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Abstract : In recent years, we have witnessed the emergence of new types of systems that deal with 

large volumes of streaming data. Examples include financial data analysis on feeds of stock tickers, sensor-

based environmental monitoring, network track monitoring and click stream analysis to push customized 

advertisements or intrusion detection. Traditional database management systems (DBMS), which are very 

good at managing large volumes of stored data, are not suitable for this, as streaming needs low-latency 

processing on live data from push-based sources. Data Stream Management Systems (DSMS) are fast 

emerging to address this new type of data, but faces challenging issues, such as unpredictable data arrival 

rate. On bursty mode, processing need surpasses available system capacity affecting the Quality of Service 

(QoS) adversely. The system overloading is even more acute in XML data streams compared to relational 

streams due to its extra resource requirements for data preparation and result construction. The main 

focus of this paper is to find out suitable ways to process this high volume of data streams dealing with the 

spikes in data arrival gracefully, under limited or fixed system resources in the XML stream context. 
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1. INTRODUCTION 
The data stream is unbounded in nature. Due to very high volume and rate of data generation, traditional 
data analysis model of DBMS is no longer applicable to this form of data. Unlike DBMS, the data does not 
need to be stored for future analysis. Streaming data shows temporal essence and needs real-time 
processing. As a result, DBMS functions such as storing, indexing etc. do not apply to stream data model. 
Continuously disseminating data sources like sensors need continuous processing. The principle of DBMS 
query processing does not directly apply to this scenario, requiring a new system: Data Stream 
Management Systems (DSMS). The DSMS differs from the DBMS in following three ways: First, the 
volume of the data is so high that the cost for storing (even temporarily) would be out of scale. Second, the 
data set may be infinite and thus complete storing is out of scope. Third, query processing is expected in 
real-time or near real-time. The results are supposed to be available as soon as the first data item arrives, 
thus, the data is said to be transient, whereas the queries running on this data are treated as permanent. 
More generally, while a DBMS works in a query-driven fashion, the DSMS puts the focus on data-driven 
query evaluation. Unlike pull-based DBMS, the DSMS is push based and is vulnerable to data flow 
characteristics of input. 
 
The data stream applications are ubiquitous and found in area of Fraud detection applications (to monitor 
ATM and Credit Card transactions for abnormal usage behavior), Click Streams (to push customized 
advertisements in web pages), Online auction applications (like eBay), Call Detail Record [19] (to generate 
billing information real-time), weather data sensors (Weather Monitors, Habitat monitoring, biomedical 
monitoring, road traffic monitoring, RFID-based asset tracking, GPS-based location tracking, network 
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traffic monitoring etc.), stock trading, News alerts (RSS feeds), Event composition in CEP (Complex Event 
Processing) . 
 
Use of various statistical data summaries known as synopses is very extensive in the field of data streams, 
data mining and DBMS. Some key synopsis methods such as sampling, sketches, wavelets and histograms 
have been successfully used in data stream area. They are used for approximate query estimation, 
approximate join size estimation, computing aggregate statistics, such as frequency counts, quantiles and 
heavy hitters, change detection. The design characteristic of any of these data summaries are time and 
space efficient, evolution sensitive and satisfy the one pass constraint of data streams. While methods such 
as wavelets and sketches are complex, sampling and histograms are simple and straight forward. While 
sampling preserves the multidimensional representation of the original data stream, histograms abstracts the 
behavior of more complex synopsis types such as wavelets (Haar wavelet coefficients) and sketches. In 
simple term, a histogram is the representation of data distribution along any attribute by means of dividing 
the attribute range into a set of ranges (buckets), and maintain the count for each bucket. The source of 
inaccuracy in the use of histograms is that the distribution of the data points within a bucket is not 
maintained [5]. So bucket design is an important consideration in histograms. Both structural and value 
synopsis of a XML data can be constructed and maintained using histograms [55, 56]. 
 

1.1 Motivation 
Some of the distinct characteristics of data streams are, continuous processing tuples, continuous or long 
standing queries, tolerance to approximate results, real-time or near real-time processing (minimal tuple 
latency), and dependency on data input or arrival rate, delivery of QoS metrics to query processing. The 
common QoS parameters are Response Time or known as tuple latency, Precision or accuracy of the result, 
Throughput or number of output tuples per unit time, Memory Usage, and output flow characteristics. 
To overcome the overload challenge, a DSMS continuously monitors the system capacity and carry out run 
time optimization of queries. With a fixed system capacity, adapting it to the increased system load is not 
an option but dropping excess load (load shedding) is a viable solution. Dropping input data to reduce tuple 
latency without sacrificing the result accuracy is the biggest challenge in data stream systems. The 
established solution to load shedding is to introduce load shedders (sometimes known as drop operators) 
into the query plan. But these drop operators add an extra overhead in planning, scheduling and activating 
or deactivating them to already resource starved system. 
 
Unlike relational streams, tuples (elements) in XML stream are structurally variable in size and content. 
The processing of XML stream tuples has additional complexities that add to the processing overhead. 
Conversion of these elements to equivalent relational tuples and process them using relational techniques 
adds an extra overhead [73]. Alternately, the element construction from XML stream events such as SAX 
events to regular XML elements also adds an overhead. Thus, in addition to overall streaming challenge, 
XML stream systems have to process queries with different semantic complexity using nested hierarchical 
tuples while delivering guaranteed QoS. 
 

1.2 Our Approach 
We present a framework for XML data stream processing in this paper. We cover different aspects, such as 
query processing (XQuery processing of XML data streams using pipeline methodology [31]), QoS 
delivery through different load shedding schemes. We have implemented load shedding methods for 
various query types in XML data streams. We use simple structural and value summaries to help devise 
these load shedding strategies [25-27]. We compare our stream synopsis construction and maintenance to 
other existing systems and prove its effectiveness from space and time complexity standpoint. We use 
simple histogram techniques to create structural and value synopsis of both input and output data streams 
and use them to decide victim selection. Though we use XML streams to prove our framework's 
effectiveness, yet it can be applied to relational streams due to its general nature. 
 
The rest of this paper is organized as follows. We cover the related works in the field of QoS in data stream 
processing and XML streams in Section 2. The Section 3 covers the architectural lay out of our system. We 
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describe the load shedding in set-valued queries in Section 4. The solution frameworks for join and 
aggregation queries are covered in Sections 5 and 6 respectively. The experimental results for all these 
types of queries are covered in Section 7. We conclude in Section 8 with future work propositions. 
 

