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ABSTRACT

Users of geospatial data in government, militangustry, research, and other sectors have need for
accurate display of roads and other terrain infotina in areas where there are ongoing operations or
locations of interest. Hence, road extraction tlgsignificantly more automated than the employnoént
costly and scarce human resources has become denpalg technical issue for the geospatial
community. An automatic road extraction based otefided Kalman Filtering (EKF) and variable
structured multiple model particle filter (VS-MMPEpm satellite images is addressed. EKF traces the
median axis of a single road segment while VS-MMRIEes all road branches initializing at the
intersection. In case of Local Linearization Paldidilter (LLPF), a large number of particles areed
and therefore high computational expense is usuatyuired in order to attain certain accuracy and
robustness. The basic idea is to reduce the whaotglng space of the multiple model system to theem
subspace by marginalization over the target subspaud choose better importance function for mode
state sampling. The core of the system is basgutadite matching. During the estimation, new refeze
profiles were generated and stored in the road fatepmemory for future correlation analysis, thus
covering the space of road profiles. .
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1. INTRODUCTION

Roads usually appear as dark lines while viewiognfsatellite images which are mostly true in
rural as well as sub-urban areas. Ongoing resdeshed to a gamut of methods that automate
the digitization process. Digitization methods foad extraction are either automatic or semi-
automatic in nature. In the literature, an automatethod implies a fully automatic process.
Theoretically, a fully automatic approach requims human intervention, but this is not
practical. Consider a method of automatic methadhaman intervention is needed for road
feature extraction at the initial or processingyetpost-processing stage. Some of the automatic
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initialization system has been proposed based dB @l geographical database has been
reviewed in [1] and [2], and on heuristics [3]] B¥ an stochastic assumption [5]. In a semi-
automatic method human intervention is requiredhatinitial stage and at times during the
processing stage. A notable characteristic of giotamget tracking is that prior nonstandard
information such as target speed constraints, neadorks, and so forth can be exploited in the
tracker to reduce the uncertainty of target motma provide better estimates of the target
state[1]. A tracker that ignores or is unable &kenuse of this additional source of information
can only attain limited performance. In the cadel®w signal to- noise ratio, the incorporation
of such constraint information is essential to sgstul tracking. Multiple model estimation is
widely used in the tracking community to tackle motuncertainty. The interacting multiple
model estimator [7] is one of the best known midtimodel estimators. Recent applications of
multiple model estimators to ground target trackingre presented in Ref. [6], [8], [9], [10],
[11]. Kirubarajan and Bar-Shalom noted that foruy@ target tracking a multiple model
estimator with fixed structure has to consist da@ge number of models, owing to the many
possible motion modes and various road constr&tdf is not only computationally
undesirable but also potentially results in higlklggraded estimates (due to the excessive
“competition” among the many models). In order t@m@ome this problem, they proposed an
adaptive or variable structure interacting multipiedel estimator for ground target tracking [8].
The basic idea is that the active model set vaniem adaptive manner and thus only a small
number of active models are needed to be maintaheach time. Following the same idea of
the variable structure interacting multiple modstireators, a variable structure multiple model
particle filters was proposed for ground targethknag [6]. Simulation results showed that the
particle filtering based approach has remarkablyeberror performance. The reasons for the
superiority of this particle filtering based apprbaas noted in Ref. [12], is that with particles o
random samples the simulation-based particle filerable to incorporate more accurate
dynamics models and estimate non-Gaussian disoiit(e.g., at an intersection) more
accurately than the Kalman filtering-based interacimultiple model estimator. The superiority
of multiple model particle filter over the interard multiple model estimator within the fixed
structure multiple model framework was demonstrateRef. [12]. Multiple model estimation
falls into the category of nonlinear filtering evérevery single model is a linear system with
Gaussian noise. A sufficient statistic of the hgtlbstate distribution with a fixed dimension is
thus impossible. Moreover, the complexity of thdimpl multiple model estimator increases
exponentially with time [6]. Both the interactinguttiple model estimator and the patrticle filter
are suboptimal nonlinear filtering algorithms thataintain constant complexity and
computational expense. The former maintains a aohstumber (i.e., the number of models) of
Kalman filters while the latter maintains constamimber of (the most likely) particle
trajectories. Such sub-optimality is inevitable poactical purposes.

