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ABSTRACT 
 
This paper solves the output regulation problem of Sprott-F chaotic system, which is one of the classical 

chaotic systems discovered by J.C. Sprott (1994). Explicitly, for the constant tracking problem, new state 

feedback control laws have been derived for regulating the output of the Sprott-F chaotic system. Our 

controller design has been carried out using the regulator equations of C.I. Byrnes and A. Isidori (1990). 

The output regulation of the Sprott-F chaotic system has important applications in many areas of Science 

and Engineering. Numerical simulations are shown to illustrate the effectiveness of the control schemes 

proposed in this paper for the output regulation of the Sprott-F chaotic system. 

 

KEYWORDS 
 
 Chaos; Feedback Control; Sprott-F System; Nonlinear Control Systems; Output Regulation. 

   

 

1. INTRODUCTION 

 
In control systems literature, stabilization, control and output regulation are some important 

problems with applications in Science and Engineering. Basically, the output regulation problem 

is to control a fixed linear or nonlinear plant so that the output of the plant tracks reference signals 

produced by some external generator (the exosystem). For linear control systems, the output 

regulation problem has been solved by Francis and Wonham ([1], 1975). For nonlinear control 

systems, the output regulation problem was solved by Byrnes and Isidori ([2], 1990) generalizing 

the internal model principle obtained by Francis and Wonham [1]. Using Centre Manifold Theory 

[3], Byrnes and Isidori derived regulator equations, which characterize the solution of the output 

regulation problem of nonlinear control systems satisfying some stability assumptions. 

 

The output regulation problem for nonlinear control systems has been studied extensively by 

various scholars in the last two decades [4-14]. In [4], Mahmoud and Khalil obtained results on 

the asymptotic regulation of minimum phase nonlinear systems using output feedback. In [5], 

Fridman solved the output regulation problem for nonlinear control systems with delay using 

centre manifold theory. In [6-7], Chen and Huang obtained results on the robust output regulation 

for output feedback systems with nonlinear exosystems. In [8], Liu and Huang obtained results on 

the global robust output regulation problem for lower triangular nonlinear systems with unknown 

control direction.  

 

In [9], Immonen obtained results on the practical output regulation for bounded linear infinite-

dimensional state space systems.  In [10], Pavlov, Van de Wouw and Nijmeijer obtained results 
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on the global nonlinear output regulation using convergence-based controller design. In [11], Xi 

and Dong obtained results on the global adaptive output regulation of a class of nonlinear systems 

with nonlinear exosystems. In [12-14], Serrani, Isidori and Marconi obtained results on the semi-

global and global output regulation problem for minimum-phase nonlinear systems.   

 

In this paper, we solve the output regulation problem for the Sprott-F chaotic system ([15], 1994). 

We find state feedback control laws solving the constant regulation problem of the Sprott-F 

chaotic system using the regulator equations of Byrnes and Isidori (1990). The Sprott-F chaotic 

system is a classical three-dimensional chaotic system discovered by J.C. Sprott (1994). It has 

important applications in Science and Engineering. 

 

This paper is organized as follows. In Section 2, we provide a review the problem statement of 

output regulation problem for nonlinear control systems and the regulator equations of Byrnes 

and Isidori [2], which provide a solution to the output regulation problem under some stability 

assumptions. In Section 3, we present the main results of this paper, namely, the solution of the 

output regulation problem for the Sprott-F chaotic system for the important case of constant 

reference signals (set-point signals). In Section 4, we describe the numerical simulations for the 

state feedback controllers solving the output regulation problem for the Sprott-F chaotic system. 

In Section 5, we summarize the main results obtained in this paper. 

 

2. REVIEW OF THE OUTPUT REGULATION PROBLEM FOR NONLINEAR 

CONTROL SYSTEMS 

 
In this section, we consider a multi-variable nonlinear control system described by  

 

         ( ) ( ) ( )x f x g x u p x ω= + +&                 (1a) 

         ( )sω ω=&                     (1b) 

         ( ) ( )e h x q ω= −                (2) 

Here, the differential equation (1a) describes the plant dynamics with state x  defined in a 

neighbourhood X of the origin of 
nR and the input u takes values in 

mR subject to te effect of a 

disturbance represented by the vector field ( ) .p x ω  The differential equation (1b) describes an 

autonomous system, known as the exosystem, defined in a neighbourhood W of the origin of 

,k
R which models the class of disturbance and reference signals taken into consideration. The 

equation (2) defines the error between the actual plant output ( ) p
h x R∈ and a reference signal 

( ),q ω which models the class of disturbance and reference signals taken into consideration.  

