
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

DOI : 10.5121/ijcses.2011.2407 97

SURVEY ON FAULT TOLERANCE IN GRID

COMPUTING

P. Latchoumy
1
 and P. Sheik Abdul Khader

2

1
Research Scholar, Department of Information Technology, BSA University,

Vandalur, Chennai, Tamil Nadu, India.

lak75dhana@gmail.com

2
 Professor & Head, Department of Computer Applications, BSA University,

Vandalur, Chennai, Tamil Nadu, India.

hodca@bsauniv.ac.in

ABSTRACT

Grid computing is defined as a hardware and software infrastructure that enables coordinated

resource sharing within dynamic organizations. In grid computing, the probability of a failure is much

greater than in traditional parallel computing. Therefore, the fault tolerance is an important property in

order to achieve reliability, availability and QOS. In this paper, we give a survey on various fault

tolerance techniques, fault management in different systems and related issues. A fault tolerance service

deals with various types of resource failures, which include process failure, processor failure and network

failures. This survey provides the related research results about fault tolerance in distinct functional areas

of grid infrastructure and also gave the future directions about fault tolerance techniques, and it is a good

reference for researcher.

KEYWORDS

Fault Tolerance, Dependability, Checkpoint-Recovery, Redundancy, Scheduling, Advance Reservations,

Workflow, Service Level Agreement (SLA), Agent-Oriented, Co-allocation and Load Balancing.

1. INTRODUCTION

Grid computing is a form of distributed computing that involves coordinating and sharing

computational power, data, and storage and network resources across dynamic and

geographically dispersed organizations [1]. Management of these resources becomes complex as

the resources are geographically distributed, heterogeneous in nature, owned by different

individual or organizations with their own policies, have different access models, and have

dynamically varying loads and availability.

To achieve the promising potentials of computational grids, the fault tolerance is fundamentally

important since the resources are geographically distributed. Moreover the probability of a

failure is much greater than in traditional parallel computing and the failure of resources affects

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

98

job execution fatally. It is therefore to investigate the fault tolerance techniques for grid

computing. Fault tolerance is the ability of a system to perform its function correctly even in the

presence of faults and it makes the system more dependable. Fault tolerance is the survival

attribute of computer system: describe the function of fault tolerance “to preserve the delivery

of expected services despite the presence of fault caused errors within the system itself, errors

are detected and corrected, and permanent fault are located and removed while the system

continues to deliver acceptable service”. The fault tolerance service is essential to satisfy QOS

requirements in grid computing and it deals with various types of resource failures, which

include process failure, processor failure and network failures. This may lead to job/resource

failure, violating timing deadlines and Service Level Agreement (SLA), and degraded user

expected QOS.

1.1. Dependability Taxonomy

Fault tolerance makes to achieve system dependability. Dependability is related to some QoS

aspects provided by the system, it includes the attributes like reliability and availability. The

dependability taxonomy is shown in figure 1.

Figure 1. Dependability Taxonomy

Reliability indicates that a system can run continuously without failure. A highly reliable system

is the one that continues to work without any interruption over a relatively long period of time.

Availability means that a system is immediately ready for use. Fault tolerance techniques are

often used to increase the availability and reliability.

Reliability R (t): It is probability that the system has been up continuously in the time interval

[0,t]. Reliability is closely related to Mean Time to Failure (MTTF) and Mean Time between

Failures (MTBF). MTTF is the average time the system operates until a failure occurs, whereas

the MTBF is the average time between two consecutive failures. The difference between the two

is due to the time needed to repair the system following the first failure. Denoting the Mean

Time to Repair by MTTR, we obtain MTBF=MTTF+MTTR.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

99

Availability A (t): It is the average fraction of time over the interval [0,t] that the system up.

The availability can be calculated from MTTF, MTBF, and MTTR as follows:

A=MTTF/MTBF=MTTF/ (MTTF+MTTR).

It is possible for a low-reliability system to have high availability: consider a system that fails

every hour on the average but comes back up after only a second. Such a system has an MTBF

of just 1 hour and, consequently, a low reliability; however, its availability is high:

A=3599/3600=0.99972.

To date, developing methods to ensure reliability of grid resources have largely meant

developing methods for fault tolerance. Fault tolerance consists of: (1) detecting faults and

failures in grid resources and (2) recoveries to allow computations to continue.

Threats are classified as faults, Errors and failures. A fault (or failure) can be either a hardware

defect or a software / programming mistakes (bug). An error is a manifestation of the

fault/failure/bug. Hardware faults can be classified into permanent, transient, intermittent,

benign or malicious [in figure 2].

