and the initial load for
three groups of quintuplet of processors.

TAckiTRiTPiHi

42.552100

6.5566110

6563120

3.752.542180

6.5881150

RSDC Ti(m) PPDD Ti(m)

6871.2561 7637.9603

6212.6288 7637.9603

6208.0074 7637.9603

6545.7488 7637.9603

6151.7528 7637.9603

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4 5

PPDD Ti(m)

RSDC Ti(m)

Pr
oc

es
sin

g t
im

e

Number Of
Processors

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

14

Table 8. Data set of three groups of different processors

Figure 6 shows the way ∆Hi place in RSDC algorithm with the data set shows in Table 8. As can
be understood from the diagram the fluctuation rate of ∆Hi in RSDC algorithm is low.

Figure 6. The fluctuation rate of ∆Hi in RSDC algorithm

Figure 7 shows the way ∆Hi place in PPDD algorithm with the data set shows in Table 8. As can
be seen in the diagram, the fluctuation rate of ∆Hi in PPDD algorithm is higher than the
fluctuation rate of ∆Hi in RSDC algorithm.

TAckiTRiTPiHi

42.550100

6.5565110

6560120

3.752.545180

6.5880150

42.551100

6.5564110

6562120

3.752.544180

6.5879150

42.552100

6.5566110

6563120

3.752.542180

6.5881150

0

10

20

30

40

50

60

70

1 2 3 4 5

delta h1

delta h 2

delta h 3

∆H
i

Number Of
Processors

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

15

Figure 7. The fluctuation rate of ∆Hi in PPDD algorithm

As can be seen in figures 6 and 7, fluctuation rate of ∆Hi in RSDC algorithm is much less than
fluctuation rate of ∆Hi in PPDD algorithm. Decreasing the fluctuation rate of ∆Hi means that the
loads which should be subtracted from the initial loads of each processor in Sover set or should be
added to the initial loads of each processor in Sunder set do not fluctuated more. It means while
adding or subtracting loads, algorithm does not fluctuate more. So algorithm calculates the total
processing time with balanced rate. In fact, despite of adding request and acknowledge time to the
processing time, algorithm has been successful in computing the average loads for each
processor.

According to the diagrams it is obvious that the fluctuation rate of ∆Hi in RSDC algorithm is
much lower than the fluctuation rate of ∆Hi in PPDD algorithm. So RSDC is much more efficient
than PPDD algorithm.

5. CONCLUSIONS

The calculated time is obtained from Table 2 for PPDD algorithm is 7606.01 and for RSDC
algorithm is 6779.7661. According to this fact that in PPDD algorithm the processing time is
considered without calculating request and acknowledges time, they have been hidden in the
processing time. So in RSDC algorithm we subtract the request and acknowledge time from the
ultimate time for each processor. And the time that is obtained in RSDC algorithm is much better
than the time is obtained in PPDD algorithm.

REFERENCES

[1] Xiaolin Li · Bharadwaj Veeravalli, (2009) “PPDD: scheduling multi-site divisible loads in single-
level tree networks”, www.springer.com, Accepted: 1 September

[2] Arash Ghorbannia Delavar, Behrouz Noori Lahrood, Mohsen Nejadkheirallah and Mehdi
Zekriyapanah Gashti, (2011) “ERDQ: A Real-time Framework for Increasing Quality of Customer
Whit Data Mining Mechanisms”, International Journal of Information and Education Technology,
Vol. 1, No. 1, April

0

10

20

30

40

50

60

1 2 3 4 5

delta h1

delta h2

delta h 3
∆H

i

Number Of
Processors

www.springer.com

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012

16

[3] Arash Ghorbannia Delavar, Mehdi Zekriyapanah Gashti, Behroz nori Lohrasbi, Mohsen
Nejadkheirallah, (2011) “RMSD: An optimal algorithm for distributed systems resource whit data
mining mechanism”, Canadian Journal on Artificial Intelligence, February

[4] Qi Zhang · Lu Cheng · Raouf Boutaba, (2010) “Cloud computing: state-of-the-art and research
challenges”, www.springer.com, Accepted: 25 February

[5] Hong-Linh Truong, Schahram Dustdar, (2010) “Composable cost estimation and monitoring for
computational applications in cloud computing environments”, www.elsevier.com procedia ,
International Conference on Computational Science, ICCS

[6] Arash Ghorbannia Delavar, Vahe Aghazarian, Sanaz Litkouhi and Mohsen Khajeh naeini, (2011) “A
Scheduling Algorithm for Increasing the Quality of the Distributed Systems by using Genetic
Algorithm” , International Journal of Information and Education Technology, Vol. 1, No. 1, April

[7] A. A. H. Liu and A. Hassanien, (2009) “Scheduling jobs on computational grids using fuzzy particle
swarm algorithm”, Future Generation Computing Systems.

[8] W A. Abraham, H. Liu and T. Chang, (2008) “Job scheduling on computational grids using fuzzy
particle swarm algorithm”, In 10th International Conference on Knowledge Based and Intelligent

[9] Rouhollah Maghsoudi, Arash Ghorbannia Delavar, Somayye Hoseyny, Rahmatollah Asgari, Yaghub
Heidari, (2011) “Representing the New Model for Improving K-Means Clustering Algorithm based
on Genetic Algorithm”, The Journal of Mathematics and Computer Science Vol .2 No.2 329-336

[10] Arash Ghorbannia Delavar, Nasim Anisi, Majid Feizollahi,Sanaz Litkouhi, (2011) “DLCM: Novel
framework of customization improvement in distributed system under data mining mechanism”,
Canadian Journal on Data, Information and Knowledge Engineering Vol. 2, No. 2, March

www.springer.com
www.elsevier.com

