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ABSTRACT 

 

Hyperchaotic systems are chaotic systems having more than one positive Lyapunov exponent and they have 

important applications in secure data transmission and communication. This paper applies active control 

method for the synchronization of identical and different hyperchaotic Pang systems (2011) and 

hyperchaotic Wang-Chen systems (2008). Main results are proved with the stability theorems of Lypuanov 

stability theory and numerical simulations are plotted using MATLAB to show the synchronization of 

hyperchaotic systems addressed in this paper. 
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1. INTRODUCTION 
Hyperchaotic systems have a lot of important applications in several fields in Science and 

Engineering. They are chaotic systems with more than one positive Lyapunov exponent. The 

hyperchaotic systemwas first found by O.E.Rössler ([1], 1979).  

 

Hyperchaotic systems have attractive features like high security, high capacity and high 

efficiency and they find miscellaneous applications in several areas like neural networks 

[2],oscillators [3], secure communication [4-5], encryption [6], synchronization [7], etc. 

There are many important methods available in the literature for synchronization and anti-

synchronization like PC method [8], OGY method [9], backstepping method [10-12], sliding 

control method [13-15], active control method [16-18], adaptive control method [19-20], 

sampled-data feedback control method [21], time-delay feedback method [22], etc. 

 

The anti-synchronization problem deals witha pair of chaotic systems called the master and slave 

systems, where the design goal is to anti-synchronize their states, i.e. the sum of the states of the 

master and slave systems approach to zero asymptotically. 

 

This paper focuses upon active controller design for the anti-synchronization of hyperchaotic 

Pang systems ([23], 2011) and hyperchaotic Wang-Chen systems ([24], 2008). The main results 

derived in this paper were proved using Lyapunov stability theory [25]. 

 

Using active control method, new results have been derived for the anti-synchronization of 

identical hyperchaotic Pang systems, identical hyperchaotic Wang-Chen systems and  

non-identical hyperchaotic Pang and hyperchaotic Wang-Chen systems. Numerical simulations 

were shown using MATLAB to illustrate the main results derived in this paper. 
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2. PROBLEM STATEMENT  
 

The master system is described by the chaotic dynamics 

( )x Ax f x= +&                  (1) 

where A is the n n×  matrix of the system parameters and : n n
f →R R is the nonlinear part. 

The slave system is described by the chaotic dynamics 

 

 ( )y By g y u= + +&                             (2) 

where B is the n n× matrix of the system parameters, : n n
g →R R is the nonlinear part and 

n
u ∈R is the active controller to be designed. 

 

For the pair of chaotic systems (1) and (2), the anti-synchronization problem aims to design a 

feedback controller ,u which anti-synchronizes their states for all (0), (0) .n
x y ∈R  

 

Theanti-synchronization erroris defined as 

 

 ,e y x= +                  (3) 

Theerror dynamics is obtained as 

 

 ( ) ( )e By Ax g y f x u= + + + +&                            (4) 

 

The design goal is to find a feedback controller u so that 

 

lim ( ) 0
t

e t
→∞

=  for all (0)e ∈R n
                                                    (5) 

 

Using the matrix method, we consider a candidate Lyapunov function 

 

( ) ,T
V e e Pe=                                                                               (6) 

 

where P is a positive definite matrix.  

 

It is noted that : nV →R R is a positive definite function. 

If we find a feedback controller u so that 

 

( ) ,T
V e e Qe= −&                                                                               (7) 

 

where Q is a positive definite matrix, then :
n

V →& R R  is a negative definite function.  

Thus, by Lyapunov stability theory [15], the error dynamics (4) is globally exponentially stable.  

 

Hence, the states of the chaotic systems (1) and (2) will be globally and exponentially  

anti-synchronized for all initial conditions (0), (0) .n
x y ∈R  
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3. HYPERCHAOTIC SYSTEMS 

 
The hyperchaotic Pang system ([23], 2011) is given by 

 

1 2 1

2 2 1 3 4

3 3 1 2

4 1 2

( )

( )

x a x x

x cx x x x

x bx x x

x d x x

= −

= − +

= − +

= − +

&

&

&

&

                (8) 

 

where , , ,a b c d are constant, positive parameters of the system. 

