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ABSTRACT 

Data Warehouses store integrated and consistent data in a subject-oriented data repository dedicated 

especially to support business intelligence processes. However, keeping these repositories updated usually 

involves complex and time-consuming processes, commonly denominated as Extract-Transform-Load tasks. 

These data intensive tasks normally execute in a limited time window and their computational requirements 

tend to grow in time as more data is dealt with. Therefore, we believe that a grid environment could suit 

rather well as support for the backbone of the technical infrastructure with the clear financial advantage of 

using already acquired desktop computers normally present in the organization. This article proposes a 

different approach to deal with the distribution of ETL processes in a grid environment, taking into account 

not only the processing performance of its nodes but also the existing bandwidth to estimate the grid 

availability in a near future and therefore optimize workflow distribution. 
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1. INTRODUCTION 

In the last decade we have observed an exponential growth in the supply of computing devices at 

the same time as the increase of computational needs. Nevertheless the capabilities of such 

devices are often underused once they require not very demanding resources to perform their 

normal tasks, such as Web browsing, word processing, data analysis or social networking 

services, just to name a few. On the other hand, the usual approach to deal with this need for 

increased processing power was to purchase better devices, not considering the distributed 

processing capabilities that older less powerful devices could provide when cooperating in a 

network. Distributed and parallel processing is not a new issue to the scientific community. But 

the advances that occurred in network capabilities, network operating systems and portable 

devices have led to new fields of research. New terms have arisen like Grid computing [1] or 

Cloud computing [2]. Yet, both approaches have the same goals - distribution and resource 

sharing - with the focus shifting from a technology point of view to a service oriented philosophy.  

The use of grid environments in data processing intensive tasks has been studied in academic and 

scientific institutions already for a long time. Commercial organizations are now adopting this 

approach to help the mitigation of the impact of the increased amount of data gathered by their 

enterprise information systems that needs to be analysed, through testing grid middleware 

software. The basic idea is to take advantage (or to attenuate the effect) of the inactivity of their 

computing devices during a regular day helping them to perform those tasks. A grid based 

approach maximizes the investments already made and postpones some other expensive computer 

acquisitions [3]. One of the objectives of an enterprise information system is to support 

management's decision-making processes through the analysis of large amounts of data stored in 

them. Since data increases normally through time, the processing power needed to analyse it in a 
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useful time also increases undermining the infrastructure available. A grid environment might be 

a suitable solution to this kind of problem, due to the easiness and inexpensiveness of adding new 

processing nodes to the infrastructure [4, 5].  

In this article we studied the configuration and exploitation of a specific grid environment in 

order to receive and support the execution of an ETL process of a data warehousing system, 

giving particular emphasis to the distribution of ETL tasks, and focusing on the heterogeneous 

bandwidth capabilities of processing nodes interconnection. The article is organized as follows. In 

section 2, we briefly analyse related work in grid environments, task distribution and data 

warehouse applications. Next, we specialize our study on the distribution of ETL tasks over a grid 

environment (section 3), and present the model we conceived for ETL workflow distribution in a 

heterogeneous processing network, like a grid environment (section 4). Finally, we'll end the 

article with some brief remarks, pointing out some future developments and research lines. 

2. RELATED WORK 

Grid and Cloud computing environments have been the recent focus of attention of a large part of 

the scientific community, which was interested to achieve better performance and reliability in 

everyday business operations through the use of low cost computational power to data intensive 

operations [1]. Resource demanding operations, such as those present in the fields of health and 

astronomy, can benefit from this approach since they deal with large data sets requiring enormous 

computational resources to process them [6]. These environments are also being faced as a 

potential business opportunity, where resources are lent to clients that temporarily need them [7]. 