Several semi-automatic road tracking systéage been proposed in the past. A semi-
automatic road tracker based on road profile caticgl and road edge following for aerial
images was proposed in [13]. The tracker was Irséd by the user to obtain starting for
position, direction and width of the road. Roadcking based on single observation kalman
filter has been studied on [14]. Algorithm basedparticle filtering have been utilized in [15] to
trace a single road path initialized by a givendsgeint at the beginning of the road. When the
system recognizes some tracking failure; it rethercontrol to the human expert and seeks the
guidance of the human operator to update its sptaifle predictors and continue tracking the
road afterwards. This approach is robust in extrgct single road tracking due to its interface
with human experts; but it cannot handle and ifentiultiple road branches. This paper
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proposes a method based on the combination of ElFV&-MMPF. The EKF component is
responsible for tracing axis coordinates of a raedil it encounters an obstacle or an
intersection. VS-MMPF is responsible for tracingadobranches on the other side of a road
junction or obstacles.

A method of feed forward neural network appliedaorunning window to decide whether it
contains a three- or a four arm road junction feenlreviewed in [16].This method suffers from
quite many false alarms. But PF algorithm can fiodd junctions and track each of the road
branches one after the other. Extracted of roach fooe raster image need not be extracted in
the same way from another raster image, as tharebeaa drastic change in the value of
important parameters based on nature’s statepymstit variation, and photographic orientation
has been reviewed in [7]. Parameters used for @idraare its shape (geometric property) and
gray-level intensity (radiometric property).No cextual information was used. The method
works solely on image characteristics. The metlsosemi-automatic, with manual selection of
the start and end of road segments in the inpujéma

2. AUTOMATIC ROAD EXTRACTION

The road tracking process starts with an autonsst@ding input of a road segment, which
indicates the road centerline. From this input, ¢benputer learns relevant road information,
such as starting location, direction, width, refex profile, and step size. This information is
then used to set the initial state model and tleta@ parameters are estimated the road is
tracked automatically by EKF and VS-MMPF.

2.1 Application Background

In a road tracking procedure, when the system mzeg tracking failure, it returns the control

to the human expert and uses the guidance of themwperator to update its set of profile
predictors and continue tracking the road afterwdilis approach is robust in extracting a
single road track due to its interface with humapegts, but it cannot identify and handle
multiple road branches when it encounters an iattien of several roads. Information about
road intersections or junctions is of high impodamn understanding road network topologies.
In [9], junction hints are used in the network ap#ation process by forcing roads to pass
through detected T- and L-shaped junctions. Fomgka, [16], [17] and [18] used a feed

forward neural network applied on a running windowdecide whether it contains a three- or a
four-arm road junction. This method suffers fromitgumany false alarms. In [19], [20] a

method is developed for intersection detection asepixel footprints. This algorithm finds the

footprint of a pixel as the local homogenous regioound the pixel enclosed by a polygon, and
then, by identifying the toes of a footprint, itncerack a road path, thus identifying the road
intersections. But when this algorithm encountersad width obstacle, it might lose track of

the road.

2.2 Normal or Body Text

A total of 62 research groups were identified vatime groups using up to 4 different sensors
type over a number of studies. The results arespted in chart-form. IKONOS data is used by
20 groups, and aerial imagery by 19 groups. Quidki8AR, and SPOT data is used by ten,
seven and six groups respectively. LIDAR(Light d&éten and ranging )is used by 3 groups, &
IRS (Indian remote sensing satellite) by 2. Othetadtypes include Landsat,Eo-1(Earth
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observation mission -1), Kompsat EOC and KVR-10@@elite. A number of the more
frequently used sensors is IKONOS. IKONOS is a léate image which is launched in
September 1999. The device features a panchroaradicnultispectral sensors that captures data
at a resolution of 1m and 4 m respectively. Thetispgctral sensor captures the RGB bands as
well as Near Infrared(Nir) band. A

Fig 1: Sample of satellite images
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IRS

SPOT

Fig 2: Pie chart representation of satellite imagessing different sensors

pan-sharpened version of the data is availablereviee panchromatic and multispectral data is
combined to produce. Sample of satellite imageshiswn in Fig 1. and the researches of
different satellite imagery in chart form is shoimrFig 2.

