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ABSTRACT 

 

Several advanced applications require that uncertain data be stored in the database. Applications with 

sensor data, data mining, and integrated data are just few examples in which probabilistic data is 

considered a first class citizen. In response to this demand for storing and managing probabilistic data, 

researchers have started in recent years addressing issues pertaining to the management uncertain data. 

Representation and modeling of probabilistic data is one of the areas that needs attention. In this paper, 

we summarize our previous work on how probabilistic data can be represented along three different 

probability spaces, namely, attribute probability space, record probability space, and database state 

probability space. Then we introduce techniques for mapping the data from the attribute probability space 

to record probability space and from record probability space to database state probability space. The 

ability to perform correct mappings of data between these probability spaces is important in order to 

preserve the integrity of the data and avoid any data loss during the mapping process.  
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1. INTRODUCTION 

 
In recent years there has been increasing interest in coming up with powerful ways to capture and 
represent probabilistic data in relational database systems. This has been motivated by many 
emerging applications that demand such capability. Examples of applications that need to support 
probabilistic data (i.e., data that is imprecise or uncertain) include sensor data, data extracted 
from text files, data integrated from a variety of sources, medical diagnosis data, and data mining. 
In [1] we give a brief description of applications that benefit from the capability of handling 
probabilistic data.  

In response to this demand, the research database community started addressing issues related to 
probabilistic databases. Many experimental database systems that support probabilistic data have 
recently been built in order to explore and experiment with various aspects of probabilistic data. 
In addition, several research articles have been published to address different features that need to 
be supported in probabilistic database systems [2-7]. Some of the Prototype systems that have 
been reported in the literature include Trio [8], MayBMS [9], MystiQ [10], Prob-View [11], Orion 
system [12], MCDB [13], and BayesStore [14]. Trio, MayBMS, and MystiQ are systems that 
support discrete forms of uncertainty, in which a finite set of possible instances is represented. 
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MayBMS expresses constraints between records in the form of “conditions.” The technique used 
by MayDMS resembles a technique called lineage that is used in Trio. MystiQ represents 
uncertainty of data in the form of existence probabilities over independent records. ProbView 
maintains what is called probability intervals for each record. The Orion system focuses on 
probabilistic data for applications that use sensors. This requires modeling continuous forms of 
probability, involving infinite sets of possible instances. MCDB and BayesStore are systems that 
incorporate AI inference mechanisms as well as statistical models for managing uncertainty. 
Other related work on databases with uncertainty can be found in [15-20]. 

In [1] we introduced a new approach for viewing and presenting probability in databases with 
uncertainty. In our approach, probability can be considered at three levels of granularity. We also 
introduced the definitions of three probability spaces where each probability space correspond to 
one of these three levels of granularity.  

In this paper, we extend our work in [1] by introducing techniques to map data from one 
probability space to another. Sound mapping techniques are important in order to preserve data 
integrity and avoid any loss of information during the mapping. This research is part of an on-
going research project called probabilistic data management and mining (PDMM). 

The remainder of this paper is organized as follows. In section 2 we summarize our previous 
work in the area or probabilistic databases, since it serves as a basis for the research introduced in 
this paper.  In section 3 mapping from attribute probability space to record probability space is 
described. In Section 4 we present mapping from record probability space to database state 
probability space. Conclusions are given in Section 5. 

 
2. BACKGROUND INFORMATION 

Imprecise or uncertain data in a relational database can be considered at the level of an attribute, 
record, or database. Uncertainty at the attribute level means that a value in a record can actually 
be a set of probable values instead of just a single deterministic value. Uncertainty at the level of 
an entire record indicates that the existence of the record is not certain (it may or may not exist in 
the database). The third type of uncertainty is at the level of the entire database. Each one of the 
above mentioned three types of uncertainty (attribute, record, or database) has its own probability 
space. In this section we provide a brief summary of probability spaces as introduced in [1]. To 
demonstrate the various probability spaces, we use the dataset shown in Table 1. In addition to 
the patient’s name, the dataset stores some vital signs of patients who are presently in the 
hospital’s intensive care unit. These vital signs are Temperature and Pulse-Rate (P_rate). 