As a consequence of their work, recently researchers turned their attention to the complex 

problem of task distribution and management, relegating for a second place the grid itself 

(architecture, models, functionalities, etc.) [8-10]. As a natural evolution of these researching 

processes, the distribution and management of workflows [11-14] in grids remain a challenge and 

is becoming more popular in several fields of practice, in particularly in the Data Warehousing 

Systems (DWS) domain. DWS are known for gathering, processing and storing large amounts of 

data [15, 16]. Such characteristics blend well with the possibilities that any grid environment 

provides. There are already several studies where DWS's data is distributed in a grid environment 

[17-19], with particular emphasis on query distributing approaches [5, 20]. However, the use of 

grid environments has not been extensively studied in DWS. A DWS populating process, ETL for 

short, are data intensive tasks that prepare transactional data to be loaded into a data warehouse 

[21, 22]. Their modelling phase has been studied widely [23] in conjunction with the optimization 

of the workflows that they generate  [24, 25]. However, it is recognized that there is a lack of 

research in the combination of grid environments and ETL processes because ETL tasks normally 

work over large data sets making bandwidth the primary concern in their distribution, thus driving 

away DWS researchers from this kind of approach. Recently, this last issue has been addressed by 

several researchers that proposed some new methods to monitor, quantify and predict bandwidth 

availability in grid networks [26-29]. 

3. SCHEDULING ETL TASKS ON GRID ENVIRONMENTS 

Task distribution and management has been subject of intensive study especially over parallel 

architectures. Nevertheless, these architectures are very different from the normal grid 

environments, mainly due to the fact that these are composed of heterogeneous, autonomous and 

physically distributed resources. Shan [9] proposed a super scheduler architecture that manages 

jobs in a grid by cooperating with local schedulers,  submitting, re-submitting or transferring jobs 

between the available resources. However, the lack of control over such local schedulers has led 

to several problems, since these resources are shared and their status and utilization change over 

time. Grid users submit jobs to the grid and the grid scheduler has to choose to which resources 

jobs should be sent, based on information about the grid - probably already out-dated. Keeping 

this in mind, Schopf [8] proposed a three-phase architecture for grid scheduling, which is based 
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on resource discovery, system selection, and job execution. The first phase objective is to gather 

information about the resources that are available to the user. The second phase intends to 

identify which resources satisfy the minimum requirements asked by the user - operating system, 

software, and hardware configurations. Additionally, in this phase, some information gathering 

tasks are also executed, mostly concerning with dynamic updated information over resources, like 

CPU usage, or RAM/disk space availability. The last phase, job execution, involves a set of tasks 

that must be performed in order to execute the jobs, like advance reservation of resources, 

preparation of job submission, job monitoring and job completion tasks such as clean-up tasks. 

Latter, Ben Segal [30] suggested that the availability and proximity of computational capacity and 

required data should be taken into account every time the grid's scheduler distributes and 

decomposes jobs for remote execution. This is very critical mainly because data is transferred to 

remote nodes over limited bandwidth - a normal situation in grid environments. More recently, 

other aspects have been taken into consideration, like fault recovery, checkpoint techniques or 

task replication and job migration. Also, the use of resource load prediction (usage profiling) has 

attracted some attention when we are interested in maximizing the performance and reliability of 

a grid [10]. Summarizing, whenever there is lack of server computational power to perform data 

intensive tasks, and exists a computer network with under-explored resources, the possibility of 

using a grid computing environment emerges as very viable and interesting solution. Even so, 

efficient task distribution and management becomes critical factors of success that real challenges 

such option. Therefore, in order to successfully address it, we must remember that information 

resource gathering is critical, job decomposition and replication are essential, to approach a 

maximization of the performance and reliability guarantee, particularly in environments with 

significant bandwidth bottlenecks. 

4. PUTTING AN ETL SYSTEM ON A GRID ENVIRONMENT 

The use of grid environments to support DWS has mainly been adopted to distribute data and 

queries. However, since the DWS ETL component is very resource demanding and its 

characteristics are fit for distribution and parallelization, researching has been focused on the 

possible advantages of using grids, using already existing enterprises' computational resources 

when they are in idle time, for instance. Nevertheless, in order to take advantage of the 

potentialities of a grid in ETL, a very structured workflow of operations must be defined. In a 

previous work, we have presented an approach to model ETL workflows for grid environments, 

using Relational Algebra to specify each ETL task [31]. Tasks were distributed over the grid 

using a proposed performance prediction model [32] with the ability to categorize grid nodes 

according to their availability. 

As a running example to help us introducing our proposal, we selected a simplified part of the 

Microsoft Database AdventureWorksDW1 : a dimension table dim_Person that is fed from three 

different source tables. We present the logical model that specifies the transformation's flow 

needed to load the DW, using Vassiliadis notation [33] (Figure 1), and then present it oriented 

especially to grid environments. 