2. RELATED WORK 
Quality of service (QoS) was identified as an important attribute of overall performance measure in data 
stream systems by [17], as it is implemented as an integral part of Aurora system through QoS monitor [17, 
14, 3, 72, 65]. Aurora defines QoS in terms of response time, tuple drops and output value produced, 
through a set of two dimensional graphs, comprising of Delay-based (response time), Drop-based (tuple 
drops) and Value-based (output quality) graphs. They termed these graphs collectively as QoS graphs or 
QoS data structure. Delay-based graph is used to determine when to initiate the load shedding while drop-
based and value-based graphs are used to manage the load shedding once it starts.  
 
Stanford Stream Data Manager (STREAM) [10, 2, 13, 9, 11, 8, 53, 12] also addresses issue of resource 
management such as maximum run-time memory etc. in the context of constraints such as maximum 
latency [9]. 
 
They emphasized the importance of quality of service in [10]. Their sampling based load shedding to deal 
with resource issues is covered in [11]. MavStream [39, 41] is designed as a QoS aware data stream 
management system. It addresses the issue of QoS through capacity planning and QoS monitoring in a 
more systematic manner. The system uses a whole set of scheduling strategies to deliver best QoS to 
continuous queries. A separate QoS monitor interacts closely with run-time optimizer for various QoS 
delivery mechanisms. They have designed their QoS mechanism using queuing theory [40] and addressed 
the load shedding mechanism extensively [42, 46]. 
 
Different forms of XML data, fragments, SAX events and their handling is covered in [15, 16]. In addition 
to the structure and data content complexities, the XML stream has to support all streaming challenges like 
a relational stream. So the XML stream system has to support all QoS metrics similar to the relational 
stream and has to deal with data metrics typical to XML data. Those are: (1) tuple size (number of elements 
and attributes), (2) tuple structure (number of recursions and REFs and IDREFs), (3) tuple depth (tree 
depth), (4) fan-in (number of edges coming out of an element), (5) fan-out (number of edges coming into 
the element). The quality of service is well researched in XML field for various dissemination services such 
as pub/sub and selective dissemination of information (SDI) systems [60]. Besides the complexity of data, 
the query complexity (XPath and XQuery constructs) also plays a key role in affecting the overall QoS of 
the system. Authors in [69] consider query preferences (quantitative and qualitative) similar to QoS 
specifications to ensure best qualitative result to queries in XML stream. 
 
Synopsis structures, such as sampling, wavelets, sketches and histograms are more popular in data streams 
compared to the DBMS. The technique of synopsis has been successfully used in the area of query 
estimation [18], approximate join estimation [7, 29, 30], aggregation statistics such as frequency counts, 
quantiles and heavy hitters [20, 22, 51, 50], stream mining methods such as change detection etc.[4, 61]. 
Histograms have been widely used in data stream systems in many ways such as equi-width, equi-depth 
and V-Optimal histograms. Guha et al. have proposed construction of V-Optimal histograms ((1+ε)-optimal 
histogram) over data streams [35]. Construction of wavelet based histograms on data streams dynamically 
is proposed in [6]. Both structural and value synopsis of a XML data can be constructed and maintained 
using histograms [55, 56]. Though, the synopsis structures have been used successfully in various fields of 
data stream systems, their application in delivering quality of service in data stream systems is non-existent. 
To the best of our knowledge, our load shedding framework is the first one that takes the help of an 
intelligent synopsis structure to effect a load shedding strategy [25-27]. 
 
Load shedding has been implemented as part of delivering QoS to standing queries in Aurora [65] and 
STREAM [11]. Load shedding mechanisms in both is based on near past statistics. STREAM system 
formulates the load shedding problem as an optimization problem, which calculates the optimum sampling 
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rate (by which a tuple is discarded) at a load shedder so as to minimize the overall relative error. Aurora 
[65] differentiates its load shedding mechanism from STREAM in the way that it is more quality of service 
or utility to user based, where it allows users to specify them. The overall scheme is a greedy algorithm that 
strives to maximize the amount of load reduced while minimizing loss of utility (QoS) [65]. Load shedding 
in MavStream [42, 46] is formulated around general continuous queries in conjunction with scheduling 
strategies so that violation of predefined QoS requirements are prevented by discarding some unprocessed 
tuples. Wei et al. in their papers [68, 69] have proposed a framework that enacts load shedding through user 
based preference model. It collects user preferences to rewrite XQueries into shed queries and does load 
shedding in automaton. The issues with this type of strategies are extra computation of query rewriting and 
partial processing of tuples before dropping. A framework that works on both load shedding and load 
spilling to reduce the burden on resources during bursty overload has been proposed for XML streams in 
[70]. 
 

 
Fig. 1. Overall XML Stream Processing Architecture 

 
Data Stream Joins Joining potentially require unbounded intermediate storage to accommodate the delay 
between data arrival. Thus the use of various approximation techniques, such as synopses, are common in 
data stream joining that produce approximate answers. Ding et al. [28] have prescribed punctuation-
exploiting Window Joins (PWJoin) to produce qualitative result with limited memory space. An age-based 
model has been introduced in [63] by approximating a sliding-window join over a data stream. Joining 
streams under resource constraints has been addressed for relational streams [32, 47, 63, 24] using 
windowed joins. Solution through Load shedding in relational stream joins has been addressed by [32, 63] 
whereas through randomized sketches in [47]. Kang et al. study the load shedding of binary sliding window 
joins with an objective of maximizing the number of output tuples [45]. Multi-join algorithms with join 
order heuristics has been proposed by [34] based on processing cost per unit time. The concept of load 
shedding in case of multiple pair wise joins is discussed in [47]. The problem of memory-limited 
approximation of sliding-window joins for relational streams has been discussed in [63]. Joining XML 
streams for a pub/sub system is proposed through Massively Multi-Query Join Processing technique [38]. 
 
Data Stream Aggregations Aggregation queries including group-bys are more complex than other stream 
operations, because of their blocking nature and requirement of unbounded memory. They have been 
classified into various aggregation function bases: distributive, algebraic, and holistic [8] and solved using 
concept of sliding windows. Processing complex aggregate SQL queries over continuous data streams with 
limited memory is presented in [29]. It uses randomized techniques, such as sketch summaries, and 
statistical information in the form of synopsis, such as histograms, to get approximate answers to aggregate 
queries with provable guarantees using domain partitioning methods to further boost the accuracy of the 
final estimates. A load shedding method that uses a drop operator for aggregation queries over data streams 
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is described in [64]. It uses drop operators called Window Drop that is aware of the window properties to 
effect its load shedding. In Aggregation Join queries, relative location of aggregation vs. join in query plan, 
is an interesting problem. Many aspects of aggregation Join queries have been covered in [21, 43, 66]. 
Query optimization and query transformation of continuous aggregation join queries on data streams is 
covered in [66]. 
 