3. SYSTEM OVERVIEW

A number of semi-automated RNE approaches requinenaan operator to specify the seed
points before a higher level operation can contwith the extraction process, Automating the
seeding process reduces the total extraction tihgich a system significantly. According to
Harvey [16], the performance of automatic roadkirag algorithm depends to a large extend on
the quality of starting points. Apart from automatiprocess the quality of the seed points is
consequently also imperative.

Satellite Image

v

| Canny edge detecti |

v

| Automatic seedin |

v

Profile matching

Extended kalman Filter <—|

i Initializing road branches
A

Road Junction

v

Efficient Particle Filter

v

Dead end

139



International Journal of Distributed and Parallgbt®ms (IJDPS) Vol.2, No.6, November 2011

Fig 3: Workflow of road extraction method

3.1 Automatic seeding

The workflow of the road extraction method is asweh in Fig 3. In the content of road
extraction, seeding is the process whereby a m@ésk#aced at certain points of interest within a
road network. These points of interest can inclmdekers along the centre of the road, point of
high curvature, or intersections. The seeds arnedijp single points but can also be centerline
segments or road regions. Seeding is not an eitnatetchnique itself, but the marker are used
as initialization points for extraction techniqeich as road tracker and snakes. The seeds can
also be used to generate road models (patterreshasghich can be used to train classifiers used
to detect road objects in imagery, In additiondroatwork construction algorithm can also use
seeds to connect the points using a high-levelrighgo. A wide variety of techniques can be
employed to detect road seeds automatically. Sofmgheo technique includes parallel edge
detection, geometric template matching, segmematiblaugh transform and spectral
classification. Automatic seeding algorithms can dsegorized as low to medium level
processing technique, as they typically receive maage data or output from a low level
algorithm as input. One of the most popular apghea to automatic seeding is the detection of
parallel edge in medium to high resolution imagery.

3.2 Canny edge detection

The Canny method finds edges by looking for locakima of the gradient of the image. The
gradient is calculated using the derivative of au§d#an filter. The Canny method applies two
thresholds to the gradient: a high threshold far émige sensitivity and a low threshold for high
edge sensitivity. Edge starts with the low sensjtivesult and then grows it to include
connected edge pixels from the high sensitivityltesThis helps fill in gaps in the detected
edges. Thus canny edge detection is considered thebbest edge detection when compared to
other technique.
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3.3 Profile matching

A gray-level profile, extracted perpendicular tee thoad direction, is a very characteristic
property on a road. It often shows a good contbasiveen the road surface and its vicinity.
Thus, like in [2], we also utilized the method ofaglevel profile matching to acquire
observations needed in the tracking algorithm. method in [2] uses the least square error
profile matching to measure the similarities betweaay two profiles and also to estimate the
optimum shift that exists between them. In our apph, the correlation coefficient and the
difference between the profile means are used ltulede the error or difference between any
two profiles. This error is calculated as follows:

+e
Error{p,,p,} = & > 2

e =1- (pl - T%)(pz - F_)z)
\/ (pl - 51)2 (pz - r)z)z

_ 2
e = (F_)l - p2)2

P

Error where pl and p2 are two gray-level profilEse first term el describes the dissimilarity beswéhe shapes of
the two gray level profiles, and the second termmesured the difference between the average itytermdues of
the two road profiles. The profile clustering aligfom is described in Algorithm 1.

Algorithm 1. Update profile clusters

Let p denote the new road profile at thestep and ci, fori=1, 2, . . ., C, denote thelusterif there are any young
clusters that must be verifietthen determine whether the young clusters must be aa#tbor rejected

end if

forj=1to C,do

di  distance between p and ¢

end for

Onin~ min{dy, &, . . ., &} if dyin thresholdthen
update the present clusters if necessary

else ifp passes the validation testen

produce a new young cluster by pcci,
C=C+1
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end if

3.4 Extended Kalman Filtering

The state vector contain the variable of inter¢stescribes the state of the dynamic system and
represents its degree of freedom. The variablearstate vector cannot be measured directly but
they can be inferred from values that measurableake of road tracking from an image, it
includes where,r and g are the coordinates of road axis pointsis the direction of the road,