In this table, a star “*” is used to denote uncertain records. The “*” next to record r4 means that 
this record may or may not exist in the database (e.g., it is uncertain if the patient has been 
discharged from the ICU). On the other hand, a square bracket is used to enclose a set of probable 
values for an attribute. For example, the temperature in record r2 can be either 38 or 39. 
Similarly, pulse rate in record r3 can be either 75 or 85.  

 

Table 1. Example Probabilistic Database 

 

RID Name Temp P_rate  

r1 Ahmed 38 91  

r2 Huda [38,39] 85  

r3 Andy 39 [75,85]  

r4 Samir 37 70 * 
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2.1 Database states in probabilistic databases 
 
In database terminology, data that exist in the database at a particular moment in time is referred 
to as database state. In deterministic databases (databases that have no probabilistic data) there 
can be exactly one database state at any particular moment in time. On the other hand, in 
databases with uncertain data, there can be multiple possible database states at any given time. 
The number of possible database states depends on how many pieces of uncertain data there exist 
in the database. Table 2 shows all possible states corresponding to the data represented in Table 
1. Each database state contains a unique combination of probabilistic data. Since there are two 
possible values for each of Andy’s pulse rate and Huda’s temperature and there are two 
possibilities for record r4 (i.e., that record may or may not exist in the database), the total number 
of possible states is 2 × 2 × 2 = 8. These eight states are shown in Table 2. However, the fact that 
there are multiple possible states at any moment in time does not mean that all these possible 
states are physically explicitly stored in the database. The representation shown in Table 2 is not 
a storage representation but a conceptual representation.  
 

2.2 Attribute Probability Space 

 
In the example shown in Table 1, we assume that the default is that probable values have equal 

probabilities. For example, the temperature of record r2 has a 0.5 probability of being 38 and a 

0.5 probability of being 39. Similarly, the probability that record r4 exists in the database is 0.5 

and the probability it does not exist is also 0.5.   

 

In many cases the probability is not necessarily equally distributed. In these cases, explicit 

probability values need to be assigned. Table 3 is similar to Table 1, but with explicit 

probabilities assigned to uncertain attribute values. As shown in Table 3, each value is followed 

by a colon then its probability.  For example, Andy’s P_RATE has a 0.6 probability of being 75 

and a 0.4 probability of being 85. Formally, we can express these probability assignments as 

follows. 
Table 2. The Eight Probable DB States Corresponding to Table 1 
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P(r3.Pulse_Rate = 75) = 0.6      
P(r3.Pulse_Rate = 85) = 0.4         
 
Based on probability theory, the sum of the probabilities of the set of possible attribute values 
should be one. In other words, 
P(r3.Pulse_Rate = 75) + P(r3.Pulse_Rate = 85) = 1. 

 
From probability theory, the set of possible simple events representing the outcomes of a 
repeatable experiment is referred to as a sample space. Borrowing from probability theory 
terminology, we use the term attribute probability space (APS) to refer to the set of possible 
attribute values along with their probabilities. Hence the data in the field r2.Temp of Table 3 is 
actually presented in attribute probability space. From probability theory, the sum of probabilities 
of the values in r2.Temp should add up to 1. In other words: 
 
P(r2.Temp = 38) + P(r2.Temp = 39) = 0.3 + 0.7 = 1 
 
The same applies to the data in the field r3.P_rate. 
 

Table 3. Probabilistic Data with Assigned Probabilities 

 

RID Name Temp P_rate  

r1 Ahmed 38 91  

r2 Huda [38:0.3,39:0.7] 85  

r3 Andy 39 [75:0.6,85:0.4]  

r4 Samir 37 70 0.8 

 

2.3 Record Probability Space  
 

Explicit probabilities can also be assigned to capture the uncertainty associated with the existence 
of records. Instead of using a “*” to indicate that the existence of record r4 is not certain as in 
Table 1, a specific probability value can be assigned. This is shown in Table 3 where a 
probability of 0.8 is used to indicate that the probability that r4 exists is 80%. We refer to this 
probability as record existential probability. Formally, we can state this as follows. 
 