3. SYSTEM OVERVIEW 
Our implementation is an overlay on the core query processing engine. We use the pipelined query 
processing  model for streamed XML data that requires a smaller memory footprint than the DOM-based 
query processing. It parses and processes the events of the arriving XML data stream as they become 
available, only buffering events when necessary. We compile the single-standing continuous query into a 
network of pipelined operators, without any queues between operators. Implemented on the basis of pull-
based pipelined query processing model, each operator acts on the XML events through event handlers. 
The system compiles a simple XQuery query into an operator pipeline. 
 
Figure 1 illustrates the overall architectural layout of our stream processing system. The query processing 
framework is able to run multiple standing XQuery queries on multiple data stream sources. Similar to any 
stream processors, our system has basic query processing components such as Query Compiler, Query 
Scheduler and Query Network. The main components that directly influenced by our framework are QoS 
Monitor and Load Shedder. The QoS Monitor measures the necessary QoS parameters dynamically against 
the QoS requirements of the system. The QoS Monitor continuously monitors input/output rates, rate of the 
buildup of the events in the queue and the rate at which they are consumed by the processing subsystem 
and estimates the future load based on various queuing models. The Load Shedder uses feedback of QoS 
values from QoS Monitor to effect load shedding. The input streams pass through an intermediate buffer 
that acts like a platform for load shedding. This platform has a built-in function that monitors the flow of 
data and decides when to trigger the load shedding process or the query scheduler. Once the Load Shedder 
detects congestion, it takes into account various factors like current load, headroom and the necessary QoS 
parameters of various queries and calculates how much load to shed and in what way. 
 

3.1 Data Model 
XML data often modeled as node labeled tree such as Document Object Model (DOM). But as streams are 
unbounded, in our system, we model the XML stream as an infinite sequence of events similar to SAX 
events [52]. Each event is modeled as a quadruple of the form (i; t; l; al). (1) The i denotes the stream 
identifier. It helps uniquely identify the source stream in case of multiple stream sources. (2) t is the tag or 
the name of the element that generates the SAX event. (3) l is the level or depth of the element in the 
document tree. (4) The al being attribute list for the element, is modeled as an array of (n; v) pairs; where n 
indicates the name of attribute and v its corresponding value. Elements that have no attributes will have a 
null list. 
 

3.2 Challenges of XML Streams 
The major challenge in XML stream processing system is the irregular size and form of its tuple. Unlike 
relational streams where tuples are well-defined, XML elements in XML streams are irregular in size. 
There is no defined boundary for data elements in XML streams. The nested characteristics and semantic 
dependency of XML elements make it difficult to specify a fixed tuple boundary. As we convert SAX 
events into elements, we give each element an unique id that helps us in making the structural summary of 
the stream which plays a critical role in our framework. Besides the streaming challenges of relational 
streams, the XML stream have to face other challenges, such as (1) Hierarchical and semi-structured form 
of data, (2) Changing XML element size and depth, (3) Nested and non-uniform Granularity of XML 
streams. 
 

3.3 Synopses for XML streams 
Various types of synopsis (sampling, wavelets, histograms and sketches) have been used for various 
problems in stream systems. The synopsis construction has to satisfy certain resource critical conditions 
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such as bounded storage, minimal per record processing time and single pass criteria. Of these, 1-d 
histograms are the most basic types of synopsis that approximate the frequency distribution of an attribute 
value. Though these types cannot capture the inter-attribute correlations, but given super linear space 
complexity, they capture the frequency distribution of any attribute most effectively. Though equi-depth 
and V-Optimal histograms preserve the distribution of data items within a bucket, they are computation 
intensive, thus are excluded from our preferred set of tools. We have used the equi-width histograms in all 
our frameworks. This not only gives us a clear summary of data distributions from a bigger picture is 
concerned, but also very simple to construct and maintain and consume least resource overhead. We are 
aware of the fact that equi-width histograms are not good for range queries compared to their counterparts, 
such as equi-depth or V-Optimal ones. But we limit the errors in intra-bucket distribution through suitable 
bucket size selection. Also the choice of equi-width histograms has little or no effect in case aggregation 
queries and join queries. 
 
Structural Synopsis Given the complexity of XML data, the synopsis for XML stream is more 
complicated than their relational counterpart. To capture the entire essence of the data both value and 
contextual, we construct the separate but inter-related synopses; that we call structural and value synopsis. 
The structural synopsis records the frequency of all unique paths in the XML tree or a frequency 
distribution of the structural summary. The structural summary and its corresponding structural synopsis 
for the sample DBLP XML benchmark data are shown in Figures 2 and 3 respectively. Each node or 
element in the tree carries its corresponding tagname and an unique id. 
 
Value Synopsis Similar to synopsis for an attribute value in relational stream, the value synopsis for any 
text node in the XML tree can be constructed. We construct the separate value synopsis for each unique 
path that contains a text node. The corresponding value synopsis for the DBLP XML benchmark data is 
shown in Figure 4. 
 

 
 
 

4. LOAD SHEDDING IN XML STREAMS FOR SET-VALUED QUERIES 
Besides the QoS parameters, we consider the utility metric as one important QoS parameter for XML 
streams. As XML streams are more complex and nested as far as the tuples are concerned, the utility of any 
tuple not only depends on the textual value of that element, but also on its structural position with respect to 
the overall tree. Thus we have introduced a new QoS metric for XML streams called Utility metric. The 
utility of an XML element is calculated from its presence in output space and by correlating them to the 
query result and by associating a weight or importance to each of the elements in the input space. The more 
is the weight of an element, the more will be the relative error in the final result if that element is dropped 
in the process of load shedding. 
 
The Utility Metric is captured through a set of intelligent synopses which in turn implemented through a 
suite of innovative data structures. We have built both structural and value synopsis for both input streams 
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and output streams. The synopses set for our stream processing system are divided into two sets of 1-d 
histograms; one for the input and the other for output streams. In each set, we capture the structural 
synopsis of the XML stream and the value synopses for each of its text nodes as shown in Figures 3 and 4 
respectively. 
 