«_and is the change in road direction. The distaorg the road is considered to be as time

variable. To illustrate the principle behind the EKonsider the following example. Let W be a
random vector and

y=9(x) 1)

be a nonlinear function, g :"® R™. The question is how to compute the pdf of y githes pdf

of xi For example, in the case of being Gaussiaw to calculate the mean (y) and covariance
( y) of y>If gis a linear function and the pdf ofsxa Gaussian distribution, then Kalman filter
(KF) is optimal in propagating the pdf. Even if théf is not Gaussian, the KF is optimal up to
the first two moments in the class of linear estor&[14]. The KF is extended to the class of
nonlinear systems termed EKF, by using lineariratin the case of a nonlinear function (g(x)),
the nonlinear function is linearized around theent value of x, and the KF theory is applied to

get the mean and covariance of y. In other womsmean(VEKF) and covariance(PyEKF) of y,

given the mean (x) and covariancg)(®f the pdf of x are calculated as follows:

Road axis points are tracked using recursivenasitbn, and the state model is given by

Xk:[rck K k]T

where [ and ¢are the coordinates of road axis points,is the direction of the road,, and is the change in road

direction.
55<F) = 90 @)
(PEF) = (o) R, (Rg), 3)

where (N g) is the Jacobian of g(x) &.

Algorithm 2. Extended kalman filter

Let a general nonlinear system be representedebfptiowing standard discrete time equations:
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X = F (X 11 Vi- 11 U 1) 4)
yk = h (X(v rl(! u&) (5)

et - dkosin(, ; + ,dK)
= Gavdiocod o+ dl) L

X K
k1t adk
k-1
1000
Z=0100 x+v
0010
where x 1 R"x is noise, v 1 R" the process the noise,

n R"™ the observation noise, u the point and the noisenfation of the system. The nonlinear functioaad h
are need not necessarily be continuous. The EKgtitlgn for this system is presented below:

« Initialization at k = 0:
%o = E[Xo],
P, = El(Xo- Xo)(Xo- %o)'1,
R, =E[(v- V)(v-V)'],
P, =E[(n-7) (n- 7)'],
Fork=1,2,...H.

(1) Prediction step.

(a) Compute the process model Jacobians:
R, =R f (VUi 1) ]es, o
G, =N f (X 1.V, U ) vy
(b) Compute predicted state mean and covarianoe (tpdate)
Xie = f (X1, VUy),
P)Zk = kakaFIk + GVPVGJ'

(2) Correction step.

(a) Compute observation model Jacobians
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H :NX h(X’ﬁ’uk)lx:)”(;(’

Xk

D, = Nnh()’zk N, uk)|n=ﬁ

1 0 - dkcos(u)- 0.5Kcogu)
0 1 -dksinu) - 0.5Ksin(u)
00 1 dk

00 0 1

>

k

(b) Update estimates with latest observation (memsent update)
K = RacH X (HyPacHi +DaPaDp) ™ Ry = K + Ky [y - h(f(k ,ﬁ)]
ka = (I - Kkak )P;k

0.04W 0 0 0

Q = 0 004W 0 ©
0 0 002 O
0 0 0 0.01
04W O 0
R =s2 0 04w 0
0 0 1

3.5 Particle Filtering

Multiple dynamics models are used to account fa@ thotion uncertainty due to target

maneuver. We assume the motion mode state r = respunds to the cruise mode, r = 2

corresponds to the maneuver mode, and r = 3 camdspto the stopped mode. According to the
idea of variable-structure multiple-model approattie cruise and the maneuver modes are
active all the time, whereas the stopped

mode is active only when there is no detection. Stopped

mode is added to the active mode set when thettisrge longer detected and removed after the
target is detected again. The target dynamics redoeldifferent target modes have the same
linear Gaussian structure, given by Egs. (3) apdH@& the maneuver model, large process noise
along the road is used, which is of the order ef tagnitude of the maximum acceleration.