 

The Pang system (8) exhibits a hyperchaotic attractor for the parametric values 

 

36,    3,   20,   2a b c d= = = =                           (9) 

 

The Lyapunov exponents of the system (8) for the parametric values in (9) are 

 

1 2 3 41.4106,     0.1232,    0,     20.5339λ λ λ λ= = = = −          (10) 

 

Since there are two positive Lyapunov exponents in (10), the Pang system (8) is hyperchaotic for 

the parametric values (9). 

 

The phase portrait of the hyperchaotic Pang system is described in Figure 1. 

 

The hyperchaotic Wang-Chen system ([24], 2008) is given by 

 

1 2 1 2 3

2 1 1 3 2 4

3 3 1 2

4 4 1 3

( )

0.5

3

0.5

x x x x x

x x x x x x

x x x x

x x x x

α

γ

β

= − +

= − − −

= − +

= +

&

&

&

&

             (11) 

 

where , ,α β γ are constant, positive parameters of the system. 

The Wang system (11) exhibits a hyperchaotic attractor for the parametric values 

 

40,   1.7,   88α β γ= = =                          (12) 

 

The Lyapunov exponents of the system (9) for the parametric values in (12) are 

 

1 2 3 43.2553,     1.4252,    0,     46.9794λ λ λ λ= = = = −          (13) 

 

Since there are two positive Lyapunov exponents in (13), the Wang-Chen system (11) is 

hyperchaotic for the parametric values (12). 

 

The phase portrait of the hyperchaotic Wang-Chen system is described in Figure 2. 
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Figure 1. The Phase Portrait of the Hyperchaotic Pang System 

 

 

Figure 2. The Phase Portrait of the Hyperchaotic Wang-Chen System 
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4. ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG SYSTEMS VIA 

ACTIVE CONTROL 

 
In this section, we investigate the problem of anti-synchronization of two identical hyperchaotic 

Pang systems (2011) and derive new results via active control. 

 

The master system is the hyperchaotic Pangsystem given by 

 

 

1 2 1

2 2 1 3 4

3 3 1 2

4 1 2

( )

( )

x a x x

x cx x x x

x bx x x

x d x x

= −

= − +

= − +

= − +

&

&

&

&

              (14) 

 

where , , ,a b c d are positive parameters of the system and 
4

x ∈R is the state. 

 

The slave system is the controlled hyperchaotic Pangsystem given by 

 

 

1 2 1 1

2 2 1 3 4 2

3 3 1 2 3

4 1 2 4

( )

( )

y a y y u

y cy y y y u

y by y y u

y d y y u

= − +

= − + +

= − + +

= − + +

&

&

&

&

             (15) 

 

where 
4

y ∈R is the state and 1 2 3 4, , ,u u u u are the active controllers to be designed. 

For the anti-synchronization, the error e is defined as 

 

 ,   ( 1, 2,3, 4)i i ie y x i= + =              (16) 

 

We obtain the error dynamics as 

 

 

1 2 1 1

2 2 4 1 3 1 3 2

3 3 1 2 1 2 3

4 1 2 4

( )

( )

e a e e u

e ce e y y x x u

e be y y x x u

e d e e u

= − +

= + − − +

= − + + +

= − + +

&

&

&

&

                         (17) 

 

The active controller to achieve anti-synchronization is chosen as 

 

 

1 2 1 1 1

2 2 4 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 1 2 4 4

( )

( )

u a e e k e

u ce e y y x x k e

u be y y x x k e

u d e e k e

= − − −

= − − + + −

= − − −

= + −

            (18) 

 

where ,  ( 1, 2,3, 4)ik i = are positive gains. 