Figure 2. Fault Taxonomy

A permanent fault reflects the permanent going out of commission of a component. A transient

fault is one that causes a component to malfunction for some time; it goes away after that time

and the functionality of the component is fully restored. An intermittent fault never quite goes

away entirely; it oscillates between being quiescent and active. When the fault is quiescent, the

component functions normally; when the fault is active, the component malfunctions. A fault

that just causes a unit to go dead is called benign. Such faults are the easiest to deal with. For

more insidious are the malicious faults that cause a unit to produce reasonable-looking, but

incorrect, output, or that make a component: act maliciously” and send differently valued

outputs to different receivers.

In an agent oriented, pro-active fault tolerant grid framework was used in which faults are

divided into six classes: (a) Hardware Faults: CPU, memory, storage, (b) Application and OS

Faults: memory leaks, resource unavailable, (c) Network Faults: node failure, link failure, packet

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

100

loss, (d) Software Faults: Un-handles exception, unexpected input, (e) Response Faults: Value

faults and (f0 Timeout faults. These are further divided into different sub classes, where agents

deal with individual faults proactively. Agents maintain information about hardware conditions,

executing process memory consumption, available resources, network conditions and component

mean time to failure. Based on this information and critical states, agent enables the grid system

to tolerate faults [5].

It has been observed that omission, interaction and timing faults are more prevalent in grid

computing. Omission faults will arise when resources become unavailable. Interaction faults

may be due to different services supporting different protocols, security incompatibilities, and

policy problems. Timing faults will arise when a service may block another service due to time-

out.

The paper is organized as follows. Section 2 briefly describes the different services used to

detect failures in any grid resources; Section 3 presents the fault tolerance strategies,

mechanisms, techniques like checkpointing and replication. Section 4 deals about fault tolerant

networks, Section 5 provide how fault management is done in distinct functional areas of grid

infrastructure and Section 6 presents findings and conclusions.

2. FAILURE DETECTION SERVICES

As far as fault detection in any resource of grid is concerned, there are two main services: pull

model and push model as described in [10]. In the pull model, different grid components are

responsible for sending periodic signals to a fault detector. In the absence of any such signal

from any grid component, the fault detector recognizes that failure has occurred at that grid

component. It then implements appropriate measures dictated by the predefined fault tolerance

mechanism. In the push model, it is the responsibility of the fault detection component to send

periodic signals to the different grid components. Further, the fault detection component is

responsible for detecting different failures such as network failures, node crashes, and process

failures and processing out the faults.

3. FAULT TOLERANCE STRATEGIES

Fault tolerance can be achieved by following strategies: Fault masking is the process of

preventing faults in a system from introducing errors. It is basically used to hide the occurrence

of faults and prevent faults from resulting in errors. Fault masking is used in systems that cannot

allow even momentary erroneous results to be generated. Example: Error correcting memories

and majority voting. Reconfiguration is the process of eliminating faulty component from a

system and restoring the system to some operational state. Following are the approaches to

reconfiguration: 1. Fault detection is the process of recognizing that a fault has occurred. Fault

detection is often required before any recovery procedure can be initiated. 2. Fault location is the

process of determining where a fault has occurred so that an appropriate recovery can be

initiated. 3. Fault containment is the process of isolating a fault and preventing the effects of that

fault from propagating throughout the system. 4. Fault recovery is the process of regaining

operational status or remaining operational via reconfiguration even in the presence of faults.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

101

3.1. Mechanisms

Fault tolerance mechanism in the grid environment can be divided into two main types:

proactive and post-active. In proactive fault tolerance mechanism the failure consideration for

the grid is made before the scheduling of a job, and dispatched with hopes that the job does not

fail. On the other hand, the post-active mechanism handles the job failure after it has occurred

[10].

3.2. Techniques

As in distributed systems generally, recovery methods in grid systems rely on exploitation of

redundancy. Redundancy is the key for fault-tolerance. There can be no FT without redundancy!

There are two types of redundancy: temporal redundancy and spatial redundancy. Temporal

redundancy involves repeated attempts to restart failed resources or services. Spatial redundancy

attempts to take advantage of multiple copies of computing resources. Fault tolerance in

computer system is achieved through redundancy in hardware, software, information, and/or

computations. Such redundancy can be implemented in static, dynamic, or hybrid

configurations. Redundancy is the incorporation of extra components in the design of a system

so that its function is not impaired in the event of a failure. That is addition of extra

information/resources/time beyond what is needed for normal system operation.