Much smaller process noise is used in the cruisgeindn the stopped model, the process noise
is set to zero. The target velocity in the stoppmdet model is also set to zero. The road
information in terms of the reference poipg and the direction of the road segment is
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incorporated in the dynamics models through xGind G. The transition of the motion mode r
Is assumed to occur only at sensor sampling irstd is governed by the transition probability
matrix P, whose elements are defined by

p; =P = j|rk—1 =1)

where pij satisfy Jilpij =1, with S is the number of active modes (also thenlmer of

columns of the matrix P). For sake of simplicitgnstant P is used. The active mode set may be
{1, 2} or {1, 2, 3}. Hence, four transition matrisen total are needed. The initial guess of the
transition matrices are calculated based on theusojtime of the modes[4]. Because the
knowledge of the present road segment is requaethé propagation of the dynamics models, a
pointer p pointing to the road segment the target is onnag & is used as an auxiliary mode
state. All the information about the present roagnsent, such as its endpoints, directions, and
neighbors, is indexed in the road database vigpdnaer p. The update of pis determined by
the propagated target position. The sequende pot a Markov chain because of its target state
dependence. If after propagation the target remamshe present road segment,does not
change its value; if the target leaves the pressd segment to enter a new segmenpgints

to the new segment, too. When there is only one segment to enter, the pointer is updated
without ambiguity. However at an intersection wharere than one road meets, it is uncertain
which road segment the target would enter. Thetheallhypotheses have to be considered and
thus p and x in the particle filter have to be updated in abaailistic manner. The ambiguity
can only be eliminated after new observations aselable. If no prior knowledge about the
route or destination of the target is availablentiit is reasonable to assign identical probability
to each hypothesis.

Suppose the number of roads to enter is L, thegtibty to

enter any road segment is 1/L. A single observatiodel of a detected target is used, as given
by Eq. (11). In other words,

P e = 1) = p(¥lXe T = 2).

When the target is detected, the likelihood of a/imp mode can be computed usingand the
system model; the likelihood of the stopped modeei®. (The probability of detection PD may
be incorporated in the likelihood of the moving rapdbut it is not necessary since PD is a
common factor among the stopped and moving modes.)

Do not include headers, footers or page numbeysun submission. These will be added when
the publications are assembled.

4. EFFICIENT PARTICLE FILTERING

The efficient particle filter for road-constraintatget tracking is designed based on the optimal
particle filtering theory for jump Markov linear @ssian systems. Analytic approximation is

made for the target state distribution; approxiomaiis needed mainly because the observation
model is nonlinear, though the target dynamicsasl@ted as linear system with Gaussian noise.
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Hence, the conditional distributiop(xk‘RE),Yk) is not strictly Gaussian. It is, however, still

approximated by a Gaussian distribution whose mégh and covarianceP” are an

approximate sufficient statistic and are updatédguanscented Kalman filtering. The details of
the unscented Kalman filter can be found in Re2].[For nonlinear filtering problems, when
the parameters of the unscented transformatiorapgpeopriated tuned, the unscented Kalman
filter can yield better estimation results than ¢éixéended Kalman filter. The likelihood

PYilres R Y ) » BUY, 1 %5, RY

used for recursive sampling of rk is also calculdiased on Gaussian approximation. That is,
G R
’ ) ’ i=
Givenr , X RV and , the mean and covariance P(i)yk of yk arenesed using standard
unscented transformation. The full particle repnéstion is given by

i=1, where “x(i)k and P(i)k are deterministicallpdated given r(i)k and p(i)k . The outline of a
filter cycle of the efficient particle filter foroad-constrained target tracking is given in Table |

Algorithm 3. Efficient Particle filter

- determine the active motion mode set foparticle att

- determine the transition probability matr%')

- Forj=1,..., S, where S is the number of &thotion modes (hypothesis)

o] propagate)A(f('_)1 and Pl((l)l through the model specified by mode j and roadnseq P(kl)l to generate)A(k("J’l) and
,wherel =1, ..., I (if the target does not cross an intersectidr, £ 1; if the target crosses an intersectidh’

PO wherel =1, ..., 9 (ifth d d, £ 1; if th ) &

1; if the target crosses an intersectioh? > 1; determinePk("J’l) according tos\(k(l’J’l) and Pk("J’I)

