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ABSTRACT 

This paper investigates the global chaos synchronization of identical Qi four-wing chaotic systems (Qi et 

al., 2008), identical Liu four-wing chaotic systems (Liu, 2009) and identical Wang chaotic systems (Wang 

et al., 2009). The stability results derived in this paper for the complete synchronization of the three pairs 

of identical four-wing chaotic systems are established using Lyapunov stability theory. Since the Lyapunov 

exponents are not required for these calculations, the sliding mode control method is very effective and 

convenient to achieve global chaos synchronization of the four-wing chaotic systems. Numerical 

simulations are shown to illustrate and validate the synchronization schemes derived in this paper for the 

identical four-wing chaotic systems. 
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1. INTRODUCTION 

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1].  Synchronization 

of chaotic systems is a phenomenon which may occur when two or more chaotic oscillators are 

coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly 

effect which causes the exponential divergence of the trajectories of two identical chaotic systems 

started with nearly the same initial conditions, synchronizing two chaotic systems is seemingly a 

very challenging problem. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically. 

Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has 

been studied extensively and intensively in the literature [2-29]. Chaos theory has been applied to 

a variety of fields such as physical systems [3], chemical systems [4], ecological systems [5], 

secure communications [6-8], etc. 
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In the last two decades, various schemes have been successfully applied for chaos 

synchronization such as PC method [2], OGY method [9], active control method [10-14], 

adaptive control method [15-18], time-delay feedback method [19], backstepping design method 

[20-22], sampled-data feedback method [23], etc. 

In this paper, we derive new results based on the sliding mode control [24-26] for the global 

chaos synchronization of identical Qi four-wing chaotic systems ([27], 2008), identical Liu four-

wing chaotic systems ([28], 2009) and identical Wang four-wing chaotic systems ([29], 2009).  In 

robust control systems, the sliding mode control method is often adopted due to its inherent 

advantages of easy realization, fast response and good transient performance as well as its 

insensitivity to parameter uncertainties and external disturbances. 

This paper has been organized as follows. In Section 2, we describe the problem statement and 

our methodology using sliding mode control (SMC). In Section 3, we discuss the global chaos 

synchronization of identical Qi four-wing chaotic systems (2008) using sliding mode control. In 

Section 4, we discuss the global chaos synchronization of identical Liu four-wing chaotic systems 

(2009) using sliding mode control. In Section 5, we discuss the global chaos synchronization of 

identical Wang four-wing chaotic systems (2009) using sliding mode control.   In Section 6, we 

summarize the main results obtained in this paper. 

2. PROBLEM STATEMENT AND OUR METHODOLOGY USING SMC 

In this section, we describe the problem statement for the global chaos synchronization for 

identical chaotic systems and our methodology using sliding mode control (SMC). 

Consider the chaotic system described by 

           ( )x Ax f x= +&                                                                                                             (1) 

where 
n

x ∈R is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system. We consider the system (1) as the master or 

drive system. 

As the slave or response system, we consider the following chaotic system described by the 

dynamics 

        ( )y Ay f y u= + +&                                                                                                          (2) 

where 
n

y ∈R is the state of the system and 
m

u ∈R is the controller to be designed.  

If we define the synchronization error as  

         ,e y x= −                                                                                                                        (3) 

then the error dynamics is obtained as   

         ( , ) ,e Ae x y uη= + +&                                                                                                     (4) 

where  

            ( , ) ( ) ( )x y f y f xη = −                                                                                               (5) 
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The objective of the global chaos synchronization problem is to find a controller u such that 

          lim ( ) 0
t

e t
→∞

=    for all (0) .n
e ∈R  

To solve this problem, we first define the control u as 

         ( , )u x y Bvη= − +                                                                                                            (6) 

where B is a constant gain vector selected such that  ( , )A B    is controllable.  

Substituting (5) into (4), the error dynamics simplifies to 

        e Ae Bv= +&                                                                                                                      (7) 

which is a linear time-invariant control system with single input .v  

Thus, the original global chaos synchronization problem can be replaced by an equivalent 

problem of stabilizing the zero solution 0e = of the system (7) by a suitable choice of the sliding 

mode control. In the sliding mode control, we define the variable 

     1 1 2 2( ) n ns e Ce c e c e c e= = + + +L                                                                                      (8) 

where [ ]1 2 nC c c c= L is a constant vector to be determined. 