Our objective is to carry out the load shedding with least possible overhead. QoS specifications are user 
transparent and system configuration-based in our system. The QoS monitor, calculates the weight for 
every element. Once a new element comes in through the input stream, it increments its frequency in the 
input structural synopsis (Histograminput) and updates value histograms for input for leaf nodes. Similarly, 
when an element is streamed out as the part of the output, the output structural histogram (Histogramoutput) 
and its value histograms get updated for that elements frequency and value respectively. 
 

4.1 Load Shedding in XML Stream Processing 
Since there is a trade-off between the QoS (Quality of Service) gained by releasing the processing 
resources and the QoD (Quality of Data) lost by dropping relevant data, our goal is to develop an XML 
load shedding framework that is intelligent enough to maximize both QoS and QoD by discriminatingly 
selecting XML elements to drop based on statistics, but fast enough to catch up with most stream speeds. 
Our suite of synopses are geared towards maintaining and updating the relative weights or utilities of all 
unique elements in XML tree. When an element gets shedded as part of the load shedding, there are some 
error in the result set as this element which would have contributed towards the result got shedded. Our 
main objective is to minimize this weighted relative error by dropping more elements with low weight than 
elements with high weight.  
 
We have implemented two different types of load shedding mechanisms as covered in following 
subsections. They can be categorized into two major groups: Syntactic and Semantic. We have termed the 
syntactic load shedding technique as Simple Random Load Shedding and the semantic technique as 
Structured Predicate Load Shedding. The syntactic one is preventive and proactive in nature, the semantic 
one is reactive. 
 
The first one, which is simple in implementation, arbitrarily sheds the load to prevent a congestion 
situation. The second one takes into account the structural synopsis and value synopsis to decide which data 
to shed. Simple Random Load shedding do not take into account the relevance of any dropped data to the 
result set, the results are approximate with a higher error bound. Relatively the Structured Predicate Load 
Shedding takes both structural and value synopsis of input and output into account and sheds most 
irrelevant data first resulting in lower error bounds.  
 
The Structured Predicate Load Shedding differs from the syntactic ones by dropping only irrelevant data 
and thereby producing more qualitative results. It takes into account complex workload information, 
structural and value synopsis to decide how much and which ones to shed. Our load shedding system gets 
triggered by the QoS monitor that detects the congestion. The load shedder takes into account various 
factors like current load, headroom and the necessary QoS parameters of the system and calculates how 
much load to shed to keep the system functioning in an acceptable manner. Based on the criticality of the 
congestion or configuration, the system enacts which way to do the load shedding. Our system takes a 
holistic approach and formalizes the load shedding as an optimization problem, deciding which tuple to 
shed. This solution is based on admission control paradigm and tries to save more resources restricting 
suitable tuples ahead of their admission into the system. We treat the whole processing system as a black 
box and the shedding as a layer on the top of it. We have a buffer external to the operator network that 
buffers the SAX events and creates tuples from them. Our load shedding mechanism is built as part of this 
buffer called intermediate buffer. The rate of flow of input should match the rate of event consumption to 
keep the level of events in this intermediate buffer within an acceptable limit of buildup. The system also 
monitors the rate of input, rate of build-up of the buffer level and rate at which the events are being 
consumed from this buffer. 
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Simple Random Load Shedder As shown in Figure 5, the random shedder functionality is built into the 
intermediate buffer that collects XML SAX event streams from various sources before passing them to the 
query processor subsystem. Based on the QoS specifications and current load of the system, if it is decided 
by the load shedder to go forward with random load shedding, it sends a request to the intermediate buffer 
to go forward to shed some load. Then the buffer drops the first available complete elements, until the load 
of the system returns back to normal. 
 
Due to hierarchical structure and irregular-grained nature of the XML data streams, it is challenging to 
implement this element drop. As in the worst case scenario, the stream may be reporting at its deepest level 
when the trigger comes into action. So the shedder may have to wait for the start tag of a given nesting 
depth in the stream, in the worst case. Because of this it is preferable to invoke random shedding when the 
load goes above the threshold. 
 
The XML stream threshold is calculated as H * C - D, where H is the headroom factor, which is the 
resource required for steady state, C is system processing capacity, and D is the depth of the XML data 
stream. 
 
Since this shedder drops the elements irrespective of their relevance to the result, it leads to approximate 
result with high error probability. The intermediate buffer is chosen as the location to drop rather than the 
operator network as the effect of dropping data at source is more cost effective than dropping them later 
[65]. Also, by dropping here instead of query pipeline network, we are setting the selection factor to zero 
for all operators for this entire dropped load. This leads to cleaner implementation that is less invasive and 
can be managed better at one point. 
 

 
 

Structured Predicate Load Shedder The Structured Load Shedder is an alternative way to implement 
Shedding by treating the entire query processing system as a black box as shown in Figure 6 and by 
implementing the shedding system as an overlay by monitoring what is entering and what is leaving the 
system. The main idea is to maintain an efficient summary or synopsis of the input and output and decide 
the dropping of elements based on this summary so that it has the least impact on the quality of the query 
result. As explained earlier, there are two main parts of our framework. The first is the construction of the 
appropriate structural and value summary, and the second is the algorithm that performs the shedding based 
on this summary. We chose to maintain a histogram similar to [49] that has structure only information for 
all element nodes and separate histograms for values in leaf nodes.  
 
We monitor the input and output streams and their rates closely. Our system builds two histograms or 
structural synopsis: one for the input stream and another for output stream efficiently. Each histogram 
partition corresponds to a structural summary node. These histograms map each node from the input/output 



International Journal of Database Management Systems ( IJDMS ) Vol.4, No.3, June 2012 

57 

structural summary into the frequencies of the XML elements that are coming in/out from the input/output 
stream and are associated with this node. The structural summaries are constructed on-the-y from the 
streamed XML events. The system also builds separate histograms one for each leaf node using the leaf 
value (Figure 4). 
 
We prepare a sorted list of elements by their relative importance using both input and output histograms. 
The relative importance (RI ) is calculated by the ratio of its output frequency to its input frequency. RI is 
zero for an element not appearing in the output result. Similarly, an element appearing in the output but 
occurs infrequently in the input stream has higher RI. We sort this list of relative importance in ascending 
order excluding the root element which always has zero RI as it will never be part of the result stream. This 
sorted list is updated dynamically whenever a new element comes in the input stream or a new element gets 
out in the result (Figure 7). 
 