P(r4) = 0.8 

 
Where P(r4) denotes  the existential probability of record r4. The probability that a record does 
not exist and the probability that it exists should add up to one. Therefore, 
 

P(r4) + P(¬r4)  = 1 

 
Where P(¬r4) denotes the probability that record r4 does not exist in the database. To compute 
P(¬r4), we can rearrange the above equation to obtain:  
 

P(¬r4) = 1 – P(r4) = 1- 0.8 = 0.2 

 

We refer to the set of different probabilities pertaining to the existence of a given record as 

record probability space (RPS). Therefore the RPS of record r4 consists of the set {P(r4) = 0.8, 

P(¬r4)= 0.2}. The sum of probabilities in a record probability space should be exactly one. 
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2.4 State probability space 

 
Similar to the attribute probability space and record probability space, we also define state 
probability space (SPS). A state probability space represents the set of probable database states 
along with their probability values. For example, Table 2 shows the database state probability 
space corresponding to Table 1. Since in Table 1 equal probability distribution is assumed, the 
database states shown in Table 3 have equal probabilities. 
 
The sum of probabilities of these different database states should be exactly one as represented by 
the following equation. 
 

� ��
�

�
= 1 

 
Where n is the total number of database states and Pi is the probability of state i. Since the eight 
states shown in Table 2 have equal probabilities, we can compute the probability of each state as 
follows. 
 
Pi  = (1/8) = 0.125 

 
Briefly stated, in our representation of uncertain data we have introduced in [1] the definition of 
three different probability spaces. These probability spaces are: 
 

• Attribute probability space (APS) which represents the set of possible values of an 
attribute along with their probabilities. 
 

• Record portability space (RPS) which represents the different possible instances of a 
record along with their existential probabilities. 

 
• State probability space (SPS) which represents the different possible database states and 

their probabilities. 

 

3. MAPPING FROM APS TO RPS 
 
In this section we introduce mapping techniques and describe how data can be mapped from 

attribute probability space to record probability space. Probabilistic attribute values in the APS 

can be mapped to records and existential probabilities in the RPS. The existential probabilities of 

these records are computed based on the probabilities that exist in the attribute probability space. 

Table 4 shows an equivalent relation to that of Table 3, but with data in the attribute probability 

space mapped to data in the record probability space. The way this mapping is achieved is as 

follows. There are two different possible Temperature values in record r2 of Table 3. Hence we 

map r2 to two different records, r2.1 and r2.2, in Table 4 where each record has one of the two 

Temperature values. The probability of that value in Table 3 becomes the existential probability 

of the corresponding record in Table 4.  In other words, P(r2.1) in Table 4 is equal to P(r2.Temp 

= 38) of Table 3. The same approach applies to record r2.2 in Table 4. 
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Table 4. Data in Record Probability Space 

 

RID Name Temp P_rate  

r1 Ahmed 38 91  

r2.1 Huda 38 85 0.3 

r2.2 Huda 39 85 0.7 

r3.1 Andy 39 75 0.6 

r3.2 Andy  39 85 0.4 

r4 Samir 37 70 0.8 

 

Record r3 in Table 3 is mapped to records r3.1 and r3.2 in Table 4 in a similar way but with 

respect to the P_rate possible values. In Table 4, we show the record existential probability next 

to each record. Record r1 has an existential probability of 100%, which is the default.  

 

In addition to the simple mappings from APS to RPS shown in Table 4, there can be several other 

special cases. Below, we discuss three important cases.  

 

3.1 Case 1: Mapping a record that has probabilistic values for more than one attribute. 

 

An example of this case is demonstrated in Table 5. Attributes B and C both have multiple 

possible values for the first record (record r8), whereas attribute A has one deterministic value.  

 
Table 5: More than one attribute have probabilistic values 

 

ID A B C 

r8 a1 {b1: 0.4, b2:0.6} {c1:0.3, c2:0.7} 

r9 a9 b9 c9 

 

Let T be a table in the attribute probability space that has n attributes. Let N1, N2, …., Nn represent 

the number of probabilistic values for each of the attributes for a given record r in T (note that in 

this discussion we are not including the ID attribute). We need to map record r from the APS to a 

number of records in RPS. Let Nr be the number of records in RPS that correspond to r in APS. 