There are four forms of redundancy: Hardware Redundancy, Software Redundancy,

Information Redundancy, and Time Redundancy. Hardware faults are usually dealt with by

using hardware, information, or time redundancy, whereas software faults are protected against

by software redundancy [33].

Hardware Redundancy: It is provided by incorporating extra hardware into the design to either

detect or override the effects of a failed component. Extra hardware is added to override the

effects of a failed component. For example, instead of having a single processor, we can use two

or three processors, each performing the same function. By having two processors, we can detect

the failure of a single processor; by having three, we can use the majority output to override the

wrong output of a single faulty processor. This is an example of static hardware redundancy, the

main objective of which is the immediate masking of a failure. A different form of hardware

redundancy is dynamic redundancy, where spare components are activated upon the failure of a

currently active component. A combination of static and dynamic redundancy techniques is also

possible, leading to hybrid hardware redundancy. Hardware redundancy can thus range from a

simple duplication to complicated structures that switch in spare units when active ones become

faulty.

Software Redundancy: It is the addition of extra software, beyond what is needed to perform a

given function, to detect and possibly tolerate faults. It independently produces two or more

versions of that software (preferably by disjoint teams of programmers) in hope that the different

versions will not fail on the same input. These forms of design diversity will ensure that not all

copies will fail on the same set of input data.

Information Redundancy: It is the addition of extra information beyond that required to

implement a given function. Here, extra bits (called check bits) are added to the original data bits

so that an error in the data bits can be detected or even corrected. Information redundancy often

requires hardware redundancy to process the additional check bits.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

102

Time Redundancy: It uses additional time to perform the functions of a system such that fault

detection and often fault tolerance can be achieved. The systems exploit time redundancy

through re-execution of the same program on the same hardware.

The use of redundancy can provide additional capabilities within a system. But, redundancy can

have very important impact on a system's performance, size, weight, power consumption, and

reliability.

Both temporal and spatial redundancy is used in grids. However, because grid systems

inherently provide redundant computing resources, spatial redundancy has been a focus of fault-

tolerance research. Three techniques that emphasize spatial redundancy exist: (1) checkpointing,

or periodically saving the state of a process running on a computing resource so that, in the event

of resource failure, it can resume on a different resource; (2) replication, or maintaining a

sufficient number of replicas, or copies, of a process executing in parallel on different resources

so that at least one replica succeeds; and (3) rescheduling, or finding different resources to rerun

failed tasks. Note that (1) and (3) involve operations that repeat over time and are therefore

temporally redundant as well. Fault tolerance techniques in grid systems are commonly achieved

with checkpoint-recovery and job replication on alternative resources, in cases of system outage.

3.2.1. Checkpoint-Recovery

Checkpoint-recovery depends on the system’s MTTR. It periodically saves the state of the

application on stable storage, usually a hard disk. After a crash, the application is restarted from

the last checkpoint rather than from the beginning. There are three checkpointing strategies.

They are coordinated checkpointing, uncoordinated checkpointing, and communication-induced

checkpointing. In coordinated checkpointing, processes synchronize checkpoints to ensure their

saved states are consistent with each other, so that the overall combined, saved state is also

consistent. In contrast, in uncoordinated checkpointing, processes schedule checkpoints

independently at different times and do not account for messages. Communication-induced

checkpointing attempts to coordinate only selected critical checkpoints [24].

Some of the issues are: At what level (user or kernel) should we checkpoint: what are the pros

and cons of each level? How transparent to the user should the checkpointing process be? How

many checkpoints should we have? At which points during the execution of a program should us

checkpoint? How can we reduce checkpointing overhead? The problem of determining the

optimal number of checkpoints is known as the checkpoint placement problem and its objective

is to minimize the expected total execution time, ckeckpointing storage type and location, and

checkpointing frequency.

3.2.2. Replication

Replication depends on the availability of alternative sits to run replicas. In grid resource

replication, multiple grid resources simultaneously perform an identical computation and

maintain identical state. The goal of replication is to ensure that at least one replica is always

able to complete the computation in the event others fail. In some cases, one replica may be

designated as a primary copy for purposes of external interaction, whereas others assume the

role of backups.