                                                
1 http://msftdbprodsamples.codeplex.com 
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Figure 1 - ETL logical model – populating the dim_Person dimension table. 

The characteristics of a grid environment led us to adopt Relational Algebra to specify each ETL 

task appealing to some new operators that extend relational algebra [34, 35]. Such extensions 

allow us to represent the most common ETL operations, and so distribute the ETL workflow over 

a grid (Figure 2). Data was stored in XML format for better compatibility in heterogeneous 

environments. Relational algebra operations were coded using JAVA. 

  

Figure 2 - (a) Relational algebra operations workflow; (b) Operations' specification 

Once the ETL logical model is defined (Figure 2(a)), we need to represent it in a format that can 

be interpreted by a grid and then instantiated to its task scheduler with inputs from the Grid 

Information Service (GIS), such as information about the availability of the resources that meet 

the minimum requirements of each ETL operation. As already referred, the GIS provides valuable 

information about the most up to date status of the grid. Additionally, statistical information about 

past executions is quite important to improve task distribution, such as effective runtime, effective 

quantity of data transferred and received, etc. The architecture we proposed is represented in 

Figure 3. Nevertheless choosing the best computational node to execute a task is not an easy job. 

It's particularly important when the computational power of the node is not the decisive factor 

every time we need to choose where to delegate a task execution. Since ETL tasks tend not only 
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to work over large data sets but also produce large ones too, the available bandwidth to transport 

the data is a critical factor in the evaluation of the execution node. Generalizing, the available 

bandwidth of each grid node, namely download and upload bandwidth, should be available to the 

scheduler or stored in the GIS. 

 

Figure 3 - A view of the grid architecture for ETL tasks. 

5. TESTING AND EVALUATING THE EXECUTION OF ETL TASKS  

To test and validate the way we make ETL tasks distribution involving large data sets in a grid, 

we used Globus Toolkit 4.2.1 Middleware [36]. In the test, we configured and used four different 

computational platforms as our test bed (Table 1). 

Table 1 - The characteristics of the nodes. 

PC Processor RAM HD OS Network Card 

debian1 Pentium 4 2.4 GHz 1.2 GB 70.3 GB Ubuntu 10-10 100 Mb/s 

debian3 Pentium 4 1.5 GHz 376.6 MB 35.6 GB Debian 5 100 Mb/s 

debian3 Pentium 4 2.4 GHz 494.9 MB 36.2 GB Ubuntu 10-10 100 Mb/s 

debian4 Pentium 4 2.8 GHz 1.5 GB 35.1 GB Debian 5 100 Mb/s 

 

The GIS of the Globus Middleware is provided by the MDS component [37]. Complementarily, 

we also used Ganglia monitoring system [38] to gather all the available information of the grid's 

nodes. This information is then accessed through a dedicated Globus Web Service by the 

scheduler. 

To monitor and develop the scheduler module that deals with the defined workflow and then 

instantiates it to the grid we selected JAVA CoG Kit JGlobus [39]. debian4 computer has all the 

grid's services, and debian1 has the scheduler and all the source files needed for the workflow. As 

such, debian1 will not accept any jobs, only the three remaining nodes will execute workflow 

tasks - the size of the source files is presented in Table 2. 

Table 2 – Input files size. 

File Operation Size 

PersonAddress.xml Projection_1  6.379 MB 

HumanResourcesEmployAddress.xml Projection_2  0.070 MB 

HumanResourcesEmployee.xml Projection_3  0.203 MB 

 

5.1. Running Experiments Without Considering Bandwidth 

Our first experiment was based in the work presented in [32], where each node of a grid is 

evaluated according to its performance availability. 
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 (1) 

In Formula 1 the performance is affected by a coefficient (AvailCOEF) that, in our case, is inversely 

proportional to the average CPU load of the last five minutes. We then use another proposed 

algorithm that classifies each node in an interval of six classes (C0-C5) based also on its 

performance availability. Then we define that each of these classes has an importance 20% higher 

than the preceding class (Table 3). 

Table 3 - Probabilities assigned to the classes. 