In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold 

defined by 

     { }| ( ) 0n
S x s e= ∈ =R  

which is required to be invariant under the flow of the error dynamics (7). 

When in sliding manifold ,S the system (7) satisfies the following conditions: 

         ( ) 0s e =                                                                                                                          (9) 

which is the defining equation for the manifold S and 

          ( ) 0s e =&                                                                                                                        (10) 

which is the necessary condition for the state trajectory ( )e t  of (7) to stay on the sliding manifold 

.S  

Using (7) and (8), the equation (10) can be rewritten as 

        [ ]( ) 0s e C Ae Bv= + =&                                                                                                (11) 

Solving (11) for ,v we obtain the equivalent control law  
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1

eq ( ) ( )  ( )v t CB CA e t−= −                                                                                              (12) 

where C is chosen such that 0.CB ≠  

Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 

          
1( )e I B CB C Ae

− = − &                                                                                            (13) 

The row vector C is selected such that the system matrix of the controlled dynamics 
1( )I B CB C A

− −  is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the 

controlled system (13) is globally asymptotically stable.  

To design the sliding mode controller for (7), we apply the constant plus proportional rate 

reaching law 

           sgn( )  s q s k s= − −&                                                                                                    (14) 

where sgn( )⋅ denotes the sign function and the gains 0,q >  0k > are determined such that the 

sliding condition is satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control ( )v t as 

         [ ]1( ) ( ) ( ) sgn( )v t CB C kI A e q s−= − + +                                                                     (15) 

which yields 

        
[ ]
[ ]

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0

CB C kI A e q s e
v t

CB C kI A e q s e

−

−

− + + >
=

− + − <





                                                            (16) 

Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically 

synchronized for all initial conditions (0), (0) n
x y R∈ by the feedback control law 

        ( ) ( , ) ( )u t x y Bv tη= − +                                                                                                 (17) 

where ( )v t is defined by (15) and B is a column vector such that ( , )A B is controllable. Also, the 

sliding mode gains ,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the 

closed-loop error dynamics as 

       [ ]1( ) ( ) sgn( )e Ae B CB C kI A e q s−= − + +&                                                                    (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate 

Lyapunov function defined by the equation 

       
21

( ) ( )
2

V e s e=                                                                                                                (19) 
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which is a positive definite function on .n
R  

Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 

      
2( ) ( ) ( ) sgn( )V e s e s e ks q s s= = − −& &                                                                       (20) 

which is a negative definite function on .n
R   

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the 

error dynamics (18), which has a globally defined, negative definite time derivative .V&   

Thus, by Lyapunov stability theory [30], it is immediate that the error dynamics (18) is globally 

asymptotically stable for all initial conditions (0) .n
e ∈R   

Hence, it follows that the master system (1) and the slave system (2) are globally and 

asymptotically synchronized for all initial conditions (0), (0) .n
x y ∈R  

This completes the proof. � 

3. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL QI FOUR-WING 

SYSTEMS USING SLIDING MODE CONTROL 

3.1 Theoretical Results 

In this section, we apply the sliding mode control results derived in Section 2 for the global chaos 

synchronization of identical Qi four-wing chaotic systems ([27], Qi et al., 2008). 

Thus, the master system is described by the Qi dynamics 

          

1 2 1 2 3

2 1 2 1 3

3 3 1 2

( )x a x x x x

x cx dx x x

x bx x x

ε= − +

= + −

= − +

&

&

&

                                                                                          (21) 

where 1 2 3, ,x x x  are state variables, , ,a b d are all real positive constant parameters and  ,c ε are 

real constant parameters of the system. 

The slave system is  described by the controlled Qi dynamics 

          

1 2 1 2 3 1

2 1 2 1 3 2

3 3 1 2 3

( )y a y y y y u

y cy dy y y u

y by y y u

ε= − + +

= + − +

= − + +

&

&

&

                                                                                  (22) 

where 1 2 3, ,y y y are state variables and 1 2 3, ,u u u are the controllers to be designed. 

