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ABSTRACT 

 

In this paper, we derive new results for the anti-synchronization of identical and non-identical 

hyperchaotic Li systems (Li, Tang and Chen, 2005) and hyperchaotic Lü systems (Bao and Liu, 2008).  

Active control method has been deployed for achieving the four-dimensional hyperchaotic systems 

discussed in this paper and the stability results have been proved using Lyapunov stability theory. Since the 

Lyapunov exponents are not required for these calculations, the active nonlinear control method is effective 

and convenient to achieve anti-synchronization of the identical and different hyperchaotic Li systems and 

hyperchaotic Lü systems. Numerical simulations using MATLAB have been shown to illustrate the anti-

synchronization controllers designed in this paper. 

 

KEYWORDS 

 

Anti-Synchronization, Active Control, Chaos, Hyperchaotic Li System, Hyperchaotic Lü System. 

 

 

1. INTRODUCTION 
 
Hyperchaotic system is typically defined as a chaotic system having more than one positive 

Lyapunov exponent (LE). It was first discovered by O.E. Rössler ([1], 1979).  

 

Hyperchaotic systems have the characteristics of high capacity, high security and high efficiency. 

Hence, they find applications in several areas like electronic oscillators [2-3], secure 

communication [4-7], synchronization [8-9], encryption [10], etc. Thus, control and 

synchronization of hyperchaotic systems have become important research problems. 

 

The anti-synchronization problem can be stated as follows. If a particular chaotic system is called 

the master system and another chaotic system is called the slave system, then the idea of anti-

synchronization is to use the output of the master system to control the slave system so that the 

states of the slave system have the same amplitude but opposite signs as the states of the master 

system asymptotically with time. 

 

Since the seminal work by Pecora and Carroll ([11], 1990), many impressive methods have been 

developed for the synchronization and anti-synchronization of chaotic systems, viz. OGY method 

[12], active control method [13-15], adaptive control method [16-20], backstepping method [21-

24], sampled-data feedback synchronization method [25-26], time-delay feedback method [27-

28], sliding mode control method [29-32], etc.  
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In this paper, we deploy active control method to derive new results for the anti-synchronization 

for identical and different hyperchaotic Li systems ([33], 2005) and hyperchaotic Lü systems 

([34], 2008).     . 

 

The organization of this paper is as follows. Section 2 contains the problem statement and active 

control methodology, Section 3 provides a description of the hyperchaotic Li and hyperchaotic Lü 

systems. Section 4 contains our new results for the anti-synchronization of two identical 

hyperchaotic Li systems. Section 5 contains our new results for the anti-synchronization of two 

identical hyperchaotic Lü systems. Section 6 contains our new results for the anti-synchronization 

of hyperchaotic Li and hyperchaotic Lü systems. Section 7 contains a summary of the main 

results derived in this paper. 

 

2. PROBLEM STATEMENT AND ACTIVE CONTROL METHODOLOGY 
 
As the master system, we consider the chaotic system described by the dynamics 

 

( )x Ax f x= +&                  (1) 

 

where 
nx ∈R  is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system.   

 

As the slave system, we consider the chaotic system described by the dynamics 

 

  ( )y By g y u= + +&                   (2) 

 

where 
n

y ∈R is the state of the system, B is the n n× matrix of the system parameters, 

: n n
g →R R is the nonlinear part of the system and 

nu ∈R is the active controller of the slave 

system. 

 

If A B= and ,f g= then x  and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems.  

 

For the master system (1) and the slave system (2), the design goal is to build a feedback 

controller ,u which anti-synchronizes their states for all initial conditions (0), (0) .n
x y ∈R  

We define the anti-synchronization error as 

 

  ,e y x= +                  (3) 

 

Then a simple calculation yields the error dynamics as 

 

            ( ) ( )e By Ax g y f x u= + + + +&                      (4) 

 

In the anti-synchronization problem, we wish to find a feedback controller u so that 

 

   lim ( ) 0
t

e t
→∞

=  for all (0)e ∈R n
                                  (5) 

 

We take as a candidate Lyapunov function 
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            ( ) ,T
V e e Pe=                                                              (6) 

 

where P is a positive definite matrix.  

 

Note that : nV →R R is a positive definite function by construction. We assume that the 

parameters of the master and slave system are known and that the states of both systems (1) and 

(2) are measurable. 

 

If we find a feedback controller u so that 

 

           ( ) ,T
V e e Qe= −&                                                            (7) 

where Q is a positive definite matrix, then : nV →& R R  is a negative definite function.  

 

Thus, by Lyapunov stability theory [35], the error dynamics (4) is globally exponentially stable. 

Hence, it follows that the states of the master system (1) and the slave system (2) will be globally 

and exponentially anti-synchronized. 