Although replication method is widely used as a fault tolerance technique but number of

backups is a main drawback. Number of backups increase drastically as coverage against

number of fault increases. As the number of backup increase management of these backups is

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

103

very costly. Fusion based techniques overcome this problem. It is emerging as a popular

technique to handle multiple faults. Basically it is an alternate idea for fault tolerance that

requires fewer backup machines than replication based approaches. In fusion based fault

tolerance a technique, back up machines is used which is cross product of original computing

machines. These backup machines are called as fusion corresponding to the given set of

machines. Overhead in fusion based techniques is very high during recovery from faults. Hence

this technique is acceptable if probability of fault is low. Two aspects of research in resource

replication are considered: (1) Algorithms for determining optimal (or near-optimal) placement

of replicas in order to increase fault tolerance and (2) Methods for synchronizing replica states to

ensure their consistency.

Some of the issues are: degree of replication, replica on demand, consistency, and number of

replicas as a reaction on changing system properties (number of active resources, resource

failure frequency and system load).

4. FAULT-TOLERANT NETWORKS

Fault tolerance in networks is achieved by having multiple paths connecting source to

destination, and/or spare units that can be switched in to replace the failed units.

4.1. Network Measures

The following measures express the degradation of the dependability and performance of a

computer network in the presence of faults. Reliability: Network reliability R (t) at time t, as the

probability that all the nodes are operational and can communicate with each other over the

entire time interval [0, t]. Path reliability /terminal reliability, as the probability that an

operational path has existed for this source-destination pair during the entire interval [0, t].

Bandwidth: the maximum rate at which messages can flow in a network. It usually degrades as

nodes or links fail in a network. Connectability: Expected number at time t of source-destination

pairs which are still connected in the presence of a failure process.

4.2. Common Network Topologies and Their Resilience

1. Crossbar Network: In crossbar networks, the failure of any switchbox will disconnect certain

input-output pairs. Redundancy can be introduced to make the crossbar fault tolerant. We add a

row and a column of switchboxes and augment the input and output connections so that each

input can be sent to either of two rows, and each output can be received on either of two

columns. If any switchbox becomes faulty, the row and column to which it belongs are retired,

and the spare row and column are pressed into service. 2. Rectangular Mesh Network: A

conventional two-dimensional rectangular mesh network is unable to tolerate any faults in any of

its nodes without losing the mesh property. The fault tolerant mesh network includes spare nodes

that can be switched in to take the place of any of their neighbors that have failed [33].

4.3. Fault-Tolerant Routing

The objective of a fault-tolerant routing strategy is to get a message from source to destination

despite a subset of the network being faulty [33]. The basic idea is simple: if no shortest or most

convenient path is available because of link or node failures, reroutes the message through other

paths to its destination. The examples for fault tolerant routing are hypercube fault-tolerant

routing and origin-based routing in the mesh. The basic idea of hypercube fault-tolerant routing

is to list the dimensions along which the message must travel and then traverse them one by one.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

104

As edges are traversed, they are crossed off the list. If, because of a link or a node failure, the

desired link is not available, then another edge in the list, if any, is chosen for traversal. If no

such edges are available (the message arrives at some node to find that all dimensions on its list

are down), it backtracks to the previous node and tries again. In origin-based routing in the mesh

the faulty regions are known in advance.

5. GRID FAULT MANAGEMENT IN DISTINCT FUNCTIONAL AREAS

Resource-level fault tolerance techniques involve the application of standard fault tolerance

techniques in each and every one of the resources in the system. The heterogeneous and non-

dedicated nature of the system increase complexity. Resource level failures like node crashes,

link failure, events such as a machine turning unexpectedly off or the temporary loss of a

network link are clearly regarded as faults.

Service-level fault tolerance, on the other hand, deals with system-wide policies aiming to

increase dependability of the services provided. The Quality-of-Service (QoS) is the key factor.

Dependability of a system is the ability to avoid service failures that are more frequent and more

severe than is acceptable.

5.1. Scheduling

The basic grid model generally composed of a number of hosts, each composed of

several computational resources, which may be homogeneous or heterogeneous. The four basic

building blocks of grid model are user, resource broker, grid information service (GIS) and lastly

resources. When user requires high speed execution, the job is submitted to the broker in

grid. Broker splits the job into various tasks and distributes to several resources

according to user’s requirements and availability of resources. GIS keeps the status

information of all resources which helps the broker for scheduling.

Job Scheduling: Job scheduling is the mapping of jobs to specific physical resources,

trying to minimize some cost function specified by the user. This is a NP-complete problem

and different heuristics may be used to reach an optimal or near optimal solution.

Effective computation and job scheduling is rapidly becoming one of the main challenges in grid

computing and is seen as being vital for its success.