We utilize this sorted array to make decisions about selecting which elements to drop. The information 
derived from value histograms best utilized for queries with predicates. We have adopted the greedy 
method to solve our load shedding problem in line with the classical Fractional Knapsack Problem, as this 
problem has an optimal greedy solution. The main idea is to shed an item with the maximum value per unit 
weight (i.e., vi/wi or value per unit weight). If there is still room available in the knapsack, then the item 
with the next largest value per unit weight is shed, etc. This procedure continues until the knapsack is full 
(shedding requirement is achieved). 

 
 
Theorem 1 The Greedy algorithm that selects to remove the element with smallest relative importance 

results in an optimal solution to XML Stream Overloading problem. 

 
Proof. Let there be n elements in the XML stream besides the root element and they are ordered by their 
relative importance (R.I). 
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Hence any solution Y will cause as much loss as solution X. 
 
The amount of load to shed is the knapsack capacity and selections of elements with lowest relative 
importance are the ones to be shedded first. If the amount to shed is not met, then the next element in the 
line, i.e. the element having the next higher relative importance is selected to be shed. The process repeats 
till the amount to shed is met. 

 

5. LOAD SHEDDING IN XML STREAM JOINS 
We propose a unique windowing technique based on an innovative cost functions for join query processing 
under memory constraints. The logical window construction is controlled through unique data structure and 
maintained using load shedding technique with least overhead. We show our strategy through the accuracy 
of the join result from two XML streams using standard XQuery. Our window is built on the concept of 
relevance rather than time or frequency. We utilize the concept of structural and value synopsis that we 
covered in the previous section. Our framework is built on the basis of both frequency based and age based 
models [63]. The load shedding is driven by this cost based element expiration. We have extended the 
concept of sliding window to a logical window that is fixed in size and sheds tuples based on relevance 
rather than time or frequency. 

 
5.1 XML Join Query Processing Model 
The frequency based model does not work for all kinds of streams [63]. It fails for streams where the 
relevance distribution is skew over the life of the tuple as in the case of on-line auction scenario where 
more bids come towards closing of an item. The age based models require more monitoring and frequent 
adjustment to window mechanism to yield max sub set result [63]. Depending on the age curve shape, 
different strategies to be followed to optimize the result. On the other hand if time based window model is 
followed, it will result in decreased productivity due to discard of relevant tuples when the resource is 
limited. Hence the solution to optimize the productivity in a resource crunched situation is to collect all 
relevant tuples while discarding the irrelevant ones. The relevance is decided based on its probable 
participation in the join process. 
 
We have a new window model to achieve the max sub set result or optimize the productivity. The model 
ensures the high usefulness of all stored tuples while making a judicious decision on load shedding. We 
have come up with a framework to measure relative relevance of various elements and thereby making the 
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shedding decisions wisely. We have formulated a unique cost function that is central to this model and an 
innovative data structure that is very efficient in implementing the framework. 
 

 
 

5.2 Synopsis for Join Processing 
The synopsis construction is light and has least overhead for its maintenance. The heart of the synopsis is 
the construction and maintenance of the heap based priority queue with relevance measure of elements of 
the stream. The relevance measure of each element is calculated using the cost function that is described in 
the following section. Each time an element comes in any stream the cost of it is calculated and updated or 
inserted into the heap based on its preexistence in the heap. So also the cost of all nodes gets updated at this 
instance. The heap is kept updated with the node with least value at the root, ready to be sheded if need 
arises. 
 
Cost Function The calculation of weight for each element in the logical queue is done using the following 
cost function [Equation 5.1]. This has two significant parts: (a) Age factor, and (b) Utility factor. The age 
component is derived from forward decay based model [23] which is in turn based on the philosophy that 
old data is less important. The utility part is derived from the intuition that any tuple or element that takes 
part successfully in a join is useful. The degree of usefulness or relevance is based on the context of the 
stream. A stream that has time sensitive data might have lower utility for future joins even if it has taken 
part in the join at present. So depending on the type of stream these factors contribute differently towards 
the overall relevance. The cost of relevance for an element ei of stream Si that has arrived at time ti and 
measured at time t such that t >= ti and ti > L is 
 

 
 
Where 
f(ti, t) = g(ti, L)/g(t-L) a decay function for an element with a time stamp t and land mark time stamp L 
f(ui) = Count of times that this element has been part of the join 
C1, C2 are arbitrary constants whose values can be tuned based on data type of XML stream. 
 
Age based Relevance This part influences the overall relevance through age based load shedding model. 
Based on the stream context we are using the following three decay functions the value of which varies 
between 0 and 1. 
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Linear Decay - This follows a linear distribution for the weight with any element that arrives at the time of 
measuring is having a weight of 1 and that has arrived at the beginning of the system start (landmark time 
L) with a weight of 0. The function is as follows. 
 

 
 
At t = ti, the weight is 1 and as t increases it decreases linearly. Most of the normal streams follow this 
decay pattern. 
 
Polynomial Decay 

 

 
 

Exponential Decay - We have found out much of resource (both space and time) can be freed up using the 
exponential decay with reasonable impact on the recall. 
 

 
 

Utility based Relevance The second part of the cost function comes from the utility of each element from 
their participation in join operation. If the element is a subset of the join result it bumps the count. We have 
implemented this part as a simple count in our experiment. This part represents a simple form of the output 
history. More accurate weights can be calculated based on the timestamps of its appearance in the result 
stream. 
 
Relevance based Window The priority queue that is implemented as a heap acts as a logical window for 
the input stream. Its size determined by the memory availability decides when to start the shedding. The 
victim selection is facilitated through the heap structure to shed the lowest weight element at the root. As 
the relative weight of each element node driven by the choice of cost functions discussed previously, the 
age of the element and number of times its appearance in the result stream play a crucial role in 
determining which element to be kept in the window irrespective of their arrival. 
 

5.3 Load Shedding Mechanism for Join 
Our basic algorithm for executing join S1[W1]XS2[W2] is shown in Table 2. If memory is limited, we need 
to modify the algorithm in two ways. First, in Line 2, we update S1[W1] in addition to S2[W2] to free up 
memory occupied by expired tuples. More importantly, in Line 4, memory may be insufficient to add s to 
S1[W1]. In this case, we need to decide whether s is to be discarded or admitted into S1[W1], and if it is to 
be admitted, which of the existing tuples is to be discarded. Due to load-shedding, only a fraction of the 
true result (recall ) will actually be produced. 
 
