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ABSTRACT 

Embedded Systems combine one or more processor cores with dedicated logic running on an ASIC or 

FPGA to meet design goals at reasonable cost. It is achieved by profiling the application with variety of 

aspects like performance, memory usage, cache hit versus cache miss, energy consumption, etc. Out of 

these, performance estimation is more important than others. With ever increasing system complexities, it 

becomes quite necessary to carry out performance estimation of embedded software implemented in a 

particular processor for fast design space exploration. Such profiled data also guides the designer how to 

partition the system for Hardware (HW) and Software (SW) environments. In this paper, we propose a 

classification for currently available Embedded Software Profiling Tools, and we present different 

academic and industrial approaches in this context. Based on these observations, it will be easy to identify 

such common principles and needs which are required for a true Software Profiling Tool for a particular 

application. 
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1. INTRODUCTION 

In the design of embedded systems, design space exploration is performed to satisfy the 

application requirements. This can be achieved either by different architectural choices or by 

appropriate task partitioning. At the end the synthesis process generates the final solution with 

proper combination of Software, Hardware and Communication Structures. Software part may 

consist of Operating System, Application code and Drivers for peripherals. Similarly the 

hardware is comprised of appropriate one or more processor cores with dedicated IP cores and 

communication buses. Design space exploration, from system point of view, can be performed by 

partitioning the application functionality into hardware and software components. At one step 

lower level there are multiple processor architectures available for software execution, which are 

required to be evaluated to identify the most efficient cost effective processor [13]. Processor can 

also be evaluated for different combination of cache size and bus width and so on [12]. Similarly 

at the same abstraction level, the hardware components can be explored for different size of 

FPGAs. Today’s System on Chip are mostly realized using higher end FPGAs, which 

incorporates all three components - hardware, software and communication structures of a system 

design. In order to achieve a highly cost effective system solution it is very essential to perform 

performance estimation of Software and Hardware components. In order to increase design space 
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exploration and estimate the software performance, it seems mandatory to use one or the other 

software profiling tool. Many approaches exists today that claim to provide efficient profiling of 

the embedded software. 

Profiling and Simulation are inherent techniques for acquiring performance information of an 

application. Simulation offers a great level of accuracy but it is very slow, where as profiling 

gives fast estimation at cost of accuracy. However, various approaches have been developed 

which are able to profile application with reasonably good accuracy. 

 

In this paper, we aim to provide an analysis and comparative overview of the state-of-the-art, 

current directions and future needs in the Software Profiling Tools and Methodologies. We 

identify common principles based on our observations for classification in Section II. In Section 

III, we present current profiling approaches researchers have explored in last few years. At last 

we proposed a general classification and eventually comparison of different profiling tools in 

Section IV. Finally, the paper concludes with a summary in Section V. 

 

2. CLASSIFICATION   OF EMBEDDED SOFTWARE PROFILING TECHNIQUES 

 
In this section, we will identify common principles in existing embedded software profiling 

methodologies and develop a classification for such approaches. In this section different criteria 

based on which profilers can be classified as shown in Fig.1 are discussed briefly. Embedded SW 

profilers are broadly classified into five categories. 

 

2.1 Classification based on Implementation Strategy 

 
According to the strategy of implementation, the profiler can be classified into three further 

categories as discussed beneath.   

 

2.1.1 Software Based Profiling 

 
It is the most common technique for measuring the performance of the application software 

written using a programming language. There are three different software based profiling 

methods - insertion of instrumentation code, sampling and cycle accurate simulation.  

 

 
 

Fig.1 Embedded SW Profiler Classification 

 

Insertion of Instrumentation Code – Instrumentation can be done at source code level, assembly 

code level or binary level [2]. This technique modifies the original code by inserting certain 

profiling related code. This modified code will be executed on the targeted platform or the host 
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machine. The instrumentation code will help in gathering the profiling information. Execution 

time for different functions is recorded by software counters running in the profiling tool on the 

host machine by sampling the PC of target processor at regular interval during program 

execution. This approach is considerably fast compared to simulation because the executable is 

running in the real environment. The best example of such profiler is GNU’s gprof. However the 

accuracy is significantly poor due to the software overhead introduced by the instrumentation 

code.  

