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ABSTRACT 

 
This paper derives new results for the global chaos synchronization of identical Sprott L systems (1994), 

identical Sprott M systems (1994) and non-identical Sprott L and M systems. Active control method has 

been deployed to achieve the global chaos synchronization of the identical and different Sprott L and M 

systems. Our synchronization results have been established using Lyapunov stability theory. Numerical 

plots have been presented to show the effectiveness of the active synchronization results derived in this 

paper for the Sprott L and M systems. 
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1. INTRODUCTION 

 
Chaotic systems are nonlinear systems, which are characterized by the butterfly effect [1], viz. 

high sensitivity to small changes in the initial conditions of the systems.  Chaos phenomenon has 

been extensively studied in the last two decades [1-23]. Chaos theory has been applied in various 

fields such as Computer Science, Biology, Microbiology, Ecology, Physics, Chemistry, 

Economics, Secure Communications, Image Processing and Robotics. 

 

Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic 

oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator.  

 

In 1990, Pecora and Carroll [4] devised a novel scheme to synchronize two identical chaotic 

systems and showed that it was possible for some chaotic systems to be completely synchronized. 

From then on, chaos methods have been applied to various fields, viz. physical systems [5], 

chemical systems [6], ecological systems [7], secure communications [8-10], etc. 

 

Since the seminal work by Pecora and Carroll [4], various methods have been proposed for the 

complete chaos synchronization such as OGY method [11], active control method [12-15], 

adaptive control method [16-20], backstepping method [21-22], sampled-data feedback 

synchronization method [23], time-delay feedback method [24], sliding mode control method [25-

28], etc.  
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In this paper, new results have been derived for the complete synchronization for identical and 

different Sprott L and M chaotic systems using active nonlinear control. Using active control and 

Lyapunov stability theory, we achieve complete synchronization for identical Sprott L systems 

([29], 1994), identical Sprott M systems ([29], 1994) and non-identical Sprott L and M systems. 

 

2. PROBLEM STATEMENT AND OUR METHODOLOGY 

 
Consider the master system described by the dynamics 

 

( )x Ax f x= +&                  (1) 

 

where 
n

x ∈R  is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system.  

 

As the slave system, we consider the following chaotic system described by the dynamics 

 

  ( )y By g y u= + +&                   (2) 

 

where 
n

y ∈R is the state of the system, B is the n n× matrix of the system parameters, 

: n n
g →R R is the nonlinear part of the system and 

n
u ∈R is the active controller of the slave 

system. 

 

If A B= and ,f g= then x  and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems.  

 

In the active control method, we design a feedback controller ,u which synchronizes the states of 

the master system (1) and the slave system (2) for all initial conditions (0), (0) .n
x z ∈R  

 

We define the complete synchronization error as 

 

  ,e y x= −                               (3) 

 

From (1), (2) and (3), we obtain the error dynamics as 

 

           ( ) ( )e By Ax g y f x u= − + − +&                       (4) 

 

Thus, the complete synchronization problem is essentially to find a feedback controller u so as to 

stabilize the error dynamics (4) for all initial conditions (0) .n
e ∈R  

 

Hence, we find a feedback controller u so that 

 

   lim ( ) 0
t

e t
→∞

=  for all (0)e ∈R n
                                  (5) 

 

We take as a candidate Lyapunov function 

 

            ( ) ,T
V e e Pe=                                                              (6) 
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where P is a positive definite matrix.  

 

Note that : n
V →R R is a positive definite function by construction.  

 

We suppose that the parameters of the master and slave system are known and that the states of 

both systems (1) and (2) can be measured. 

 

We wish to find a feedback controller u so that 

 

           ( ) ,T
V e e Qe= −&                                                            (7) 

 

where Q is a positive definite matrix. Then : n
V →& R R  is a negative definite function.  

 

Thus, by Lyapunov stability theory [30], the error dynamics (4) is globally exponentially stable.  

 

Hence, it is immediate that the states of the master system (1) and the slave system (2) will be 

globally and exponentially synchronized. 

 

3. SYSTEMS DESCRIPTION 

 
In this section, we describe the chaotic systems studied in this paper, viz. Sprott L and M systems 

([29], 1994). 