 

We also assume that all the constituent mappings o the system (1) and the error equation (2), 

namely, , , , ,f g p s h and q are continuously differentiable mappings vanishing at the origin, i.e. 

 

     (0) 0,  (0) 0,  (0) 0,  (0) 0,  (0) 0f g p s h= = = = =  and  (0) 0.q =  

Thus, for 0,u = the composite system (1) has an equilibrium ( , ) (0,0)x ω = with zero error (2).  

A state feedback controller for the composite system (1) has the form 

                    ( ),u xρ ω=                                       (3) 
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where ρ  is a continuously differentiable mapping defined on X W×  such that (0,0) 0.ρ =  

Upon substitution of the feedback control law (3) into (1), we get the closed-loop system  

         
( ) ( ) ( , ) ( )

( )

x f x g x x p x

s

ρ ω ω

ω ω

= + +

=

&

&
       (4) 

The purpose of designing the state feedback controller (3) is to achieve both internal stability and 

output regulation of the given nonlinear control system (1).   Formally, we can summarize these 

requirements as follows. 

 

State Feedback Regulator Problem [2]: 

 

Find, if possible, a state feedback control law ( ),u xρ ω=  such that the following conditions are 

satisfied. 

(OR1) [Internal Stability] The equilibrium 0x = of the dynamics 

            ( ) ( ) ( ,0)x f x g x xρ= +&  

is locally exponentially stable. 

(OR2) [Output Regulation] There exists a neighbourhood U X W⊂ ×  of ( ), (0,0)x ω =  

such that for each initial condition ( )(0), (0) ,x Uω ∈ the solution ( )( ), ( )x t tω  of the 

closed-loop system (4) satisfies 

             [ ]lim ( ( )) ( ( )) 0.
t

h x t q tω
→∞

− =                                                                   � 

Byrnes and Isidori [2] solved the output regulation problem stated above under the following two 

assumptions. 

(H1) The exosystem dynamics   ( )sω ω=& is neutrally stable at 0,ω = i.e. the exosystem is 

Lyapunov stable in both forward and backward time at 0.ω =  

(H2) The pair ( )( ), ( )f x g x has a stabilizable linear approximation at 0,x =  i.e. if  

                
0x

f
A

x =

∂ 
=  ∂ 

   and  
0

,
x

g
B

x =

∂ 
=  ∂ 

 

then ( , )A B  is stabilizable. � 

Next, we recall the solution of the output regulation problem derived by Byrnes and Isidori [2]. 

Theorem 1. [2] Under the hypotheses (H1) and (H2), the state feedback regulator problem is 

solvable if and only if there exist continuously differentiable mappings ( )x π ω= with (0) 0π =  
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and ( )u ϕ ω= with (0) 0,ϕ = both defined in a neighbourhood of 
0

W W⊂ of 0ω = such that 

the following equations (called the regulator equations) are satisfied: 

(1) ( ) ( ( )) ( ( )) ( ) ( ( ))s f g p
π

ω π ω π ω ϕ ω π ω ω
ω

∂
= + +

∂
 

(2) ( )( ) ( ) 0h qπ ω ω− =  

When the regulator equations (1) and (2) are satisfied, a control law solving the state feedback 

regulator problem is given by 

        ( )( )u K xϕ ω π ω= + −     

where K  is any gain matrix such that A BK+  is Hurwitz.  � 

 

3.  OUTPUT REGULATION OF THE SPROTT-F CHAOTIC SYSTEM 

 
In this section, we solve the output regulation problem for the Sprott-F system ([15], 1994), 

which is one of the paradigms of the 3-dimensional chaotic systems described by the dynamics 

 

                   

1 2 3

2 1 2

2

3 1 3

x x x

x x ax

x x bx u

= +

= − +

= − +

&

&

&

         (5) 

where 1 2 3, ,x x x are the states of the system, ,a b are positive, constant parameters of the system 

and u is the scalar control. 
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Figure 1.  Strange Attractor of the Sprott-F Chaotic System 

 

J.C. Sprott ([15], 1994) showed that the system (5) has chaotic behaviour when   0.5,a =  1b =   

and  0.u =  The strange attractor of the Sprott-F chaotic system is illustrated in Figure 1.  