Class Probability 

C0 10% 

C1 12% 

C2 15% 

C3 17% 

C4 21% 

C5 25% 

 

Whenever a workflow is submitted to the grid, the scheduler generates a random number between 

0.0 and 1.0 for each task, and calculates which node will execute the task according to its weight 

in the grid architecture. All workflow's tasks can be followed in the system observing the 

evolution of the grid's status (Figure 4). Since there is a random factor assigned to the distribution 

of the tasks, each experiment presented in this article is unique. The characteristics and problems 

observed for each approach are consistent even if we run several experiments for each approach. 

The computing nodes and times for each task vary slightly but the conclusions are the same. 

 

Figure 4  - Showing the status of a running process. 

When analysing the workflow, we see three branches of operations ending all of them with a Join 

operation. This operation can only start when all previous operations are terminated. The 



International Journal of Database Management Systems ( IJDMS ) Vol.6, No.2, April 2014 

73 

operation Join_1 is very resource demanding and slows down the execution of the workflow 

(Figure 5). 

 

Figure 5  - Scheduling of the ETL workflow without prediction or limited bandwidth. 

A second experiment involved a distribution model based on the prediction strategy presented in 

[32]. All nodes of the grid were evaluated taking in consideration their computing performance 

and memory capabilities through time. This information was stored in a statistical file and used to 

predict the class of each node in a time period. To help us on this specific task we used 

RapidMiner
2 decision tree algorithms.  Predictions are one of the most important inputs to the 

scheduler. The overall worse performance of this approach, in comparison with the previous one, 

is justified by the fact that the grid used has a small number of working nodes (Figure 6). 

 

Figure 6  - Scheduling of the ETL workflow with prediction and without limited bandwidth. 

The prevision model distinguishes the best nodes, but the random factor used to select the node 

and the reduced difference of importance in the class nodes, contribute to a slower outcome. In 

fact, a complex task may be assigned to a slower node (as was the case in Join_1) increasing the 

                                                
2 http://www.rapidminer.org 
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amount of time needed for completion. In addition, since we are using prediction to evaluate 

performance in a given time, the real availability of the nodes could be different. 

In order to reduce the Stage Out time of the tasks and network communications when returning 

results, we decided to distribute branches of tasks to a same node. In this experiment case we 

intended to reduce communication bandwidth with the scheduler node as well as the Stage In and 

Stage Out time (Figure 7). To achieve this goal, we started to change the scheduler behaviour and 

remove the Stage Out phase. So, succeeding tasks could get directly the input files that they need 

from the preceding node. When a task is assigned to a node, the grid scheduler verifies if the 

preceding task has only one child. If so, it assigns the task to the same node that has the parent 

task in order to save some time, once the input file that it requires is already in the node. If the 

parent node has more than one child, the scheduler behaves in the same mode as already 

described. The only difference is that the input files are not located in the scheduler node but in 

the node where the parent task was executed. Therefore, the transference of the input files occurs 

between those two nodes. 

 

Figure 7  - Scheduling of the ETL Workflow, with prediction, branch optimization and without 

limited bandwidth. 

5.2. Running Experiments with Limited Bandwidth 

The next batch of experiments was based on the premises that grid architectures have usually a lot 

of nodes with disparate characteristics in terms of performance capabilities and bandwidth 

connections. The latter, is one of the more relevant characteristic when we are worried about the 

transference of large files, undermining the scheduler effort of selecting the best computational 

node. In the grid we configured, we limited the bandwidth of the node debian3 to 20Mbits/s 

instead of the original 100Mbits/s. Then, we resubmitted the tasks workflow accordingly to the 

guidelines presented in Figure 6 and 7, i.e., with prediction and branch optimization, respectively. 

In this experiment, the first task was assigned to the limited node and the Stage In phase took, in 

average, two times more than when we used normal bandwidth. This result is justified mainly 

because on this phase we considered authentication between the nodes, independently of the 

bandwidth available, which consumes, as we know, a precious slice of time. We also had other 

tasks assigned to the limited node. However, the dimension of the data transference involved with 

was not relevant to the outcome. 
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Figure 8 - Scheduling of the ETL Workflow, considering prediction, and limited bandwidth on 

debian3. 