Resource Scheduling: The grid resource scheduling process can be defined as the process of

matching a query for resources, described in terms of required characteristics, to a set of

resources that meet the expressed requirements. To make information available to users quickly

and reliably, an effective and efficient resource scheduling mechanism is crucial. Generally grid

resources are potentially very large in number with various individual resources that are not

centrally controlled. These resources can enter as well as leave the grid systems at any time. For

these reasons resource scheduling in large-scale grids can be very challenging.

5.1.1 Fault Tolerant Scheduling

This strategy maintains history of the fault occurrence of resource in Grid Information Service

(GIS). Whenever a resource broker has job to schedule it uses the Resource Fault Occurrence

History (RFOH) information from GIS and depending on this information use different intensity

of checkpointing and replication while scheduling the job on resources which have different

tendency towards fault. Further, it increases the percentage of jobs executed within specified

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

105

deadline. Using checkpoint techniques, this strategy can make grid scheduling more reliable and

efficient [13].

This algorithm can also use RFOH information in Genetic Algorithm to schedule the job with

optimized resource [14]. It can reduce the probability of selecting the resources that have more

fault occurrence history. Therefore we have a reliable scheduling and kind of fault tolerance. In

this paper we presented a new GA for reliable job scheduling in the Grid. This algorithm uses

RFOH information which is maintained in FOHT. The using of this information causes the

reduction of selecting chance of the resources which have more failure probability.

Grid Tuple-Space (GRIDTS) is a decentralized and fault-tolerant grid infrastructure [12], in

which the resources pick the tasks to execute, instead of using a centralized scheduler. The

communication is made using a tuple space, benefiting from it being decoupled in time and

space. It combines different fault tolerance techniques-checkpointing, transaction, replication- to

provide fault-tolerant scheduling.

5.2. Agent Oriented Fault Tolerant (Mobile Agent)

In [6], mobile agents are used for providing fault tolerance. The mechanism is named as MAG

(Mobile Agents Technology for Grid Computing Environments). Here, fault tolerant

components are developed as mobile agents to provide fault tolerance. Mobile agents form a

multiagent society. Agent maintains information about hardware conditions, executing process

memory consumption, available resources, network conditions and component mean time to

failure. Based on this information and critical states, agent enables the grid system to tolerate

faults.

5.3. Fault Tolerance in Advance Reservations

Advance Reservation is a process of requesting various resources for use at a later time. It

provides an efficient method to guarantee the availability of resources to users and applications

at the required time. It increases the probability of admission of the job and this planning of

resources in advance allows users to gain concurrent access for their applications to be executed

in parallel (i.e., in co-allocation environment).

In [7] , failure recovery not only has to handle already active jobs, but also those which are

admitted but not yet started, inactive jobs. This means that the affected inactive jobs have to

remap in advance to another matching resource. During execution any node failure occurs the

active affected jobs are assigned to other resources using remapping technique in which the

downtime is used, but it is increased the number of terminated jobs. The remapping of admitted

but not yet active jobs is essential in order to reduce the number of terminated jobs and hence the

overall resource utilization is increased.

Link Failure can be recovered by rerouting flows based on the actual load of the network. Once

a failure on the network is notified, the affected flows are mapped onto alternative paths using

downtime-independent strategy [9].

One job’s overtime (exceeding its booked time) may lead to a serious of job’s abnormal

termination (Process Failure). It will affect resource utilization of later jobs. The system can

redirect later inactive jobs to other nodes transparently when the active job is detected that may

exceed its booked time [11]. Hence it decreases the abnormal termination ratio and improve

system throughput.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

106

5.4. Fault Tolerant Load Balancing

Load balancing is a technique to enhance resources, utilizing parallelism, exploiting

throughput improvisation, and to cut response time through an appropriate distribution of the

applications. This model [19] can checkpoint tasks in a consistent state and migrate those tasks

immediately to other lightly balanced nodes using intra-cluster and intra-grid load balancing

strategy. It uses Fault detector that detects the occurrence of resource failures and fault manager

that guarantees that the tasks submitted are completely executed using available resources. In

this load balancing model, if worker node Nij fails, then at First level: Fault Detector (FD) of ith

cluster detects the Nij failure and reports it to its Fault Manager (FM) and FM decides whether

to start or not a local task migration operation from Nij to rest of its worker nodes and at Second

level: Tasks of Nij are transferred to under loaded clusters. (Minimal communication cost for

transferring tasks).