We adopt a window based approach to process the join query. The window in our case is a fixed size buffer 
for each source stream. The data is kept in the form of a heap data structure of elements sorted by the cost 
of each element. The least cost element remains at the top ready to be shed. The shedding action is 
triggered as a complete element arrives at the source. Upon arrival, the cost is updated for the new element  
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Table 1. Join Execution Steps 

 

Ni: Max size of logical buffer Si[Wi], Qi: Associated relevance queue of stream Si 
Bi: Associated hash based buffer of stream Si, fi: Hash functions for streams Si. For simplicity we kept 
f1 = f2 
attri: join attribute of stream Si 
1. When a new element e arrives in any stream S1 
Phase I: Symmetric Hash Join 
2. Calculate hash value of e by applying f1 on attr1 and insert in B1. 
3. Calculate hash value of e by applying f2 on attr2 
4. Probe B2 using the value from step 3. 
5. Emit the result 
Phase II: Synopsis Construction 
6. If size of Q1 < Ni, Insert into Qi 
7. Else a. calculate cost of e Ce 
b. If Ce < cost of element at head of Q1, throw e and remove the corresponding element from B1 
c. Else shed head of Qi, Insert Ce into Q1 
(Similarly repeat the steps for any element that reaches in stream S2 symmetrically with converse data 
structures) 
 

 
-if it matches with an existing element in the heap, else the new element is added to the heap. If the action 
is update, the heap is re-sorted through heapify operation. On insert, the shedding decision is taken if the 
buffer is already full. If the buffer is not full, the element is added to the heap and heapified. The shedding 
is decided if the cost of the new element is more than the cost of the element at the top of heap. Else the 
new element is dropped without any shedding. The shedding enacts the deleting of the element at the top 
and adding of new element to the heap. Once again the heap gets heapified after the operation completes. 
For simplicity, we have processed the join between two data stream sources. We implemented our join 
query processing as a symmetric hash join between our two window buffers. The reference of these 
elements has been maintained in respective hash tables for faster access. 
 

6. LOAD SHEDDING IN XML STREAM AGGREGATIONS 
There are various stream-based commercial applications like eBay that require to identify best seller items 
on the y and to maintain a list of top-k selling items as sales continue. The determination of top-k items is 
significantly harder depending upon the rate of auctions opening and closing, variability of biddings and 
the numbers of auction items. The main difficulty in maintaining these bestseller items is in detecting those 
infrequent values that become significantly frequent over time. This inherently requires to process 
continuous aggregation queries with limited memory. The problem becomes even harder when data in 
another source (stream) decides which item qualifies as more frequent than others. We propose a novel data 
shedding framework that uses an innovative synopsis to answer such queries under resource limitations. 
The synopsis takes into account the data distribution and cardinality of attributes and is very light weight to 
create and maintain. We proved the effectiveness of our strategy using XML stream domain and by 
measuring the accuracy of the result after processing joins and top-k aggregation queries on these streams. 
As the aggregation is a blocking operation, there is a trade-off on size of the window and the time basis for 
the expected result. The size of windows gets limited by the available resource which affects the quality of 
the outcome adversely. So there is always a trade-o_ between the quality of the result that you want verses 
the amount of memory that you can give to such solutions. We propose a solution that is constant in 
memory and provides acceptable result accuracy using a stream cube synopsis. Our framework does state 
management between two streams to provide the top-k list dynamically. The synopsis is built over the 
notion of data distribution of joining attributes. We use the existing XMark auction data [59] to prove the 
effectiveness of our proposal. 
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6.1 Aggregation Query Processing Model 
The sliding window Wi for stream Si (denoted as Si[Wi]) which may be tuple based or time based, is the 
basic traditional stream processing unit. But, storing tuples from individual windows into a substantial 
future, for future joins or group-bys, requires huge memory. For example, in case of auction and bid stream 
[59], the auctions have to be stored for incoming bids in bid stream, which might come at a later time in the 
future, well past the present window of auction stream. This necessitates storing items in auction stream 
beyond their window where they appear to have a possible join in future with bid stream. This either 
requires an extended window or an indirect solution through punctuated stream for a qualitative result. This 
poses a challenge to get accurate result with a limited space (memory). Besides, the possible number of 
group-bys that can be applied to a stream with a n number of attributes {A1; A2; ..; An} or dimensions 
having domain {d1; d2; ..; dn}, can be 2n [37]. 
 
In naive way, we can aggregate the bid stream on a window that spans from open auction to closed auction 
of the corresponding item. To determine top-k hot items, these windows must span over the life span of all 
auction items. However the problem becomes much simpler to answer when asked what are the top-k 
hottest items in last one minute or so [67]. Even for this, the memory requirement may be exhaustive if 
number of items n becomes very large. The space complexity would be of size of Ω(n) [33]. We try to 
solve this by reducing this number n through reducing the domain size of the auction items but effectively 
preserving the counts of individual data items. But in our approach, the size of the window Si[Wi] is 
determined on the basis of the available memory from resource limitation aspect. In case of exact analysis, 
the window should be enveloping all possible time spans of auction items in discussion. But for case of 
approximate analysis of top-k items, we determine the size of the window be much less than that should be 
to save all tuples. We have made the size of window, a function of the `k' based on the top-k value. 
 

6.2 Application of Compressed OLAP Data Cubes as an effective stream synopsis 
Compressed data cubes have been used as an efficient tool to answer aggregate queries. Multivariate 
Gaussian probability density functions have been used to answer aggregate queries over continuous 
dimension without accessing the real data [62]. This technique is only valid for continuous dimensions like 
age, salary etc. but dimensions such as item category etc. are discrete and will not follow the pattern. 
Various compression techniques have been discussed in [71]. 
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We have used a hash function (mod x) to compress the cardinality of any attribute e.g. the item types in the 
auction stream. The value of x can be considered based on the space that can be allocated for the synopsis. 
We have taken it as 100 for both streams for example in our experiments. Based on this value, the domain 
is divided into 100 sub-domains. We have adopted the OLAP domain compression method as described in 
[62] to formulate this compression technique to reduce the space requirement for maintenance of counts of 
bid. We have used a cost function as shown in Equation 6 which is based on the count to calculate the cost 
factor of an incoming element. The element with this cost is fed into the priority queue depending on the 
value of the cost associated. This relative cost of the element helps drive our load shedding process before 
the element is decided as an useful element and then is inserted into the hash buffer that process the 
symmetric hash join with the other buffer. 
 