 

By the substitution of (18) into (17), the error dynamics is simplified as 
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 ,   ( 1, 2,3, 4)
i iie k e i= − =&                                                              (19) 

 

Thus, we obtain the following result. 

 

Theorem 4.1 The nonlinear controller defined by Eq. (18) achieves global and exponential anti-

synchronization of the identical hyperchaotic Pang systems (14) and (15) for all initial conditions 
4(0), (0) .x y ∈R  

 

Proof.The proof is via Lyapunov stability theorem [25] for global exponential stability. 

 

We take the quadratic Lyapunov function  

 

 ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                         (20) 

which is a positive definite function on 
4.R  

 

When we differentiate (18) along the trajectories of (17), we get 

 

 
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                                 (21) 

 

which is a negative definite function on 
4.R Hence, the error dynamics (19) is globally 

exponentially stable for all 
4(0) .e ∈R This completes the proof.    

 

Next, we illustrate our anti-synchronization results with MATLAB simulations.The 4
th
order 

Runge-Kutta method with time-step 
8

10h
−

= has been applied to solve the hyperchaotic Pang 

systems (14) and (15) with the active nonlinear controller defined by (18).  

 

The feedback gains in the active controller (18) are taken as 5,  ( 1, 2,3, 4).ik i= =
 

 

The parameters of the hyperchaotic Pang systems are taken as in the hyperchaotic case, i.e. 

 

 36,    3,   20,   2a b c d= = = =  
 

For simulations, the initial conditions of the master system (14) are taken as 

 

 1 2 3 4(0) 12,   (0) 20,   (0) 14,   (0) 27x x x x= = = − = −
 

 

Also, the initial conditions of the slave system (15) are taken as 

 

 1 2 3 4(0) 32,   (0) 15,   (0) 20,   (0) 10y y y y= = = = −
 

 

Figure 3 depicts the anti-synchronization of the identical hyperchaotic Pang systems.  

 

Figure 4 depicts the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 3. Anti-Synchronization of Identical Hyperchaotic Pang Systems 

 

 

Figure 4. Time-History of the Anti-Synchronization Errors 1 2 3 4, , ,e e e e
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5. ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG-CHEN SYSTEMS VIA 

ACTIVE CONTROL 

 
In this section, we investigate the problem of anti-synchronization of two identical hyperchaotic 

Wang-Chen systems (2008) and derive new results via active control. 

 

The master system is the hyperchaotic Wang-Chensystem given by 

 

 

1 2 1 2 3

2 1 1 3 2 4

3 3 1 2

4 4 1 3

( )

0.5

3

0.5

x x x x x

x x x x x x

x x x x

x x x x

α

γ

β

= − +

= − − −

= − +

= +

&

&

&

&

             (22) 

 

where , ,α β γ are positive parameters of the system and 
4x ∈R is the state. 

 

The slave system is the controlled hyperchaotic Wang-Chensystem given by 

 

 

1 2 1 2 3 1

2 1 1 3 2 4 2

3 3 1 2 3

4 4 1 3 4

( )

0.5

3

0.5

y y y y y u

y y y y y y u

y y y y u

y y y y u

α

γ

β

= − + +

= − − − +

= − + +

= + +

&

&

&

&

            (23) 

 

where 
4

y ∈R is the state and 1 2 3 4, , ,u u u u are the active controllers to be designed. 

For the anti-synchronization, the error e is defined as 

 

 ,   ( 1, 2,3, 4)i i ie y x i= + =              (24) 

 

We obtain the error dynamics as 

 

 

1 2 1 2 3 2 3 1

2 1 2 4 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

( )

0.5

3

0.5( )

e e e y y x x u

e e e e y y x x u

e e y y x x u

e e y y x x u

α

γ

β

= − + + +

= − − − − +

= − + + +

= + + +

&

&

&

&

                        (25) 

 

The active controller to achieve anti-synchronization is chosen as 

 

 

1 2 1 2 3 2 3 1 1

2 1 2 4 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 4 1 3 1 3 4 4

( )

0.5

3

0.5( )

u e e y y x x k e

u e e e y y x x k e

u e y y x x k e

u e y y x x k e

α

γ

β

= − − − − −

= − + + + + −

= − − −

= − − + −

           (26) 

 

where ,  ( 1, 2,3, 4)ik i = are positive gains. 
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By the substitution of (26) into (25), the error dynamics is simplified as 

 

 ,   ( 1, 2,3, 4)
i iie k e i= − =&                                                              (27) 

 

Thus, we obtain the following result. 