5.5. Fault Tolerance and Recovery of Workflows

Grid workflow as defined as the orchestration of a set of atomic tasks processed at distributed

resources in a well-defined order to accomplish a large and sophisticated goal. Currently,

Directed Acyclic Graph (DAG) has been extensively used in scientific computational workflow

modeling. In a grid environment, workflow execution failure can occur for various reasons: the

variation in the execution environment configuration, non-availability of required services or

software components, overloaded resource conditions, system running out of memory, and faults

in computational and network fabric components. Grid workflow management systems should

be able to identify and handles failures and support reliable execution the presence of

concurrency and failures. Hwang et al. [32] divided workflow failure handling techniques into

two different levels, namely task-level and workflow-level may alter the sequence of execution

in order to address the failures. Hwang and Kesselman proposed three different techniques. (i)

The alternate task technique executes another implementation of a certain tasks if the previous

one failed. (ii) The redundancy technique executes multiple alternative tasks simultaneously. (iii)

The user-defined exception handling allows the users to specify a special treatment for a certain

failure of a task in workflow. At Workflow level, failures can occur in data movement or

infinite loops in dynamic workflows. Incorrect or not available input data could also produce

faults.

5.6. Fault Tolerance in Resource Co-Allocation

One of the promises of Grid Computing is to enable the execution of applications across

multiple sites. Some of these applications require coordinated access to resources managed by

utonomous entities. This coordinated access is known as resource co-allocation. Co-allocation is

the process of allocating resources from multiple providers in a coordinated manner. A

computational grid is typically composed of several sites from geographically distributed

organizations Parallel jobs should be scheduled to spread to more than one sites in order to run

simultaneously on several sites without considering the resource limitation from one single site.

The grid scheduling algorithm should be capable of coordinating these resources from different

sites [30].

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

107

5.7. Fault Tolerance Mechanism for SLA-Aware Resource Management

A Service Level Agreement (SLA) is a powerful instrument for describing all expectations and

obligations in the business relationship between service customer and service provider. It does

not only cover questions and regarding the required resources, but also applies to issues like

QoS, fault tolerance, or the measurement of SLA compliance. In addition, it encompasses the

price for resource consumption, respectively the penalty fee for breaking the agreement. This

system allows the Grid use to negotiate on SLAs, assuring the adherence with agreed SLAs by

means of application-transparent checkpointing, and migration. Features like advance

reservations, diffuse requests, and negotiation protocols are mandatory to realize SLA-aware

RMS (Resource Management System). RMS provides uniform and transparent access to large

pools of heterogeneous resources [19].

In Failure-Aware Grid resource Management system the Virtual Resource Manager (VRM)

which supports QoS by means of SLAs [7]. In this work it addresses the problem of remapping

reservation to other resources when the originally selected resource fails. It mainly focuses on

those jobs that are scheduled to a failed resource and not yet started its execution, which is so

called in-active jobs. Instead of dealing with fault tolerance of active jobs which usually requires

checkpointing and migration. It computes a remapping interval during which it remaps those

jobs that are assigned to a faulty resource and are inactive to some other resource in advance

before it begins its execution. The checkpointing algorithms used in this paper are based on this

concept and thus are cooperative (adaptive) heuristics.

5.8. Fault Tolerance in Optical Grid

In optical grid [21], an application is modeled as DAG. Each task can be viewed as a checkpoint.

If a grid resource fault happens, the application can be continued from the interrupted task

instead of execution from the beginning of the application. The grid resources including

computational, storage and visualization devices are connected by optical network with optical

switches and optical links. When a fault happens to a grid resource or an optical link, the

execution of task on the resource or the data communication in the optical link is interrupted and

stopped. The fault is independent from each other. There is a fault manager in the optical grid

system, and all the faults can be detected as soon as they occur. In this paper the rescheduling

policy to achieve fault-tolerance in optical grid.

During the execution, if a fault occurs, the fault manager is able to collect the fault information

and the execution manager is able to collect the application’s execution information. Based on

the information of the fault and application, it can reschedule the unfinished tasks and data

communication. If an execution of a task is interrupted by a resource fault, it will have to be

executed again, but for an interrupted data communication it can be continued from the

interrupted point instead of from the beginning of the data. For unfinished tasks, it assigns it to

the resource with minimal finish time. If an interrupted task is rescheduled to another resource,

all the data it needs will transferred to the resource. The rescheduling algorithm schedules the

unfinished part of the application based on the fault information, so it will be able to find a better

schedule for the application with less execution time.

6. FINDINGS AND CONCLUSIONS

The study has surveyed the progress in making grid systems more reliable. It has found that, to

date, efforts to make grid systems more reliable have centered on developing methods for fault

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

108

tolerance. Efforts toward improving fault tolerance have focused on distinct functional areas of

grid computing, including computational hardware and software resources, user applications and

workflows, scheduling, advance reservation, co-allocation, SLA, load balancing, infrastructure

and management services, and grid networks. Generally, work has progressed differently in

these areas, and in each area, different problems remain to be solved.