 

3. SYSTEMS DESCRIPTION 
 
The hyperchaotic Li system ([33], 2005) is described by the 4-D dynamics 

 

1 2 1 4

2 1 1 3 2

3 3 1 2

4 2 3 4

( )x a x x x

x dx x x cx

x bx x x

x x x xη

= − +

= − +

= − +

= +

&

&

&

&

                  (8) 

 

where 1 2 3 4, , ,x x x x are the states and  , , , ,a b c d η  are constant, positive parameters of the system. 

The 4-D system (8) exhibits a hyperchaotic attractor, when the parameter values are taken as  

 

    35,    3,   12,   7,   0.6a b c d η= = = = =                            (9) 

The phase portrait of the hyperchaotic Li system is shown in Figure 1. 

 

The hyperchaotic Lü system ([34], 2008) is described by the 4-D dynamics 

 

1 2 1 4

2 2 1 3

3 3 1 2

4 1 2 3

( )x x x x

x x x x

x x x x

x x x x

α

γ

β

ε δ

= − +

= −

= − +

= +

&

&

&

&

                 (10) 

 

where 1 2 3 4, , ,x x x x are the states and  , , , ,α β γ δ ε  are constant, positive parameters of the 

system. 

 

The 4-D system (10) exhibits a hyperchaotic attractor, when the parameter values are taken as  

 

     36,   3,   20,   0.1,   21α β γ δ ε= = = = =                          (11) 
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The phase portrait of the hyperchaotic Lü system is shown in Figure 2. 

 

 

Figure 1. The Phase Portrait of the Hyperchaotic Li System 

 

 
 

Figure 2. The Phase Portrait of the Hyperchaotic Lü System 

 

4. ANTI-SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LI SYSTEMS 

VIA ACTIVE CONTROL 
 
4.1 Theoretical Results  
 
In this section, we derive new results for the anti-synchronization of two identical hyperchaotic Li 

systems (2005) via active control. 

 

As the master system, we take the hyperchaotic Li dynamics 
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1 2 1 4

2 1 1 3 2

3 3 1 2

4 2 3 4

( )x a x x x

x dx x x cx

x bx x x

x x x xη

= − +

= − +

= − +

= +

&

&

&

&

                (12) 

 

where 1 2 3 4, , ,x x x x are the states and , , , ,a b c d η are positive parameters of the system. 

 

As the slave system, we take the controlled hyperchaotic Li dynamics 

 

   

1 2 1 4 1

2 1 1 3 2 2

3 3 1 2 3

4 2 3 4 4

( )y a y y y u

y dy y y cy u

y by y y u

y y y y uη

= − + +

= − + +

= − + +

= + +

&

&

&

&

                    (13) 

 

where 
1 2 3 4, , ,y y y y are the states and 

1 2 3 4, , ,u u u u are the active nonlinear controls. 

 

The anti-synchronization error e is defined by 

 

  ,   ( 1, 2,3, 4)i i ie y x i= + =                 (14) 

 

The error dynamics is obtained as 

 

  

1 2 1 4 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 2 3 2 3 4

( )e a e e e u

e de ce y y x x u

e be y y x x u

e e y y x x uη

= − + +

= + − − +

= − + + +

= + + +

&

&

&

&

                  (15) 

 

We choose the active nonlinear controller as 

 

    

1 2 1 4 1 1

2 1 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 4 2 3 2 3 4 4

( )u a e e e k e

u de ce y y x x k e

u be y y x x k e

u e y y x x k eη

= − − − −

= − − + + −

= − − −

= − − − −

                 (16) 

 

where the gains ,  ( 1, 2,3, 4)ik i = are positive constants. 

 

Substituting (16) into (15), the error dynamics simplifies to 

 

       ,   ( 1, 2,3, 4)
i iie k e i= − =&                                                                     (17) 

Next, we prove the following result. 
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Theorem 4.1. The active nonlinear controller defined by (16) achieves the global and exponential 

anti-synchronization of the identical hyperchaotic Li systems (12) and (13). 

 

Proof.  Consider the quadratic Lyapunov function defined by 

 

  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                             (18) 

which is a positive definite function on 
4.R  

 

Differentiating (18) along the trajectories of (17), we get 

 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                            (19) 

which is a negative definite function on 
4.R  

 

Hence, by Lyapunov stability theory [35], the error dynamics (17) is globally exponentially 

stable. This completes the proof.    

 

4.2 Numerical Results  
 

For MATLAB simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is used 

to solve the differential equations (12) and (13) with the active nonlinear controller (16).  

The feedback gains used in the equation (16) are chosen as  

 

1 2 3 45,   5,   5,   5k k k k= = = =
 

 

The parameters of the hyperchaotic Li systems are chosen as 

 

35,    3,   12,   7,   0.6a b c d η= = = = =  
 

The initial conditions of the master system (12) are chosen as 

 

       1 2 3 4(0) 18,   (0) 6,   (0) 10,   (0) 25x x x x= = = − = −
 

 

The initial conditions of the slave system (13) are chosen as 

 

       1 2 3 4(0) 25,   (0) 15,   (0) 22,   (0) 12y y y y= = − = = −
 

 

Figure 3 shows the anti-synchronization of the identical hyperchaotic Li systems.  