 

Theorem 5.1 The nonlinear controller defined by Eq. (26) achieves global and exponential anti-

synchronization of the identical hyperchaotic Wang-Chensystems (22) and (23) for all initial 

conditions 
4(0), (0) .x y ∈R  

 

Proof.The proof is via Lyapunov stability theorem [25] for global exponential stability. 

 

We take the quadratic Lyapunov function  

 

 ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                         (28) 

 

which is a positive definite function on 
4.R  

 

When we differentiate (26) along the trajectories of (25), we get 

 

 
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                     (29) 

 

which is a negative definite function on 
4.R Hence, the error dynamics (27) is globally 

exponentially stable for all 
4(0) .e ∈R This completes the proof.    

 

Next, we illustrate our anti-synchronization results with MATLAB simulations. The 4
th
order 

Runge-Kutta method with time-step 
8

10h
−

= has been applied to solve the hyperchaotic Wang-

Chen systems (22) and (23) with the active nonlinear controller defined by (26).  

 

The feedback gains in the active controller (26) are taken as 5,  ( 1, 2,3, 4).ik i= =
 

 

The parameters of the hyperchaotic WCsystems are taken as in the hyperchaotic case, i.e. 

 

 40,   1.7,   88α β γ= = =
 

 

For simulations, the initial conditions of the master system (22) are taken as 

 

 1 2 3 4(0) 7,   (0) 12,   (0) 15,   (0) 17x x x x= − = = − =
 

 

Also, the initial conditions of the slave system (23) are taken as 

 

 1 2 3 4(0) 30,   (0) 25,   (0) 18,   (0) 5y y y y= = = − = −
 

 

Figure 5depicts the anti-synchronization of the identical hyperchaotic Wang-Chen systems.  

Figure 6depicts the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 5. Anti-Synchronization of Identical Hyperchaotic Wang-Chen Systems 

 

Figure 6. Time-History of the Anti-Synchronization Errors 1 2 3 4, , ,e e e e  
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6. ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-

CHEN SYSTEMS VIA ACTIVE CONTROL 

 
In this section, we derive new results for the problem of anti-synchronization of hyperchaotic 

Pang (2011) and hyperchaotic Wang-Chen systems (2008) via active control. 

The master system is the hyperchaotic Pang system given by 

 

 

1 2 1

2 2 1 3 4

3 3 1 2

4 1 2

( )

( )

x a x x

x cx x x x

x bx x x

x d x x

= −

= − +

= − +

= − +

&

&

&

&

              (30) 

 

where , , ,a b c d are positive parameters of the system and 
4x ∈R is the state. 

The slave system is the controlled hyperchaotic Wang-Chensystem given by 

 

 

1 2 1 2 3 1

2 1 1 3 2 4 2

3 3 1 2 3

4 4 1 3 4

( )

0.5

3

0.5

y y y y y u

y y y y y y u

y y y y u

y y y y u

α

γ

β

= − + +

= − − − +

= − + +

= + +

&

&

&

&

            (31) 

 

where , ,α β γ are positive parameters, 
4

y ∈R is the state and 1 2 3 4, , ,u u u u are the active 

controllers to be designed. 