 

The Sprott-L system is described by the 3D dynamics 

 

1 2 3

2

2 1 2

3 1

x x ax

x bx x

x c x

= +

= −

= −

&

&

&

                   (8) 

 

where 
1 2 3, ,x x x are the states and , ,a b c are constant, positive parameters of the system. 

 

The Sprott-L system (8) exhibits a strange chaotic attractor (see Figure 1), when the parameter 

values are taken as 3.9,   0.9a b= = and 1.c =  

 



International Journal of Control Theory and Computer Modelling (IJCTCM) Vol.2, No.4, July 2012 

24 

 

 
 

Figure 1. Strange Chaotic Attractor of the Sprott-L System 

 

The Sprott-M system ([29], 1994) is described by the 3D dynamics  

 

1 3

2

2 1 2

3 1 2

x x

x x x

x x x

α

β γ

= −

= − −

= + +

&

&

&

                 (9) 

 

where 1 2 3, ,x x x are the states and  , ,α β γ are constant, positive parameters of the system. 

 

The Sprott-M dynamics (9) exhibits a chaotic attractor (see Figure 2), when the parameter values 

are taken as 1,α = 1.7β = and 1.7.γ =  

 

 
 

Figure 2. Strange Chaotic Attractor of the Sprott-M System 
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4. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL SPROTT-L SYSTEMS 

BY ACTIVE CONTROL 

 
4.1 Theoretical Results  

 
In this section, we derive new results for the global chaos synchronization of two identical Sprott-

L systems (1994) via the active control method. 

 

Thus, the master system is described by the Sprott-L dynamics 

 

  

1 2 3

2

2 1 2

3 1

x x ax

x bx x

x c x

= +

= −

= −

&

&

&

               (10) 

where 
1 2 3, ,x x x are the state variables and , ,a b c are positive parameters of the system. 

 

The slave system is described by the controlled Sprott-L dynamics 

 

  

1 2 3 1

2

2 1 2 2

3 1 3

y y ay u

y by y u

y c y u

= + +

= − +

= − +

&

&

&

                      (11) 

 

where 1 2 3, ,y y y are the state variables and 1 2 3, ,u u u are the active controls to be designed. 

  

The synchronization error e is defined by 

 

  

1 1 1

2 2 2

3 3 3

e

e

e

y x

y x

y x

= −

= −

= −

                  (12) 

 

The error dynamics is obtained as 

 

  ( )
1 2 3 1

2 2

2 2 1 1 2

3 1 3

e e ae u

e e b y x u

e e u

= + +

= − + − +

= − +

&

&

&

                   (13) 

 

We choose the active nonlinear controller as 

 

    

1 2 3 1 1

2 2

2 2 1 1 2 2

3 1 3 3

( )

u e ae k e

u e b y x k e

u e k e

= − − −

= − − −

= −

                   (14) 

 

where the gains , ( 1, 2,3)ik i = are positive constants. 
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Substituting (14) into (13), the error dynamics simplifies to 

 

       

1 1

2 2

3 3

1

2

3

e k e

e k e

e k e

= −

= −

= −

&

&

&

                                                                     (15) 

 

Next, we establish the following result. 

 

Theorem4.1. The identical Sprott-L systems (10) and (11) are globally and exponentially 

synchronized for all initial conditions with the active controller defined by (12).    

 

Proof.  Consider the quadratic Lyapunov function defined by 

 

  ( )2 2 2

1 2 3( )
1 1

,
2 2

T
V e e e e e e= = + +                             (16) 

 

which is a positive definite function on 
3.R  

 

Differentiating (16) along the trajectories of (15), we get 

 

   
2 2 2

1 1 2 2 3 3( )V e k e k e k e= − − −&                                             (17) 

 

which is a negative definite function on 
3.R  

 

Thus, by Lyapunov stability theory [30], the error dynamics (17) is globally exponentially stable. 

 

Hence, it follows that the identical Sprott-L systems (10) and (11) are globally and exponentially 

synchronized for all initial conditions with the active controller (12).    