The Qi systems (21) and (22) are chaotic when  

            14,  43,  1,  16a b c d= = = − =   and  4.ε =  
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Figure 1 illustrates the four-wing chaotic attractor of the Qi system (21). 

 

Figure 1.  State Orbits of the Qi Chaotic System 

The chaos synchronization error is defined by 

       ,  ( 1, 2,3)i i ie y x i= − =                                                                                                   (23) 

The error dynamics is easily obtained as 

              

1 2 1 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

( ) ( )e a e e y y x x u

e ce de y y x x u

e be y y x x u

ε= − + − +

= + − + +

= − + − +

&

&

&

                                                                       (24) 

We write the error dynamics (24) in the matrix notation as 

             ( , )e Ae x y uη= + +&                                                                                         (25) 

where 

     

0

0 ,

0 0

a a

A c d

b

− 
 =  
 − 

  

2 3 2 3

1 3 1 3

1 2 1 2

( )

( , )

y y x x

x y y y x x

y y x x

ε

η

− 
 = − + 
 − 

  and   

1

2

3

u

u u

u

 
 =  
  

.                               (26) 
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The sliding mode controller design is carried out as detailed in Section 2. 

First, we set u as 

     ( , )u x y Bvη= − +                                                                                                            (27) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

        

1

1 .

1

B

 
 =  
  

                                                                                                            (28) 

In the chaotic case, the parameter values are  

   14,  43,  1,  16a b c d= = = − =   and  4.ε =  

The sliding mode variable is selected as 

      [ ] 1 2 3
1 1 1s Ce e e e e= = = + +                                                                                 (29) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 5k = and 0.1.q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to 

speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

          1 2 3( ) 3.3333 11.6667  +12.6667 0.0333 sgn( )v t e e e s= − −                                    (30) 

Thus, the required sliding mode controller is obtained as 

         ( , )u x y Bvη= − +                                                                                                         (31) 

where ( , ),x y Bη and ( )v t are defined as in the equations (26), (28) and (30). 

By Theorem 1, we obtain the following result. 

Theorem 2. The identical Qi four-wing chaotic systems (21) and (22) are globally and 

asymptotically synchronized for all initial conditions with the sliding mode controller u defined 

by (31). � 

3.2 Numerical Results 

In this section For the numerical simulations, the fourth-order Runge-Kutta method with time-

step 
6

10h
−

= is used to solve the Qi four-wing chaotic systems (21) and (22) with the sliding 
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mode controller u given by (31) using MATLAB. 

In the chaotic case, the parameter values are  

           14,  43,  1,  16a b c d= = = − =   and  4.ε =  

The sliding mode gains are chosen as  

            5k =  and  0.1.q =  

 The initial values of the master system (21) are taken as 

         1 2 3(0) 20,  (0) 15,  (0) 12.x x x= = =  

The initial values of the slave system (22) are taken as 

             1 2 3(0) 4,  (0) 10,  (0) 15.y y y= = =  

Figure 2 illustrates the complete synchronization of the identical Qi four-wing chaotic systems 
(21) and (22). 

 

Figure 2.  Complete Synchronization of Identical Qi Four-Wing Chaotic Systems 
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4. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL LIU FOUR-WING 

SYSTEMS USING SLIDING MODE CONTROL 

4.1 Theoretical Results 

In this section, we apply the sliding mode control results derived in Section 2 for the global chaos 

synchronization of identical Liu four-wing chaotic systems ([28], Liu, 2009). 

Thus, the master system is described by the Liu dynamics 

           

2

1 2 1 2 3

2

2 1 2 1 3

3 3 2 1 2 3

( )

( )

x x x x x

x x x x x

x x x x x x

α

β

γ δ

= − +

= + −

= − + +

&

&

&

                                                                                              (32) 

where 1 2 3, ,x x x  are state variables    and  , , ,α β γ δ are real,  positive, constant parameters of the 

system. 

The Liu system (32) is chaotic when  

         50,  13,  13α β γ= = =  and 6.δ =    

Figure 3 illustrates the four-wing chaotic attractor of the Liu system (32). 