 

Figure 4 shows the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 3. Anti-Synchronization of the Identical Hyperchaotic Li Systems 

 

 
 

Figure 4. Time-History of the Anti-Synchronization Error 

 

5. ANTI- SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LÜ SYSTEMS 

BY ACTIVE CONTROL 
 
5.1 Theoretical Results  
 
In this section, we derive new results for the anti-synchronization of two identical hyperchaotic 

Lü systems (2008) via active control. 

 

As the master system, we take the hyperchaotic Lü dynamics 
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1 2 1 4

2 2 1 3

3 3 1 2

4 1 2 3

( )x x x x

x x x x

x x x x

x x x x

α

γ

β

ε δ

= − +

= −

= − +

= +

&

&

&

&

                 (20) 

 

where 1 2 3 4, , ,x x x x are the states and , , , ,α β γ δ ε  are positive parameters of the system. 

 

As the slave system, we take the controlled hyperchaotic Lü dynamics 

 

  

1 2 1 4 1

2 2 1 3 2

3 3 1 2 3

4 1 2 3 4

( )y y y y u

y y y y u

y y y y u

y y y y u

α

γ

β

ε δ

= − + +

= − +

= − + +

= + +

&

&

&

&

                    (21) 

 

where 
1 2 3 4, , ,y y y y are the states and 

1 2 3 4, , ,u u u u are the active nonlinear controls. 

 

The anti-synchronization error e is defined by 

 

  ,   ( 1, 2,3, 4)i i ie y x i= + =                 (22) 

 

The error dynamics is obtained as 

 

   

1 2 1 4 1

2 2 1 3 1 3 2

3 3 1 2 1 2 3

4 1 2 3 2 3 4

( )

( )

e e e e u

e e y y x x u

e e y y x x u

e e y y x x u

α

γ

β

ε δ

= − + +

= − − +

= − + + +

= + + +

&

&

&

&

                  (23) 

 

We choose the active nonlinear controller as 

 

     

1 2 1 4 1 1

2 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 1 2 3 2 3 4 4

( )

( )

u e e e k e

u e y y x x k e

u e y y x x k e

u e y y x x k e

α

γ

β

ε δ

= − − − −

= − + + −

= − − −

= − − + −

                  (24) 

 

where the gains ,  ( 1, 2,3, 4)ik i = are positive constants. 

 

Substituting (24) into (23), the error dynamics simplifies to 

 

       ,   ( 1, 2,3, 4)
i iie k e i= − =&                                                                     (25) 

Next, we prove the following result. 

 

Theorem 5.1. The active nonlinear controller defined by (24) achieves the global and exponential 

anti-synchronization of the identical hyperchaotic Lü systems (20) and (21). 
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Proof.  Consider the quadratic Lyapunov function defined by 

 

  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                             (26) 

 

which is a positive definite function on 
4.R  

 

Differentiating (26) along the trajectories of (25), we get 

 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                            (27) 

which is a negative definite function on 
4.R  

 

Hence, by Lyapunov stability theory [35], the error dynamics (25) is globally exponentially 

stable. This completes the proof.   

  

5.2 Numerical Results  
 

For MATLAB simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is used 

to solve the differential equations (20) and (21) with the active nonlinear controller (24).  

 

The feedback gains used in the equation (24) are chosen as  

 

1 2 3 45,   5,   5,   5k k k k= = = =
 

 

The parameters of the hyperchaotic Lü systems are chosen as 

 

 36,   3,   20,   0.1,   21α β γ δ ε= = = = =  
 

The initial conditions of the master system (20) are chosen as 

 

       1 2 3 4(0) 4,   (0) 26,   (0) 20,   (0) 15x x x x= = = − =
 

 

The initial conditions of the slave system (21) are chosen as 

 

       1 2 3 4(0) 20,   (0) 17  (0) 12,   (0) 22y y y y= = − = − =
 

 

Figure 5 shows the anti-synchronization of the identical hyperchaotic Lü systems.  

 

Figure 6 shows the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 5. Anti-Synchronization of the Identical Hyperchaotic Lü Systems 

 

 
 

Figure 6. Time-History of the Anti-Synchronization Error  

 

6. ANTI- SYNCHRONIZATION OF NON-IDENTICAL HYPERCHAOTIC LI AND 

HYPERCHAOTIC LÜ SYSTEMS VIA ACTIVE CONTROL 
 

6.1 Theoretical Results  
 
In this section, we apply the active nonlinear control method for the anti-synchronization of the 

non-identical hyperchaotic Li system (2005) and hyperchaotic Lü system (2008). 