 

This completes the proof.   � 

 

4.2 Numerical Results  

 

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is deployed  

to solve the systems (10) and (11) with the active controller (14).  

 

The feedback gains used in the equation (14) are chosen as  

 

1 2 35,   5,   5k k k= = =  

 

The parameters of the Sprott-L systems are chosen as 

 

        3.9,   0.9,    1a b c= = =               

 

The initial conditions of the master system (10) are chosen as 

 

       1 2 3(0) 1,   (0) 2,   (0) 2x x x= = − =  
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The initial conditions of the slave system (11) are chosen as 

 

       
1 2 3(0) 3,   (0) 6,   (0) 2y y y= = = −  

 

Figure 3 shows the time-history of the synchronization errors 1 2 3, , .e e e  

 

 

 
 

Figure 3. Time-History of the Synchronization Error 1 2 3, ,e e e  

 

5. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL SPROTT-M SYSTEMS 

BY ACTIVE CONTROL 

 
5.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the synchronization of two 

identical Sprott-M systems (1994).  

 

Thus, the master system is described by the Sprott-M dynamics 
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1 3

2

2 1 2

3 1 2

x x

x x x

x x x

α

β γ

= −

= − −

= + +

&

&

&

                            (18) 

where 1 2 3, ,x x x are the state variables and , ,α β γ are positive parameters of the system. 

The slave system is described by the controlled Sprott-M dynamics 

 

  

1 3 1

2

2 1 2 2

3 1 2 3

y y u

y y y u

y y y u

α

β γ

= − +

= − − +

= + + +

&

&

&

                  (19) 

 

where 1 2 3, ,y y y are the state variables and 1 2 3, ,u u u are the active controls to be designed. 

 

The synchronization error e is defined by 

 

  

1 1 1

2 2 2

3 3 3

e

e

e

y x

y x

y x

= −

= −

= −

               (20) 

 

The error dynamics is obtained as 

 

   

1 3 1

2 2

2 2 1 1 2

3 1 2 3

e e u

e e y x u

e e e u

α

γ

= − +

= − − + +

= + +

&

&

&

                   (21) 

 

We choose the active nonlinear controller as 

 

    

1 3 1 1

2 2

2 2 1 1 2 2

3 1 2 3 3

u e k e

u e y x k e

u e e k e

α

γ

= −

= + − −

= − − −

                   (22) 

where the gains , ( 1, 2,3)ik i = are positive constants. 

 

Substituting (22) into (21), the error dynamics simplifies to 

 

       ,   ( 1, 2,3)
i iie k e i= − =&                                                                     (23) 

 

Theorem 5.1. The identical Sprott-M systems (18) and (19) are globally and exponentially 

synchronized for all initial conditions with the active nonlinear controller defined by (22).  

   

Proof.  Consider the quadratic Lyapunov function defined by 

 

  ( )2 2 2

1 2 3
( )

1 1
,

2 2

T
V e e e e e e= = + +                             (24) 
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which is a positive definite function on 
3.R  

 

Differentiating (24) along the trajectories of (23), we get 

 

   
2 2 2

1 1 2 2 3 3( )V e k e k e k e= − − −&                                             (25) 

 

Clearly, V& is a negative definite function on 
3.R  

 

Thus, by Lyapunov stability theory [30], the error dynamics (23) is globally exponentially stable.  

 

This completes the proof.   � 

 

5.2 Numerical Results  

 

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is deployed 

to solve the systems (18) and (19) with the active nonlinear controller (22).  

 

The feedback gains used in the equation (22) are chosen as 5,  ( 1,2,3).ik i= =  

 

The parameters of the Sprott-M systems are chosen as 

 

         1,  1.7,  1.7α β γ= = =  

 

The initial conditions of the master system (20) are chosen as 

 

       1 2 3(0) 2,   (0) 4,   (0) 5x x x= = = −  

 

The initial conditions of the slave system (21) are chosen as 

 

        1 2 3(0) 6,   (0) 4,  (0) 11y y y= = − =  

 

Figure 4 shows the time-history of the synchronization errors 1 2 3, , .e e e  
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Figure 4. Time-History of the Synchronization Error 1 2 3, ,e e e  

 

6. GLOBAL CHAOS SYNCHRONIZATION OF SPROTT-L AND SPROTT-M 

SYSTEMS BY ACTIVE CONTROL 

 
6.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the synchronization of the non-

identical Sprott-L and Sprott-M systems (1994). 