In this paper, we consider the output regulation problem for the tracking of constant reference 

signals (set-point signals). 

 
In this case, the exosystem is given by the scalar dynamics 

 

                 0ω =&                 (6) 

We note that the assumption (H1) of Theorem 1 holds trivially. 

 

Linearizing the dynamics of the Sprott-F chaotic system (5) at 0,x = we obtain 

 

            

0 1 1

1 0

0 0

A a

b

 
 = − 
 − 

     and   

0

0 .

1

B

 
 =  
  

        (7) 

Using Kalman’s rank test for controllability ([16], p738), it can be easily seen that the pair 

( , )A B is completely controllable.    

 

Thus, it follows that the pair ( , )A B is stabilizable. 

 

Thus, the assumption (H2) of Theorem 1 also holds.  

Hence, Theorem 1 can be applied to solve the constant regulation problem for the Sprott-I chaotic 

system (5). 
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3.1 The Constant Tracking Problem for 1x  

 
Here, the tracking problem for the Sprott-I chaotic system (5) is given by 

             

1 2 3

2 1 2

2

3 1 3

1

x x x

x x ax

x x bx u

e x ω

= +

= − +

= − +

= −

&

&

&
               (8) 

By Theorem 1, the regulator equations of the system (8) are obtained as 

       

2 3

1 2

2

1 3

1

             ( )  ( ) 0

         ( ) ( ) 0

 ( ) ( ) ( ) 0

                      ( ) 0

a

b

π ω π ω

π ω π ω

π ω π ω ϕ ω

π ω ω

+ =

− + =

− + =

− =

       (9) 

Solving the regulator equations (9) for the system (8), we obtain the unique solution as 

         1 2 3( ) ,   ( ) ,   ( )
a a

ω ω
π ω ω π ω π ω= = = −   and  

2( )
b

a

ω
ϕ ω ω= − −      (10) 

Using Theorem 1 and the solution (10) of the regulator equations for the system (8), we obtain the 

following result which provides a solution of the output regulation problem for (8). 

Theorem 2. A state feedback control law solving the output regulation problem for the Sprott-F 

chaotic system (8) is given by  

                      [ ]( ) ( ) ,u K xϕ ω π ω= + −           (11) 

where   ( ),  ( )ϕ ω π ω  are defined as in (10) and  K is chosen so that A BK+ is Hurwitz. � 

3.2 The constant Tracking Problem for 2x  

 
Here, the tracking problem for the Sprott-I chaotic system (5) is given by 

     

1 2 3

2 1 2

2

3 1 3

2

x x x

x x ax

x x bx u

e x ω

= +

= − +

= − +

= −

&

&

&
              (12) 

 By Theorem 1, the regulator equations of the system (12) are obtained as 
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2 3

1 2

2

1 3

2

             ( )  ( ) 0

         ( ) ( ) 0

 ( ) ( ) ( ) 0

                      ( ) 0

a

b

π ω π ω

π ω π ω

π ω π ω ϕ ω

π ω ω

+ =

− + =

− + =

− =

        (13) 

 Solving the regulator equations (13) for the system (12), we obtain the unique solution as 

         
1 2 3( ) ,   ( ) ,   ( )aπ ω ω π ω ω π ω ω= = = −   and  

2 2( ) a bϕ ω ω ω= − −    (14) 

Using Theorem 1 and the solution (14) of the regulator equations for the system (13), we obtain 

the following result which provides a solution of the output regulation problem for (13). 