 

Figure 3.  State Orbits of the Liu Four-Wing Chaotic System 
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The slave system is described by the controlled Liu dynamics 

           

2

1 2 1 2 3 1

2

2 1 2 1 3 2

3 3 2 1 2 3 3

( )

( )

y y y y y u

y y y y y u

y y y y y y u

α

β

γ δ

= − + +

= + − +

= − + + +

&

&

&

                                                                                    (33) 

where 1 2 3, ,y y y are state variables and 1 2 3, ,u u u are the controllers to be designed. 

The chaos synchronization error is defined by 

       ,  ( 1, 2,3)i i ie y x i= − =                                                                                                     (34) 

The error dynamics is easily obtained as 

        

2 2

1 2 1 2 3 2 3 1

2 2

2 1 2 1 3 1 3 2

3 3 2 1 2 3 1 2 3 3

( )

( )

e e e y y x x u

e e e y y x x u

e e e y y y x x x u

α

β

γ δ

= − + − +

= + − + +

= − + + − +

&

&

&

                                                                           (35) 

We write the error dynamics (35) in the matrix notation as 

             ( , )e Ae x y uη= + +&                                                                                           (36) 

where 

     

0

0 ,

0

A

α α

β β

δ γ

− 
 =  
 − 

  

2 2

2 3 2 3

2 2

1 3 1 3

1 2 3 1 2 3

( , )

y y x x

x y y y x x

y y y x x x

η

 −
 

= − + 
 − 

  and   

1

2

3

u

u u

u

 
 =  
  

.                               (37) 

The sliding mode controller design is carried out as detailed in Section 2. 

First, we set u as 

     ( , )u x y Bvη= − +                                                                                                                 (38) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

        

1

1 .

1

B

 
 =  
  

                                                                                                                 (39) 

In the chaotic case, the parameter values are  

    50,  13,  13α β γ= = =  and 6.δ =  
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The sliding mode variable is selected as 

      [ ] 1 2 31 3 1 3s Ce e e e e= = = + +                                                                                 (40) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 5k = and 0.1.q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to 

speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

          1 2 3( ) 1.2 22  +1.6 0.02 sgn( )v t e e e s= − −                                                                (41) 

Thus, the required sliding mode controller is obtained as 

         ( , )u x y Bvη= − +                                                                                                         (42) 

where ( , ),x y Bη and ( )v t are defined as in the equations (37), (39) and (41). 

By Theorem 1, we obtain the following result. 

Theorem 3. The identical Liu four-wing chaotic systems (32) and (33) are globally and 

asymptotically synchronized for all initial conditions with the sliding mode controller u defined 

by (42). � 

4.2 Numerical Results 

In this section For the numerical simulations, the fourth-order Runge-Kutta method with time-

step 
6

10h
−

= is used to solve the Liu four-wing chaotic systems (32) and (33) with the sliding 

mode controller u given by (42) using MATLAB. 

In the chaotic case, the parameter values are  

          50,  13,  13α β γ= = =  and 6.δ =     

The sliding mode gains are chosen as    5k =  and  0.1.q =  

 The initial values of the master system (32) are taken as 

         
1 2 3(0) 12,  (0) 18,  (0) 25.x x x= = =  

The initial values of the slave system (32) are taken as 

             1 2 3(0) 24,  (0) 20,  (0) 6.y y y= = =  

Figure 4 illustrates the complete synchronization of the identical Liu four-wing chaotic systems 

(32) and (33). 
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Figure 4.  Complete Synchronization of Identical Liu Four-Wing Chaotic Systems 

5. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL WANG FOUR-WING 

SYSTEMS USING SLIDING MODE CONTROL 

5.1 Theoretical Results 

In this section, we apply the sliding mode control results derived in Section 2 for the global chaos 

synchronization of identical Wang four-wing chaotic systems ([29], Wang et al., 2009). 