 

 Thus, the master system is described by the Sprott-L dynamics 

 

     

1 2 3

2

2 1 2

3 1

x x ax

x bx x

x c x

= +

= −

= −

&

&

&

                                 (26) 

 

where 1 2 3, ,x x x are the state variables and , ,a b c are positive parameters of the system. 

 

The slave system is described by the controlled Sprott-M dynamics 

 

    

1 3 1

2

2 1 2 2

3 1 2 3

y y u

y y y u

y y y u

α

β γ

= − +

= − − +

= + + +

&

&

&

                  (27) 

 

where 1 2 3, ,y y y are the state variables, , ,α β γ are positive parameters and 1 2 3, ,u u u are the active 

nonlinear controls to be designed. 
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The synchronization error e is defined by 

 

    

1 1 1

2 2 2

3 3 3

e

e

e

y x

y x

y x

= −

= −

= −

                (28) 

 

The error dynamics is obtained as 

 

    

1 3 2 3 1

2 2

2 1 1 2 2 2

3 1 1 2 3

e y x ax u

e y bx y x u

e c y x y u

α

β γ

= − − − +

= − − − + +

= − + + + +

&

&

&

                 (29) 

 

We choose the active nonlinear controller as 

 

     

1 3 2 3 1 1

2 2

2 1 1 2 2 2 2

3 1 1 2 3 3

u y x ax k e

u y bx y x k e

u c y x y k e

α

β γ

= + + −

= + + − −

= − + − − − −

                    (30) 

 

where the gains ,  ( 1, 2,3)ik i = are positive constants. 

 

Substituting (32) into (31), the error dynamics simplifies to 

 

       

1 1

2 2

3 3

1

2

3

e k e

e k e

e k e

= −

= −

= −

&

&

&

                                                                     (31) 

 

Theorem 6.1. The Sprott-L system (26) and Sprott-M system (27) are globally and exponentially 

synchronized for all initial conditions with the active controller defined by (30).    

 

Proof. We consider the quadratic Lyapunov function defined by 

 

  ( )2 2 2

1 2 3
( )

1 1
,

2 2

T
V e e e e e e= = + +                             (32) 

 

which is a positive definite function on 
3.R  

 

Differentiating (32) along the trajectories of (31), we get 

 

   
2 2 2

1 1 2 2 3 3( )V e k e k e k e= − − −&                                             (33) 

 

which is a negative definite function on 
3.R  

 

Thus, by Lyapunov stability theory [30], the error dynamics (33) is globally exponentially stable.    

 

This completes the proof.   � 
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6.2 Numerical Results 

  

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is deployed 

to solve the systems (26) and (27) with the active nonlinear controller (30).  

 

The feedback gains used in the equation (32) are chosen as 5,  ( 1,2,3).ik i= =  

 

The parameters of the Sprott-L systems are chosen as 

 

      3.9,   0.9,    1a b c= = =  

 

The parameters of the Sprott-M systems are chosen as 

 

         1,  1.7,  1.7α β γ= = =   

 

The initial conditions of the master system (26) are chosen as 

 

       1 2 3(0) 2,   (0) 4,   (0) 1x x x= = = −  

 

The initial conditions of the slave system (27) are chosen as 

 

        1 2 3(0) 2,   (0) 7,  (0) 6y y y= − = =  
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Figure 5. Time-History of the Synchronization Error 1 2 3, ,e e e  

 

Figure 5 shows the time-history of the synchronization errors 1 2 3, , .e e e  

 

7. CONCLUSIONS 

 
In this paper, we derived new results for the global chaos synchronization for the Sprott-L and 

Sprott-M systems using active control method and we established the synchronization results with 

the help of Lyapunov stability theory. Numerical simulations have been shown to illustrate the 

effectiveness of the complete synchronization schemes derived in this paper for the Sprott-L and 

Sprott-M systems. 
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