 

Sampling – Statistical sampling [18] is another SW based technique which potentially reduces the 

runtime overhead compared to previously discussed instrumentation code based SW profiling. In 

this technique interrupt is generated at a regular interval or a task is written which samples the 

content of program counter and other important registers of the processor to statically determine 

execution behaviour latter on.  

 

Simulation – For embedded systems, both instrumentation and statistical profiling approaches 

invariably change the behavior of the application and incur significant runtime overhead. Most of 

the embedded systems are real-time and designed with tight timing constraints, the minor runtime 

overhead can lead to missed deadlines and potential system failure. Simulators are nonintrusive 

and provide accurate profiling information compared to other SW based approaches. The major 

benefit of simulation is that the designer can track the entire data flow within the internal registers 

of the processor. The simulation is done on any host machine with the help of Instruction Set 

Simulation (ISS) model of the target architecture. The accuracy of simulated results depends on 

how accurate the ISS model is.  It is not required to modify the actual executable, hence 

simulation methods are nonintrusive. Since simulator virtualizes the targeted processor hardware 

and hence takes from several seconds to minutes to simulate even a few lines of assembly code. 

Due to such slow behavior, simulation techniques are less attractive for time-to-market critical 

applications.  

 

2.1.2 Hardware Based Profiling 
 
 

Due to the limitations of software based profiling methodologies, designers have to explore one 

of the many hardware based profiling techniques. Few of them are Logic Analyzer, JTAG 

interface and TRACE/DEBUG interface. Logic Analyzer is not suitable for current complex 

SoCs, which prohibit direct access to a processor’s instruction bus. JTAG is useful for validation, 

verification and debugging; however it is inefficient for profiling an application as it requires 

significant runtime overhead and changes the execution behavior of the application. As an 

alternative to JTAG many embedded processors provide TRACE/DEBUG interface that can be 

utilized to monitor the execution of software application in real time. Traced data is processed 

with host machine to profile the application code. But to process data in real time requires more 

powerful host processor compare to processor being profiled. 

 

Hardware counter based profiling (HCBP) [4] is another more promising hardware based 

profiling technique. This technique makes use of on-chip hardware counters, which are dedicated 

for profiling purpose. The Performance Advance Programming Interface (PAPI) is required, 

which facilitates programmers to access these counters at high level interface. PAPI supports 

range of processors, like Intel Pentium, AMD, Sun Ultrasparc, etc. The hardware counters are 

dedicated for monitoring events: like memory access, type of instruction being executed, cache 

miss, pipe stall, etc. HCBP tools do not require the use of instrumentation code and very little 

performance overhead is introduced during runtime execution. Intel’s VTune counter monitor 

provides an interface for accessing and utilizing the hardware counters to profile application code 

executing on Pentium based processors. 
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The Page Migration Approach (PMA) [4], developed by Tikir et al. utilizes hardware counters 

for profiling memory with memory page migrating capabilities. The profiler is used for multi-

processor system. Hardware counters are used to sample the frequency at which each processor 

accesses a page of memory that is remote from the on-board local memory. At a certain numbers 

of counts specified by the user for remote touching of memory pages, the profiler halts the 

execution. It moves those particular memory pages to the processor’s local memory, for read and 

writes operations. However, such HW counter based approaches leads to larger area of uP cores 

and more suitable for higher end processors like Intel’s Pentium, AMD, etc. 