 

As the master system, we take the hyperchaotic Li dynamics 



International Journal of Control Theory and Computer Modelling (IJCTCM) Vol.2, No.6, November 2012 

 

35 
 

  

1 2 1 4

2 1 1 3 2

3 3 1 2

4 2 3 4

( )x a x x x

x dx x x cx

x bx x x

x x x xη

= − +

= − +

= − +

= +

&

&

&

&

                (28) 

where 1 2 3 4, , ,x x x x are the states and , , , ,a b c d η  are positive parameters of the system. 

 

As the slave system, we take the controlled hyperchaotic Lü dynamics 

 

  

1 2 1 4 1

2 2 1 3 2

3 3 1 2 3

4 1 2 3 4

( )y y y y u

y y y y u

y y y y u

y y y y u

α

γ

β

ε δ

= − + +

= − +

= − + +

= + +

&

&

&

&

                    (29) 

 

where 1 2 3 4, , ,y y y y are the states, , , , ,α β γ δ ε are positive parameters and 1 2 3 4, , ,u u u u are the 

active nonlinear controls. The anti-synchronization error e is defined by 

 

  ,   ( 1, 2,3, 4)i i ie y x i= + =                 (30) 

 

The error dynamics is obtained as 

 

   

1 2 1 2 1 4 1

2 2 1 2 1 3 1 3 2

3 3 3 1 2 1 2 3

4 1 4 2 3 2 3 4

( ) ( )e y y a x x e u

e y dx cx y y x x u

e y bx y y x x u

e y x y y x x u

α

γ

β

ε η δ

= − + − + +

= + + − − +

= − − + + +

= + + + +

&

&

&

&

                  (31) 

 

We choose the active nonlinear controller as 

 

    

1 2 1 2 1 4 1 1

2 2 1 2 1 3 1 3 2 2

3 3 3 1 2 1 2 3 3

4 1 4 2 3 2 3 4 4

( ) ( )u y y a x x e k e

u y dx cx y y x x k e

u y bx y y x x k e

u y x y y x x k e

α

γ

β

ε η δ

= − − − − − −

= − − − + + −

= + − − −

= − − − − −

                  (32) 

 

where the gains ,  ( 1, 2,3, 4)ik i = are positive constants. 

 

Substituting (32) into (31), the error dynamics simplifies to 

 

       ,   ( 1, 2,3, 4)
i iie k e i= − =&                                                                     (33) 

 

Next, we prove the following result. 

 

Theorem 6.1. The active nonlinear controller defined by (32) achieves the global and exponential 

anti-synchronization of the hyperchaotic Li system (28) and hyperchaotic Lü system (29). 
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Proof.  Consider the quadratic Lyapunov function defined by 

 

  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                             (34) 

which is a positive definite function on 
4.R  

 

Differentiating (34) along the trajectories of (44), we get 

 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                            (35) 

 

which is a negative definite function on 
4.R  

 

Hence, by Lyapunov stability theory [35], the error dynamics (33) is globally exponentially 

stable. This completes the proof.    

 

6.2 Numerical Results  
 

For MATLAB simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is used 

to solve the differential equations (28) and (28) with the active nonlinear controller (24).  

 

The feedback gains used in the equation (32) are chosen as 5, ( 1, 2,3, 4).ik i= =
 

 

The parameters of the hyperchaotic Li and hyperchaotic Lü systems are chosen as 

 

      35,   3,  12,  7,  0.6,  36,  3,  20,  0.1,  21a b c d η α β γ δ ε= = = = = = = = = =  
 

The initial conditions of the master system (28) are chosen as 

 

       1 2 3 4(0) 8,   (0) 7,   (0) 10,   (0) 12x x x x= = = − =
 

 

The initial conditions of the slave system (29) are chosen as 

 

       1 2 3 4(0) 32,   (0) 17,   (0) 22,   (0) 4y y y y= = − = − =
 

 

Figure 7 shows the anti-synchronization of the hyperchaotic Li and hyperchaotic Lü systems.  

 

Figure 8 shows the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 7. Anti-Synchronization of the Hyperchaotic Li and Hyperchaotic Lü Systems 

 

 

Figure 8. Time-History of the Anti-Synchronization Error 

 

7. CONCLUSIONS 
 
In this paper, active control method was applied to derive anti-synchronization results for the 

identical hyperchaotic Li systems (2005), identical hyperchaotic Lü systems (2008), and non-

identical hyperchaotic Li and hyperchaotic Lü systems.  The stability results validating the anti-

synchronizing controllers have been proved using Lyapunov stability theory. Numerical 

simulations using MATLAB were presented to validate and demonstrate the efficiency of the 

anti-synchronization schemes derived for the hyperchaotic Li and hyperchaotic Lü systems. 
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