Thus, the master system is described by the Wang dynamics 

           

1 1 2 3

2 1 2 1 3

3 3 1 2

x ax cx x

x bx dx x x

x x fx xε

= +

= + −

= +

&

&

&

                                                                                              (43) 

where 1 2 3, ,x x x  are state variables    and  , , , ,a b d fε  are real,  positive, constant parameters of 

the system with 0, 0c f> < and 0.a d ε+ + <    

The Wang system (43) is chaotic when  

          0.2,  0.01,  1,  0.4,  1a b c d ε= = − = = − = −  and 1.f = −                                                                      

Figure 5 illustrates the four-wing chaotic attractor of the Wang system (43). 
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Figure 5.  State Orbits of the Wang Four-Wing Chaotic System 

The slave system is described by the controlled Wang dynamics 

           

1 1 2 3 1

2 1 2 1 3 2

3 3 1 2 3

y ay cy y u

y by dy y y u

y y fy y uε

= + +

= + − +

= + +

&

&

&

                                                                                           (44) 

where 
1 2 3, ,y y y are state variables and 

1 2 3, ,u u u are the controllers to be designed. 

The chaos synchronization error is defined by 

       ,  ( 1,2,3)i i ie y x i= − =                                                                                                     (45) 

The error dynamics is easily obtained as 

        

1 1 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

( )

( )

e ae y y x x u

e be de y y x x u

e e f y y x x u

ε

ε

= + − +

= + − + +

= + − +

&

&

&

                                                                                    (46) 

We write the error dynamics (46) in the matrix notation as 

             ( , )e Ae x y uη= + +&                                                                                          (47) 
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where 

     

0 0

0 ,

0 0

a

A b d

ε

 
 =  
  

  

2 3 2 3

1 3 1 3

1 2 1 2

( )

( , )

( )

c y y x x

x y y y x x

f y y x x

η

− 
 = − + 
 − 

  and   

1

2

3

u

u u

u

 
 =  
  

.                                     (48) 

The sliding mode controller design is carried out as detailed in Section 2. 

First, we set u as 

     ( , )u x y Bvη= − +                                                                                                                (49) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

        

1

1 .

1

B

 
 =  
  

                                                                                                                (50) 

In the chaotic case, the parameter values are  

       0.2,  0.01,  1,  0.4,  1a b c d ε= = − = = − = −  and 1.f = −    

The sliding mode variable is selected as 

      [ ] 1 2 38 4 3 8 4 3s Ce e e e e= = − − = − −                                                                         (51) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 5k = and 0.1.q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to 

speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

         1 2 3( ) 41.64 18.4 12 0.1 sgn( )v t e e e s= − + + −                                                             (52) 

Thus, the required sliding mode controller is obtained as 

         ( , )u x y Bvη= − +                                                                                                            (53) 

where ( , ),x y Bη and ( )v t are defined as in the equations (48), (50) and (52). 

By Theorem 1, we obtain the following result. 
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Theorem 4. The identical Wang four-wing chaotic systems (43) and (44) are globally and 

asymptotically synchronized for all initial conditions with the sliding mode controller u defined 

by (53). � 

4.2 Numerical Results 

In this section For the numerical simulations, the fourth-order Runge-Kutta method with time-

step 
6

10h
−

= is used to solve the Wang four-wing chaotic systems (43) and (44) with the sliding 

mode controller u given by (53) using MATLAB. 

In the chaotic case, the parameter values are    0.2,  0.01,  1,  0.4,  1a b c d ε= = − = = − = −  and 

1.f = −   The sliding mode gains are chosen as    5k =  and  0.1.q =  

 The initial values of the master system (43) are taken as 

         1 2 3(0) 21,  (0) 4,  (0) 15.x x x= = =  

The initial values of the slave system (44) are taken as 

             1 2 3(0) 11,  (0) 10,  (0) 26.y y y= = =  

Figure 6 illustrates the complete synchronization of the identical Liu four-wing chaotic systems 

(43) and (44). 

 

Figure 6.  Complete Synchronization of Identical Wang Four-Wing Chaotic Systems 
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5. CONCLUSIONS 

In this paper, we have deployed sliding mode control (SMC) to achieve global chaos 

synchronization for the identical Qi four-wing chaotic systems (2008), identical Liu four-wing 

chaotic systems (2009) and identical Wang four-wing chaotic systems (2009). Since the 

Lyapunov exponents are not required for these calculations, the sliding mode control method is 

very effective and convenient to achieve global chaos synchronization for the identical four-wing 

chaotic systems discussed in this paper. Numerical simulations are also shown to illustrate the 

effectiveness of the synchronization results using the sliding mode control for the identical four-

wing chaotic systems discussed in this paper. 
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