6.3 Synopsis for Aggregation 
As our aim is to get the top-k hot items being auctioned, we can get a data distribution, where the items in 
each category can be assumed to be uniformly distributed. The total number of hits in any category c can be 
computed as a function of the probability distribution function of hits, Pr(c) in each category where item a 
and item b are the beginning and end items in the category respectively as: 
 

 
Based on this value, it is easy to calculate which are top-k selling categories. Similarly it can be done for 
top-k items in each category. We transformed this continuous model into a discretized model to keep the 
counts of items (bids), that not only saves us huge space but also helps us in fast calculating the probability 
of shedding for each tuple. The heart of the synopsis is the construction and maintenance of this histogram 
like data structure on compressed dimensions. 
 

6.4  Domain Compression 
The use of stream cubes in analysis of streams is a topic well covered in [36]. Use of cubes to answer 
aggregate queries has been discussed in [37]. Various domain compression techniques are followed in the 
field of OLAP to save space for data cubes [62, 71]. The compression is achieved by exploiting the 
statistical structure of the data and its probability distribution along the domain. It works well where the 
density distribution is continuous such as salary, age etc. We have adopted a similar approach, but in our 
case where the attribute (itemid) might not be continuous, we follow the discretized model of domain 
compression and used histogram model instead. Let the stream Si has domain Dk for its attribute Ak. We 
have used a hash function as described in 2.1 to bring in this domain size Dk to manageable range and 
further divide it into m sub-domains {Dk1;Dk2; :::Dkm}.We maintain counters C = {Ck1;Ck2; . . .Ckm} for 
each sub-domain that gets incremented as bids with corresponding itemid flows in. Based on the value of 
these counters the probability of shedding is decided. The domain compression not only saves us space for 
the synopsis construction and maintenance but also provides faster cost evaluation for shedding. 
 

6.5  Cost Function 
The calculation of weight for each element in the logical queue (priority queue) is done using the following 
cost function (Equation 6.1). Keeping top-K nature of query in view, we have decided to shed non-frequent 
items before they consume critical computational resource. We have calculated probability of shedding for 
each incoming bid (Equation 6.1). Based on the count of past similar tuples, its cost goes up or down and 
so also the chance of it getting shedded. 
 
Let an element Ei arrives in stream Si. The desired dimension k for Si whose domain is Dk which in turn is 
divided into M sub-domains {Dk1;Dk2; :::DkM} as shown in Figure 2. Depending on the attribute value for 
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this dimension, Ei hashes to sub-domain Dkj(j = 1..M). Let the count of elements already in Dkj is Ckj . The 
probability of shedding PEi of an element Ei is as follows. 

 
Table 2. Execution Steps (Refer to Figure 9 for notations used) 

 
1. A new element e arrives in any stream S2 (the bid stream) 
Phase I: Shedding and updating the data structure Phase 
2. If the element is already in hash table T2 
   a. Update the element cost in the priority queue Q2. 
Else 
   b. Calculate the cost (Ce) of the element e, and try insert it into Q2 (as in step 3). 
3. If Ce > cost of element at head of Q2, 
Throw element e without insertion 
Else 
Shed head of Q2 and Insert element e (cost Ce) into Q2 and correspondingly the reference in T2. 
Phase II: Join Phase 

4. Probe T1 with element e for matching elements for the join and emit the result 
5. Queue the result tuple r in the output buffer B 
Phase III: top-k Computation Phase 

6. Aggregation operator is applied on the output buffer B to calculate the count of bids in each category 
7. The bid counts are sorted to calculate top-k 
Similarly repeat the steps for any element that reaches in stream S1 symmetrically with converse data 
structures. 
 

 

6.6  Load Shedding Mechanism for Aggregation 
The load shedding is implemented through the priority queues as shown in Figure 9. As aggregation is a 
blocking operation, we have moved it after the join, to provide join early on. The load shedding operators 
are added to each incoming stream before the join take place. This way, the unimportant tuples go out of 
the system before incurring any CPU time by taking part in joining, thus saving critical CPU cycles for 
processing the tuples that are relevant to the query result. This decides which tuple (node) to shed based on 
the weight of the node. The fast access to priority queue helps faster decision on choosing the ideal victim 
tuples to shed, thus acting as a very fast shedding operator. Our window is a fixed size hash buffer, one for 
each source stream. The data is kept in the form of a heap data structure of elements sorted by the cost of 
each element. The highest cost element (the one having highest probability of shedding) remains at the top 
ready to be shed. The shedding action is triggered as a complete element arrives at the source. The details 
of steps of processing are described in Table 2. 
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7. Experimental Evaluation 
All our frameworks have been implemented in Java and run in systems with 2-GHz Intel Core 2 Duo 
processor, 2.0 GB of main memory and windows XP. The load shedding framework is implemented as a 
pluggable module and part of the intermediate buffer; external to our core query processor. 
 

7.1 Framework for Set-Valued Queries 
We have implemented both syntactic Simple Random and semantic Structured Predicate load shedding 
techniques. We have measured the QoS parameters of a workload consisting of a mixture of XPath and 
XQuery queries running over a representative XML stream data derived from XMark Standard data of 
100MB and evaluated them in light of appropriateness of our proposed load shedding techniques. The 
workload was mixed in order to neutralize the effect of query complexity on the load shedding techniques. 
A set of 10 queries from each type have been run for each amount of load shedded. The values shown in 
Figure 11 are average of accuracy in terms of element count in the result set for all query results at each 
load shedding point. 
 
The QoS parameters measured are the accuracy and latency. We quantified the accuracy in terms of the 
utility loss for different load shedding methods as well as for a perfect system for comparison. As shown in 
Figure 11, it is clearly evident that structured predicate load shedding is more effective in preserving the 
accuracy compared to simple random load shedding but with a small overhead of maintenance of related 
data structures. This overhead can be minimized by efficient implementation. As expected, the loss in 
accuracy is more prominent at higher loads. We measured the effects of these two proposed load shedding 
techniques on the latency of query result by measuring the mean response time of the query processing in 
milliseconds. As shown in Figure 12, the mean response time is always less for structured load shedding 
relative to the simple load shedding, except at the 35% load shedding point. We are planning to measure 
these parameters for higher load levels and different query types (join queries) in future. 
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7.2 Framework for Join Query 
We compare the results of our join query implementation with that from two other systems ( Stylus Studio 
[1] and SQL Server 2005 [54]) that deal with non-stream data. Our comparison is mostly based on three 
factors. One, the overall quality of the result, known as recall or productivity. Second, the overall memory 
consumption by system. Third, the time of processing. We tested three different implementations of our 
cost function (linear, polynomial and exponential) for the test. Furthermore, our experimental results reveal 
several other properties and characteristics of our embedding scheme with interesting implications for its 
potential use in practice. We tested our framework on representative datasets derived from synthetic and 
real-life datasets. The size of the dataset is controlled to avoid the memory limitations of the systems used 
[1, 54]. 
 