- Forj=1,...Sandfdr=1, ..., ) evaluate the Iikelihood_(ll('J’l) =1
o if the target is not detected

itj=3, LG =1
if j =1 or 2 AND the target is hidden or movesprdicular to the line of sighL(L'J’l) =1

if j = 1 or 2 AND the target is in normal motiOIL(:(’J’l) =1-pm
- if the target is detected

o ifj=3 OR the target is hidden or moves perpeunldicto the line of sightL(L'J’l) =1

o ifj=1lor2, computeﬂ_(:(’]’” =1 f)(yk | 5\(;("]’” ,P;("J’I) based on Gaussian approximation
- Fori=1,..., N, compute
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WiP¥ W, ~‘:‘1(5) LM =1 p(jlr) /Lt
Resampling :
Multiple / Discard {I’lgi_)l,)A(L(i'j’l) ,P;(i’j’l) ,p*lfi’j’l),L(li(’j’l)}i’il to high / low importance WeightéNS) to obtain N new
{réi_)l, )A(L(i'j’l) ,P;(i’j’l) ,p*,fi’j") ) L(L’j’l)}i’il with equal wieghts.
Fori=1,..., N, sample
(12, 1) = By [R5 RO )P 1100 /L where By 14 FLH) = L set

(i T IT w0 () (D) ] s (D) ()
Xk(l) — Xk(l,rk N ’Pk(|) — F)k(l,rk Al E) — p(l,rk )

Fori =1,...,N updaté'\(f(i) ,Péi) from Pk'(i) based on

Gaussian approximation and upd@é') according tof(g) and P;(I’J’I)

5. RESULTS AND DISCUSSION

Road extraction from remote sensing images hagpjications in cartography, urban planning,
traffic management and in industrial developmemtodder to evaluate the results, we compare
the obtained road lane feature to a manually digitireference road dataset. Figure.4 shows the
road tracking results in IRS image. First the refee profile and seed point is extracted
automatically by automatic seeding technique. Ttheredge of the road is detected using Canny
edge detection. Then the road network is trackedK¥ until it reaches a road junction or
obstacles. Then the role is given to the efficieatticle filter to initialize the seed point of the
road branch. For larger dk, progress of the EKF Bffitient particle filter modules will be
faster on the image; however, the resolution ofrédseilting road center points will be coarser.
The system error covariance matrix @ a measure of how our road model matches the roa
behavior. If the roads in the image are changingction rapidly, we have to set high values for
the elements of Q The measurement error covariance matipni®dels the behavior of the
error resulted from our measurements from the im&gge 4. Shows the results of automatic
road extraction using EKF and EPF.

I

s S A

@ (b)
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(a) (b)
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(e) ®

@

(©) (d)

Fig.4: Automatic road tracking results from an IRSimage using Efficient particle filtering (a) Satelite image
(b) Monochromatic imagery (c) Automatic seeding (JEdge detection using Canny edge detection (e) &b
tracking by EKF (f) Road tracking by Efficient particle filtering and EKF.

The quality is a more general measure of the frealult combining the completeness and
correctness. For IKONOS images used in this exparipnthe correctness values for automatic
road extraction method is very high. For IRS imagesd in this experiment, the correctness
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values are very high, about 0.89 and completerseabdut 0.83. The completeness of the result
depends on the complexity and properties of thd nesawork. The root mean square error value
is calculated for EKF using

1" Ai 2
RMSE(K)=.|— (XK - Xk)
m i
k=1,2,..,10; m=100

where X, denotes the state estimate vector of théant Carlo run for the'ksample. It is also

obvious that the target is tracked for 100 dataptesn The RMSE value while using EKF is
comparably very low when compared to EPF, and @wvsh Fig.5 shows the change in row,
column and direction of the road in automatic reatraction technique.Fig 6. Shows the road
extraction using profile matching.

Fig.5: Change in row, column and direction of theoad
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Fig 5: Road extraction using profile matching

6. CONCLUSION

For road-constrained targets, the incorporatiomat information into the dynamics models can
greatly reduce the target motion uncertainty. Unsek Transform has been used in the kalman
filter frame work and the resulting filter is s&ml be as Unscented Kalman Filter. Using UKF
instead of EKF in the VS-MMPF improves the perfance. In addition to this a set of training
data sequence can be used to automatically optitheeparameters of a particle filter. A
variable-structure, multiple-model framework is dig® address target maneuvers along the
road. The proposed efficient particle filter is eppmations to the optimal particle filter for
jump Markov linear Gaussian systems. The main aqimattion of the filter is the Gaussian
assumption about the conditional target state idigion given a mode sequence and
observations. The efficient particle filter with p@rticles yields satisfactory simulation results.
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