Distributing the workflow with branch optimization on a limited bandwidth environment is also 

problematic. However, since a branch is assigned to a node, data is only transferred in the 

beginning and at the end of the branch simplifying the effect of limited bandwidth on the overall 

result. Nevertheless, for each task, the grid scheduler keeps the transference of the task (and some 

additional information) to the execution node. In addition, if a limited node is chosen to execute a 

task that uses (or produces) a large data set, the impact of the limited bandwidth will be 

exponential. When comparing this last experiment with the ones that we showed previously in 

Figure 7, we quickly see that we got worst results. This last experiment is approximately 20% 

slower than the one presented in Figure 7. 

 

Figure 9 - Scheduling of the ETL Workflow, considering prediction, branch optimization, and 

limited bandwidth on debian3. 

To finish our experiments, we adopted the same approach as followed in [32] but applying it not 

only to node performance but also to the bandwidth availability. We store statistical information 

over bandwidth availability of each grid node and use RapidMiner to predict bandwidth 
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availability for a certain point of time. Then we average the performance and bandwidth classes 

of each node in order to define the overall class. 

The result was an improvement if we consider the overall time, mainly because the limited node, 

although good in performance wise, has an overall reduced class that reduces the chance of being 

used to execute a task. Nevertheless, one branch was assigned to it. Improving the balance 

between bandwidth and performance and distinguishing the weight of each class used on nodes 

evaluation, would contribute to a better outcome. Eventually, each task of the workflow might 

have a ratio to balance bandwidth and performance according to its inputs, outputs and 

computational tasks. 

 

Figure 10 - Scheduling of the ETL workflow, considering prediction based on performance, 

available bandwidth, and branch optimization. 

6. CONCLUSIONS AND FUTURE WORK 

In most cases, DWS are extremely demanding in terms of computational resources, requiring 

significant processing and storing capabilities. They use to deal with very large data sets during a 

limited time window, in a daily basis. The architectures that are defined and installed to support 

their activities are not available to all companies, especially the ones with scarce financial 

resources. Besides, as a DWS grows its architecture also needs to evolve, frequently implying 

strong restructurings to receive new requirements and services. These are, as we know, very 

expensive processes. In this article we developed and tested an approach based on grid 

environments, as the supporting infrastructure exclusively for ETL systems. Our goal was to 

prove that a grid infrastructure could be an efficient alternative to implement such kind of 

processes, taking advantage, of course, of the existence of computational resources with low 

utilization. Thus, it's possible to reduce significantly the costs of a traditional ETL system 

implementation. To configure and run an ETL system (or a set of specific ETL tasks) we 

decompose the ETL workflow in a set of relational algebra operations, which were distributed 

and then executed, using JAVA and XML as support. 

The scheduling of workflows that deal with large data sets is not only a computational problem 

but also a communications problem, since a grid environment might contain nodes with limited 

download and upload bandwidth. We studied the impact of scheduling an ETL workflow using 

performance prediction, branch optimization and finally bandwidth prediction. As we have seen, 

the first three tests we have made do not take into account the available bandwidth, which makes 

them impractical to be implemented, since it does not provide a credible solution to accommodate 

a conventional ETL system - we assumed that a grid normally does not comprises local nodes 
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only. However, the following tests have considered this problem. The prediction of performance 

and bandwidth, although they may produce worse results than those who do not use prediction, 

allow reducing the work of the grid’s scheduler. Otherwise it would still have to track the 

performance and the available bandwidth of each node before submitting the work. Additionally, 

we found that the submission of branches of tasks, significantly reduces the communication time 

between jobs, simply because the results are already stored at the execution node rather than 

having the scheduler receive and transmit those results. In spite of all these advantages, we know 

clearly that this kind of solution it’s not viable for (near) real-time ETL processes or for ETL 

processes that demands exclusive resources for task execution. However, we believe for a small-

medium class 3 ETL process that a grid environment could be a good infrastructure solution. 

In a near future, several improvements and optimizations might be considered. Some of them will 

be related to the application of different weights to the classes of performance used to select the 

nodes, or to use different bandwidth and performance ratios in the evaluation of the nodes, 

particularly applying them according to each task characteristics. 
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