For the anti-synchronization, the error e is defined as 

 

 ,   ( 1, 2,3, 4)i i ie y x i= + =              (32) 

 

We obtain the error dynamics as 

 

1 2 1 2 1 2 3 1

2 1 2 4 2 4 1 3 1 3 2

3 3 3 1 2 1 2 3

4 4 1 2 1 3 4

( ) ( )

0.5

3

( ) 0.5

e y y a x x y y u

e y y y cx x y y x x u

e y bx y y x x u

e y d x x y y u

α

γ

β

= − + − + +

= − − + + − − +

= − − + + +

= − + + +

&

&

&

&
          (33) 

 

The active controller to achieve anti-synchronization is chosen as 

 

 

1 2 1 2 1 2 3 1 1

2 1 2 4 2 4 1 3 1 3 2 2

3 3 3 1 2 1 2 3 3

4 4 1 2 1 3 4 4

( ) ( )

0.5

3

( ) 0.5

u y y a x x y y k e

u y y y cx x y y x x k e

u y bx y y x x k e

u y d x x y y k e

α

γ

β

= − − − − − −

= − + + − − + + −

= + − − −

= − + + − −

          (34) 

 

where ,  ( 1, 2,3, 4)ik i = are positive gains. 
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By the substitution of (34) into (33), the error dynamics is simplified as 

 

 ,   ( 1, 2,3, 4)
i iie k e i= − =&                                                              (35) 

 

Thus, we obtain the following result. 

 

Theorem 6.1 The nonlinear controller defined by Eq. (34) achieves global and exponential anti-

synchronization of the non-identical hyperchaotic Pang system (30) and the controlled 

hyperchaotic Wang-Chen system (31) for all initial conditions 
4(0), (0) .x y ∈R  

 

Proof.The proof is via Lyapunov stability theorem [25] for global exponential stability. 

 

We take the quadratic Lyapunov function  

 

 ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                         (36) 

 

which is a positive definite function on 
4.R  

 

When we differentiate (34) along the trajectories of (33), we get 

 

 
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                     (37) 

 

which is a negative definite function on 
4.R Hence, the error dynamics (35) is globally 

exponentially stable for all 
4(0) .e ∈R This completes the proof.    

 

Next, we illustrate our anti-synchronization results with MATLAB simulations. The 4
th
order 

Runge-Kutta method with time-step 
8

10h
−

= has been applied to solve the hyperchaotic systems 

(30) and (31) with the active nonlinear controller defined by (34).  

 

The feedback gains in the active controller (34) are taken as 5,  ( 1, 2,3, 4).ik i= =  

The parameters of the hyperchaotic Pang and hyperchaotic WC systems are taken as in the 

hyperchaotic case, i.e. 

 

 36,    3,   20,   2,   40,   1.7,   88a b c d α β γ= = = = = = =  

For simulations, the initial conditions of the master system (30) are taken as 

 

 1 2 3 4(0) 27,   (0) 16,   (0) 12,   (0) 31x x x x= = − = − =
 

 

Also, the initial conditions of the slave system (31) are taken as 

 

 1 2 3 4(0) 10,   (0) 5,   (0) 28,   (0) 14y y y y= = = − = −  

Figure 7depicts the anti-synchronization of the hyperchaotic Pang and Wang-Chen systems. 

 

Figure 8depicts the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 7. Anti-Synchronization of Identical Hyperchaotic Pang and Hyperchaotic WC Systems 

 

Figure 8. Time-History of the Anti-Synchronization Errors 1 2 3 4, , ,e e e e  
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7. CONCLUSIONS 
 

This paper derived new results for the anti-synchronization of hyperchaotic Pang systems (2011) 

and hyperchaotic Wang-Chen systems (2008) using active control method. Explicitly, active 

control laws were derived for globally anti-synchronizing the states of identical hyperchaotic 

Pang systems, identical hyperchaotic Wang-Chen systems and non-identical hyperchaotic Pang 

and Wang-Chen systems. The main results validating the anti-synchronizing active controllers 

were proved using Lyapunov stability theory. MATLAB simulations were shown to illustrate the 

anti-synchronization results derived in this paper for hyperchaotic Pang and hyperchaotic Wang-

Chen systems. 
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