Theorem 3. A state feedback control law solving the output regulation problem for the Sprott-F 

chaotic system (12) is given by  

                      [ ]( ) ( ) ,u K xϕ ω π ω= + −          (15) 

where   ( ),  ( )ϕ ω π ω  are defined as in (14) and  K is chosen so that A BK+ is Hurwitz. � 

3.3  The Constant Tracking Problem for 
3   x  

Here, the tracking problem for the Sprott-I chaotic system (5) is given by 

             

1 2 3

2 1 2

2

3 1 3

3

x x x

x x ax

x x bx u

e x ω

= +

= − +

= − +

= −

&

&

&
                                   (16) 

By Theorem 1, the regulator equations of the system (16) are obtained as 

          

2 3

1 2

2

1 3

3

              ( )  ( ) 0

          ( ) ( ) 0

 ( ) ( ) ( ) 0

                      ( ) 0

a

b

π ω π ω

π ω π ω

π ω π ω ϕ ω

π ω ω

+ =

− + =

− + =

− =

       (17) 

Solving the regulator equations (17) for the system (16), we obtain the unique solution as 

         1 2 3( ) ,   ( ) ,   ( )aπ ω ω π ω ω π ω ω= − = − =   and  
2 2( ) a bϕ ω ω ω= − +   (18) 

Using Theorem 1 and the solution (18) of the regulator equations for the system (16), we obtain 

the following result which provides a solution of the output regulation problem for (16). 

Theorem 4. A state feedback control law solving the output regulation problem for the Sprott-F 

chaotic system (16) is given by  

                      [ ]( ) ( ) ,u K xϕ ω π ω= + −           (17) 
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where   ( ),  ( )ϕ ω π ω  are defined as in (16) and  K is chosen so that A BK+ is Hurwitz. � 

4. NUMERICAL SIMULATIONS 

 
For simulation, the parameters are chosen as the chaotic case of the Sprott-F system, viz. 

0.5a = and 1.b =  

 

For achieving internal stability of the state feedback regulator problem, a feedback gain matrix 

K must be chosen so that A BK+ is Hurwitz.   

Suppose we wish to choose a gain matrix K such that the closed-loop system matrix A BK+ has 

stable eigenvalues{ }5, 5, 5 .− − −   

Since ( , )A B is controllable, we obtain the gain matrix K by Ackermann’s formula (MATLAB) 

as  

[ ]81.75 150.375 14.5K = − −  

For the numerical simulations, the fourth order Runge-Kutta method with step-size 
810h

−=  is 

deployed to solve the systems of differential equations using MATLAB.  

 

4.1 Constant Tracking Problem for 1x  

 
Here, the initial conditions are taken as 

       
1 2 3(0) 18,  (0) 4,  (0) 10x x x= = − =    and  2ω =  

The simulation graph is depicted in Figure 2 from which it is clear that the state trajectory 
1( )x t  

tracks the constant reference signal 2ω =  in 3 seconds. 
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Figure 2. Constant Tracking Problem for 1x  

 

4.2 Constant Tracking Problem for 2  x  

 
    Here, the initial conditions are taken as 

       
1 2 3(0) 5,   (0) 14,  (0) 10x x x= = = −    and  2ω =  

The simulation graph is depicted in Figure 3 from which it is clear that the state trajectory 
2 ( )x t  

tracks the constant reference signal 2ω =  in 3 seconds. 
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Figure 3. Constant Tracking Problem for 
2x  

4.3 Constant Tracking Problem for 
3  x  

 

Figure 4. Constant Tracking Problem for 3  x  
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Here, the initial conditions are taken as 

        1 2 3(0) 7,   (0) 3,  (0) 12x x x= = − =  and  2.ω =  

The simulation graph is depicted in Figure 4 from which it is clear that the state trajectory 3( )x t  

tracks the constant reference signal 2ω =  in 3 seconds. 

 

5. CONCLUSIONS 

 
In this paper, the output regulation problem for the Sprott-F chaotic system (1994) has been 

studied in detail and a complete solution for the output regulation problem for the Sprott-F  

chaotic system has been derived for the tracking of constant reference signals (set-point signals). 

The state feedback control laws achieving output regulation proposed in this paper were derived 

using the regulator equations of Byrnes and Isidori (1990). Numerical simulation results were 

presented in detail to illustrate the effectiveness of the proposed control schemes for the output 

regulation problem of Sprott-F chaotic system to track constant reference signals. 
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