Nr can be computed using the following formula. 

 

Nr = N1 * N2 * …. * Nn        

 

Or  

 

�� =  
 ��
�

���
 

 

Where i is the attribute number in table T. 

 

By applying the above formulae to record r8 of Table 5, we can obtain Nr8 , the number of 

probabilistic records in RPS corresponding to r8 in APS.  

 

Nr8 = NA * NB * NC = 1 * 2 * 2 = 4 
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Where NA, NB, and NC represent the number of probabilistic values for attributes A, B, and C 

respectively, for record r8.   These four records in the RPS are shown in Table 6. The existential 

probability of each record is shown next to it. 

 
Table 6: data in Table 5 mapped to RPS 

 

ID A B C  

r8.1 a1 b1 c1 0.12 

r8.2 a1 b1 c2 0.28 

r8.3 a1 b2 c1 0.18 

r8.4 a1 b2 c2 0.42 

r9 a9 b9 c9  

 

The record existential probability is obtained by multiplying the probabilities of the attribute 

values appearing in that record. For example, record r8.1 has the two values b1 and c1 whose 

probabilities in Table 5 are 0.4 and 0.3 respectively. Therefore,  

 

P(r8.1)  = 0.3 * 0.4 = 0.12 

 
The same approach is used to compute the existential probabilities of records r8.2, r8.3, and r8.4 

of Table 6. 

 

3.2 Case 2: Probabilistic Values and Null Values. 

 
In this case an attribute in table T in the APS may have several possible values, but one of the 

values is Null. This is represented in the APS by having a set of possible values for an attribute, 

but the sum of their probabilities is less than 1. For example in Table 7, attribute E for record r5 

has two possible values e1 and e2 with probabilities of 0.4 and 0.5, respectively. Since the sum of 

these probabilities is less than 1, this indicates that Null is a possible value. The probability of the 

Null value completes the sum of probabilities to 1.   Therefore we can compute the probability of 

a Null value for attribute r5.E as follows.  

 

P(r5.E  IS NULL) = 1 – (0.4 + 0.5) = 0.1 

 
Table 7: Representing a NULL value for an attribute 

 

ID D E 

r5 d1 {e1: 0.4, e2:0.5} 

r6 d2 e9 

 

When mapping record r5 to the RPS, we need to take into consideration this Null value just like 

any other possible value. Table 8 shows the mapping of Table 7 from the APS to the RPS. 

Record r5.3 has a Null value for E and the existential probability of this record is 0.1, which is 

the probability P(r5.E  IS NULL) in Table 7.  
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Table 8: Mapping Data in Table 7 to RPS 

 

ID D E  

r5.1 d1 e1   0.4 

r5.2 d1 e2 0.5 

r5.3 d1  0.1 

r6 d2 e9  

 

3.3 Case 3: A Record has Existential Probability as well as an Attribute-Level    

Uncertainty 
 

In some cases the record existence is uncertain and, at the same time, some attribute values within 

the same record are probabilistic. To demonstrate this case, assume that the existence of record r3 

is uncertain with existential probability of 0.9 as shown in Table 9. Also assume p_rate 

probabilistic values [75:0.6, 85:0.4] exist in the same record. We interpret this to mean that: if the 

record exists, then the P_rate values of 75 and 85 for that record have probabilities 0.6 and 0.4 

respectively.   

 
Table 9. Probabilistic data and probabilistic records 

 

RID Name Temp P_rate  

r1 Ahmed 38 91  

r2 Huda [38:0.3,39:0.7] 85  

r3 Andy 39 [75:0.6,85:0.4] 0.9 

r4 Samir 37 70 0.8 

 

Table 10 below shows a mapping of r3 in Table 9 which is in APS to two records r3.1 and r3.2 in 

RPS. In Table 10, the record existential probabilities for r3.1 and r3.2 are computed by 

multiplying the record existential probability of r3 in Table 9 and the attribute value probability 

as shown below. 