Hence, new fault detection methods, client transparent fault tolerance architecture, on demand

fault tolerant techniques, economic fault tolerant model, optimal failure prediction system,

multiple faults tolerant model and self adaptive fault tolerance framework have been proposed to

make the grid environment is more dependable and trustworthy.

REFERENCES

[1] Ian Foster and Carl Kesselman, S.T., (2001) “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”, Intl J. Supercomputer Applications, 15: 200-222.

 [2] I. Foster and C. kesselman, (2004) “The Grid: Bluprint for a New Computing Infrastructure, 2nd

Edition, and pp: 748.

[3] R. Medeiros, W. Cirne, f. Braso;erop amd J. Sauve, (2003) “ Faults in Grids: Why are they so

bad and What can be done about it?, In Proceedings of the Fourth International Workshop on grid

Computing.

[4] Weissman, J.B, (1999) “Fault Tolerant Computing on the Grid”, pp: 351-352, HPDC.

[5] Mohammad Tanvir Huda, Heinz and W. Schmidt, Ian D. Peake , (2005) ”An Agent Oriented

proactive Fault-tolerant framework for Grid Computing”, In Proceedings of the First IEEE

International Conference on e-Science and Grid Computing, pp.304-311.

[6] Rafael Fernandes Lopes and Francisco Jos´e da Silva e Silva, (2006) “Fault tolerance in a Mobile

Agent Based Computational grid”, In Proceedings of the Sixth IEEE International Symposium

on Cluster Computing and the Grid Workshops.

[7] Lars-Olof Burchard, Cesar, A. F. De Rose, Hans-Ulrich Heiss, Barry Linnert, and Jorg

Schneider, (2005) “VRM: A Failure-Aware Grid Resource Management System”, In

Proceedings of the 17th IEEE International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD’05) 1550-6533.

[8] Buyya R, (2002) “ Economic-based distributed resource management and scheduling for grid

computing Ph.D. Paper, Monash University, Melbourne, Australia.

[9] Lars-Olof Burchard, Barry Linnert and Joerg Schneider, (2005) “Rerouting Strategies for

Networks with Advance Reservations”, Proceedings of the First IEEE International Conference

on e-Science and Grid Computing 0-7695-2448-6.

[10] Nazir, B. and Khan, T., (2006) “Fault Tolerant job Scheduling in Computational Grid. Emerging

Technologies, In IEEE International Conference on Emerging Technologies, Volume, Issue, 13-

14.

[11] Libing Wu1, Chanle Wu1 , Jianqun Cui , Huyin Zhang1 and Gang Ye, (2006) ” An Overtime-

tolerance Strategy for Advance reservation”,in Proceedings of the Seventh international

Conference on Parallel and distributed Computing, Applications and Technologies.

[12] Fabio Favarim, joni da silva Fraga, lau Cheuk Lung and Miguel Correia,(2007) “GRID TS: A

New Approach for Fault-Tolerant Scheduling in Grid Computing”, In International Symposium

on Network Computing and applications, pages: 187-194.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

109

[13] Leyli Mohammad Khanli, (2010) “Reliable Job Scheduler using RFOH in Grid Computing”,

Journal of Emerging Trends in Computing and Information Sciences, Vol. 1, No. 1.

[14] Leili Mohammad Khanli , Maryam Etminan and Far Amir Masoud Rahmani , (2010)

”RFOH: A New Fault Tolerant Job Scheduler in Grid Computing”, In Second International

Conference on Computer Engineering and Applications .

[15] P. Stelling, I. Foster, C. Kesselman, C. Lee and G. Von Laszewski, (1998) “A fault detection

service for wide area distributed computations”, In Proceedings of 7thIEEE symposium on

High Performance Distributed Computing.

[16] Babar Nazir, Kalim Qureshi and Paul Manuel, (2009) “Adaptive checkpointing strategy to

tolerate faults in economy based grid”, J Supercomput , 50: 1-18.

[17] Lars-Olof Burchard’, Matthias Hovestadt’, Odej Kao’, Axel Keller’ and Barry

Linnert’,(2004)“The virtual Resource Manager: An Architecture for SLA-aware Resource

Management”, in IEEE International Symposium on Cluster Computing and the Grid.

[18] Matthias hovestadt, (2005) ”fault tolerance Mechnisms for SLA-aware Resource management”,

in International conference on Parrallel and Distributed Systems.