Synthetic Data Sets We used the synthetic data from XMark [59] XML data benchmark that is modeled on 
the activities of an on-line auction site (www.xml-benchmark.org/). We controlled the size of the XMark 
data to 50 MB using the scaling factor input to the data generator. The ceiling of 50 MB is considered due 
to the Java heap space for Stylus Studio. We ran a set of join queries similar to the following one on all 
three implementations (ours, Stylus Studio and SQL Server 2005). The queries have been modified to suit 
the implementation [54]. 
 
Effect of Decay Our first set of experiment is to see the effect of decay algorithm on the productivity. We 
calculated the number of output tuples for each of the three algorithms and compared it with the exact 
query recall to compute the accuracy. They are measured for each of the memory size. The 100% of 
memory size refers to no load shedding having buffer equal to the size of the stream; in our case of 50 MB 
for each stream. The other memory sizes are reduced according to the ratio. Figure 13 shows the relative 
quality of the result for different implementations of the load shedding mechanisms. The Exponential 
Decay based cost function produces better result for almost all memory sizes. The stream characteristic best 
suits the decay function. Figure 14 indicates the better processing time for Linear Decay based cost 
function relative to other two implementations due to less maintenance overhead of cost calculation for 
shedding. As the amount of shedding decreases for higher memory sizes the gap narrows down. 
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Real Life Data Sets We use the real life XML data sets, DBLP [48] for the following queries. We 
fragment it into two parts DBLP1 and DBLP2 based on journal and conference series [44]. We adjusted the 
_le size to 50 MB each to make the joining load even. Once again we ran it through all five systems; three 
of our own implementation, Stylus Studio and SQL Server 2005. On this dataset, we use the following 
XQuery template that asks for authors that have published in at least 2 different journals and/or conference 
series: 
 

for  $a1 in doc('dblp1.xml')//author, 
$a2 in doc('dblp2.xml')//author 
where  $a1/text() = $a2/text() 
return  $a1 

 
We plotted the results for accuracy for all of our three implementations. The recall percentage is calculated 
with respect to the output that is acquired from SQL Server 2005. The result is presented in Figure 15. 
However as the data is no more dependent on the time or not temporal in nature, the type of decay cost 
function has relatively less effect on the recall. Rather the linear function has better effect compared to 
other two implementations due to its simpler implementation. The high fan out characteristic of DBLP 
might have contributed to this implementation. 
 
The processing time is calculated for various cost function implementations for all ten memory sizes and 
plotted in Figure 16. It is quite clear that the linear implementation provides better timing relative to other 
two implementations. Combining both the recall study and the processing time, it is evident that the linear 
costing function based load shedding strategy is the best one out of the three for dblp dataset. 
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7.3 Framework for Aggregation Query 
We compare the results with our earlier implementation [26] that uses the relevance index as shedding 
mechanism and with exact result using Stylus Studio. Our comparison is mostly based on three factors; 
one, the overall quality of the result, second, the overall memory consumption by system and third, the time 
of processing. We tested our implementation with 3 different `k' values (10, 20, and 30). Our experimental 
results reveal several other properties and characteristics of our embedding scheme with interesting 
implications for its potential use in practice. 
 
We used the synthetic XMark [59] XML benchmark data of 50 MB size, using the scaling factor input to 
the data generator. The ceiling of 50 MB is considered due to the Java heap space for Stylus Studio. We ran 
five different set of aggregation queries for different top-K values on all three implementations (our present 
scheme, implementation of relevance index[26] and Stylus Studio). The queries have been modified to suit 
the implementation [58] to calculate both hot list in each category and hot categories. Instead of calculating 
the hot list over a time span like [67], we ran it for entire length of stream. The definition of hot list as 
assumed by [67] is based on the number of bids an item receives rather than number of items being sold 
actually. 
 
Effect of Shedding vs. Compression Our first set of experiment is to see the effect of domain compression 
compared with the relevance index [26] on the quality of the result. We calculated the top-10, top-20 and 
top-30 items using both the frameworks and compared them with that of accurate result obtained from 
stylus studio. They are measured for each of the memory size. The 100% of memory size refers to no load 
shedding having buffer equal to the size of the stream. The other memory sizes are reduced according to the 
ratio. Figure 17 shows the relative quality of the result for different implementations of the load shedding 
mechanisms. 
 
The Domain Compression based cost function produces better result for almost all memory sizes. But the 
impact of buffer size is quite dramatic on relevance based algorithm compared to the domain compression 
algorithm in higher buffer sizes. Figure 18 indicates the better processing time for domain compression 
methodology compared to relevance based functions due to less overhead of calculation of indexes and that 
of shedding. 
 

8. CONCLUSION AND FUTURE WORK 
During the course of this work, we presented different load shedding frameworks suited for different 
processing types in XML stream. However, the central philosophy is to develop a load shedding strategy 
that is least intrusive from processing point of view and least resource consuming. Our load shedding layer 
is external to the query operator network and proactive in nature. We have introduced a logical window 
model that is different from established sliding window concept and spans over the entire history of the 
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data stream. Various synopses that we use for our different models are intelligent and effective from their 
construction and maintenance point of view. 
 
The author has planned to extend this work of load shedding in XML stream processing to following areas. 
Systems that deals both streaming and static data - As the requirements are different for streaming and 
static data processing, it will be interesting to develop a system that integrates streaming data with static 
data transparently where the static data plays a complementary role to produce more qualitative results or 
help reduce the amount of data to process by influencing the processing selectivity of stream data. 
 
Integration with commercial CEP systems - Our stream processing system can play a role of a core 
query processing system feeding result into event notification layer of any commercial Complex Event 
Processing System. Though load shedding is not followed in event processing, our framework can play a 
complementing role from QoS perspective as most CEPs lack the QoS implementation. Also our load 
shedding framework can influence or contribute to the event consumption modes of any CEP that drop or 
discard any events. Our time based relevance model can play a crucial role in reducing temporal foot print 
of events in a event processing system. As the consumption modes are more like a logical window, than a 
physical window, our synopsis driven relevance model is a good fit for it.  
 
Stream Cube -We are planning to extend the implementation of our stream cube for XML data streams. 
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