 
P(r3.1) = P(r3) * P(r3.P_rate = 75) = 0.9 * 0.6 = 0.54 

P(r3.2) = P(r3) * P(r3.P_rate = 85) = 0.9 * 0.4 = 0.36 

 
Table 10. Mapping from APS to RPS 

RID Name Temp P_rate  

r1 Ahmed 38 91  

r2 Huda [38:0.3,39:0.7] 85  

r3.1 Andy 39 75 0.54 

r3.2 Andy 39 85 0.36 

r4 Samir 37 70 0.8 

 
To re-compute P(¬r3) from Table 10 information, the following substitutions can be made. 

 

P(¬r3) = 1 – [P(r3.1) + P(r3.2)] = 1 – (0.54 + 0.36) = 1 – 0.9 = 0.1 
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4. MAPPING RPS TO SPS 
 
In addition to the mapping of data from attribute probability space to record probability space, we 

can map probabilistic data from record probability space to database state probability space. This 

requires us to identify all possible database states and the probability associated with each state. 

The database state probabilities can be computed based on the record existential probabilities that 

exist in the record probability space.  

 

To demonstrate how this mapping can be achieved, we map the data of Table 4 (which is in RPS) 

to state probability space. After the mapping is complete, we obtain the state probability space 

representation shown in Table 11. Note that Table 11 is different from Table 3 in that the 

database states do not have equal probabilities.  In what follows we describe how the mapping is 

performed and how the probabilities of the database states are computed.  

 

Each database state in Table 11 contains a unique combinations of records appearing in Table 4. 

Database state 1 in Table 11 contains records r1, r2.1, r3.1 and r4 from Table 4. Database state 2, 

on the other hand, contains records r1, r2.2, r3.1, and r4 from Table 4. Database states 3 and 4 are 

constructed in a similar way. Database states 5, 6, 7, and 8 are similar to the first four database 

states except that record r4 in Table 4 is not included in these states. This is because record r4 has 

a 0.2 probability of not existing. In other words, the first four database states in Table 11 

represent the fact that record r4 exists with 0.8 probability, whereas the last four database states 

reflect the fact that record r4 has a 0.2 probability of not existing.   

 
To compute the probability of the first database state in Table 11, we multiply the existential 
probabilities of the records appearing in that database state. The existential probability of record 
r2.1 in Table 4, which is appearing as record r2 in the first database state in Table 11, is 0.3. 
Similarly records r3.1 and r4 in Table 4 are appearing in the first database state of Table 11 as 
records r3 and r4. The existential probabilities of these two records in Table 4 are 0.6 and 0.8, 
respectively. By multiplying these three probabilities, we obtain the probability of the first 
database state as follows. 
 
P (DB State 1) = P(r2.1) × P(r3.1) × P(r4) =   0.3 × 0.6 × 0.8 = 0.144  
 
The probabilities of database states 2, 3, and 4 are computed in a similar way. In Table 11, we 
show the computation of the probability of each database state based on the probabilistic records 
appearing in in that state. 
 
The probability of database state 5 is computed in a way similar to database state 1, except that 
we take into consideration the probability that record r4 may not exist (P(¬r4)) in the database, 
which is 0.2. Therefore, 
 
P (DB State 5) = P(r2.1) × P(r3.1) × P(¬r4) =  0.3 × 0.6 × 0.2 = 0.036   
 
The probabilities of the remaining database states 6, 7, and 8 are computed in a way similar to 
that of record r5, where we use P(¬r4). 
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5. CONCLUSION 
 
Storing and managing probabilistic data in database systems have become a very much-needed 
capability in many advanced applications. Probabilistic data can be represented at different 
probability spaces. Each probability space corresponds to a level of granularity of the data. The 
three levels that we used are: attribute probability space, record probability space, and database 
state probability state.  
 
As a consequence of this representation, performing correct mappings between these probability 
spaces become significant. Sound data mapping techniques are needed to avoid any loss of 
information or data integrity in the mapping process. In this paper we have described, first, how 
data can be mapped from attribute probability space to record probability space. In addition to the 
overall mapping approach, we described several special mapping cases. Second, we described 
how data can be mapped from record probability space to database state probability space. We 
demonstrated with examples how the probability of each database state can be computed based 
on the probabilities that exist in the record probability space. 
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