[19] B. Yagoubi and M. Medebber, (2007) “A Load Balancing Model for Grid Environment”, IEEE.

 [20] Elvin Sindrilaru, Alexandru Costan , Valentin Cristea , (2010) “Fault Tolerance and

 Recovery in Grid Workflow Management Systems”, In International Conference on

Complex, Intelligent and Software Intensive Systems.

[21] Y. Wang, Y. H. jin, W. Guo, W. Q. Sun, W. S. hu and M. Y. Wu, (2007) “ Joint Scheduling for

Optical Grid Applications”, Journal of Optical Networking, Vol. 6, pp. 304-318.

[22] J. H. Abawajy, (2004) “ Fault-Tolerant Scheduling Policy for Grid Computing Systems”, In

Proceedings of the 18th International Parallel and Distributed Processing Symposium.

 [23] Satish Tadepalli, Calvin Ribbens and Srinidhi Varadarajan, “GEMS: A Job Management System

for Fault Tolerant Grid Computing”, High-Performance Computing Symposium, ISBN: 1-56555-

278-4.

[24] Eric roman, (2002) “A Survey of checkpoint/restart Implementations”, Lawrence Berkley

National Laboratory, CA.

[25] Paul Townend, jie Xu, (2003) ”Fault tolerance within a grid Environment”, As part of the e-

Demand project at the University of Durham, DHI 3LE, United Kingdom.

[26] A. Nguyen-Tuong, (2000) “Integrating fault-tolerance techniques in Grid applications”, Ph.D,

Dissertation, university of Virginia.

[27] J. Daly, (2003) “A model for predicting the optimum checkpoint interval for restart dumps”, in

Proceedings of the ICCS2003, Lecture Notes in Computer Science 2660, Vol. 4, pp:3-12.

[28] H. Lee, K. Chung, S. Chin, J. Lee, D. Lee, S. Park and H.Yu, (2005) “ A resource management

and fault tolerance services in grid computing”, J Parallel Distributed Computing, vol. 65(11),

pp.1305-1317.

[29] Antonios Litke, Dimitrios Halkos, Konstantinos Tserpes, Dimosthenis Kyriazis and Theodora

Varvarigou, (2009) “ Fault tolerant and prioritized scheduling in OGSA-based mobile Grids”,

Concurrency and computation practice and experience, 21:533-556.

 [30] Foster I , Kesselman C, Lee C, Lindell B, Nahrstedt K and Roy A,(1999) “A distributed resource

management architecture that supports advance reservation and co-a allocation”, Proceedings

of the International Workshop on QoS, London, U.K.,27-36.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

110

[31] Eduardo Huedo, Ruben S. Montero, Ignacio M. Llorente, (2006) ”Evaluating the reliability of

computational grids from the end user’s point of view”, Journal of Systems Architecture, 727-

736.

[32] S. Hwang and C. Kesselman, (2003) “Grid Workflow: A Flexible Filure handling Framework for

the Grid”, In Proceedings of the 12th IEEE International Symposium on High Performance

Distributed Computing, Seattle, Washington, USA.

 [33] Israel Koren and C.Mani Krishna, (2007) “Fault Tolerant Systems”, Elsevier Inc.,

ISBN: 978-81-312-1530-2.

AUTHORS

P. Latchoumy received B.Tech degree in Computer Science and

Engineering from Pondicherry Engineering College, Pondicherry

University, Puducherry, India in 1997. She received M.E in the area of

Computer Science and Engineering from Crescent Engineering

College, Anna University, Chennai, Tamil Nadu, India in 2005.

Currently, she is an Assistant Professor in the Department of

Information Technology and pursuing her Ph.D in the area of Fault

Tolerance in Grid Computing from BSA University, Chennai,

Tamilnadu, India. Her research interests include Fault Tolerance, Grid

Computing, Scheduling and Distributed Computing.

Dr. P. Sheik Abdul Khader has 26 years of Teaching Profession and 15

years of Research Experience. He obtained his Ph.D degree from

School of Computer Science and Engineering, Anna University,

Chennai, Tamil Nadu, India. Currently, he is a Professor and Head in

the Department of Computer Applications, BSA University, Chennai,

Tamilnadu, India. He has presented papers in 34 Conferences

organized by IEEE and Springer and also published papers in 12

Refereed International Journals. He is currently guiding 15 Ph.D

Research Scholars in different thrust areas. His research interests

include Routing Algorithms, Fuzzy, MANET, Distributed Computing,

Genetic Algorithms, Grid Computing and Cloud Computing.