 

2.1.3 FPGA Based Profiling 

 
Current embedded systems are widely utilizes FPGAs as implementation platform due to their 

versatility. Such FPGAs are comprised of hardware customized logic, peripherals along with soft-

core processors running on the same chip. FPGA based profiling tools are quite promising 

compared to the other techniques discussed above for profiling the software application running 

on such soft-core processors. The profiling tool is implemented on the FPGA near the processor 

core and collects the profiling information in a nonintrusive manner. There is almost no need of 

any instrumentation code and very less performance overhead is imparted. Hence such tools 

provide very accurate profiling outputs. 

 

2.2 Classification based on Abstraction Level 

Profiling methods can be developed to profile the SW application by collecting profiling data at 

different abstraction level. In this context profilers can be classified in High-Level versus Low-

Level profilers.  

 

Low-Level Profilers - Low-Level profiling tools are very close to cycle accurate simulators and 

estimate the execution time more precisely. In low-level profiler, profiling information is 

collected during execution of the application code where as in case of high-level profiling; 

execution of application code is not required. Hence low-level profilers are very slow and do not 

support fast design space exploration. It is also true that low-level profilers are quite architecture 

or system dependent and difficult to adapt for other architectures or system. 

 

High-Level Profilers - High-level profiling tools work on formal methods [13][14]. It may 

comprise of some linear equation relating the count of different type of instructions with total 

number of clock cycles. However such linear equations do not capture the non-linear behavior of 

execution due to advance architectural features like pipelines, cache memory and branch 

predictors. Such nonlinearity can be easily captured using Neural Network techniques. Various 

Neural Networks can be trained for different domain specific applications and using them 

performance estimation can be quickly captured at higher abstraction level for fast design space 

exploration. At the same time high-level profilers are not strongly related to under layered 

architecture and hence are quite adaptable.  

 

2.3  Classification Based on Mode of Operation of Profiler 

 
The profiler can be further classified based on how it collects profiling information. This is 

another criterion to classify any given profiler, whether execution of the application code is 

required or not for profiling. 

 

Static – In case of static profilers, performance evaluation is done analytically using some 

mathematical model. Execution of the code is not required. 

 

Dynamic – Dynamic profilers analyze the SW application runtime. In case of dynamic profilers, 
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execution of the application code is essential. Dynamic profilers are good for run time 

optimization of the system parameters. 

 

2.4  Classification based on task supported  

 
Certain profilers are customized to profile single task (thread) applications whereas certain 

profilers are able to profile multi task (thread) applications [7]. Profilers customized for multitask 

applications, can also profile Operating System based applications. Multiple threads may be 

executing on a single processor with OS support or on Multiple Processors [14].   

 

2.5  Classification based on profiler’s intrusiveness to application code 

 
The profiler may or may not modify the application code in order to perform profiling. Based on 

this concept, profilers can be classified into three categories. 

 

Intrusive – Such profilers greatly modifies the application code and incurs significant execution 

overhead. Hence accuracy of such profiler’s result is significantly poor. However they are fast 

compared to ISS and are used by people where accuracy is not so important.  

 

Nonintrusive – HW and FPGA based profilers are normally nonintrusive. Such profilers pick up 

the profiling information from program counter and bus activities, without disturbing the 

processor operation. There is no execution or code size overhead. However, such profilers incur 

significant area overhead. Such profilers may profile the application in real time and hence offers 

very good profiling accuracy. They are good for fine tuning the system architecture.  

 

Partially Intrusive – Certain profilers slightly modifies the code to record the software execution 

state. Let say sampling of processor state to profile the software executing on it, is less intrusive 

than instrumenting the code [4] [18]. However, such profilers give less coverage to profiling than 

fully intrusive. But they incur less execution and code size overhead. 

 

3. Embedded Software Profiling Approaches 

Various profiling approaches are explored by different researchers in the world. In [17], Daniel 

has proposed a profiler to profile large heterogeneous Multi-core Multi-FPGA systems. Such 

systems are built of multiple boards and each board comprises of multiple parallel software and 

hardware execution nodes. Hardware resources are in form of FPGAs, whereas PowerPC and 

Microblaze in form of software processing elements. The main purpose of this profiler is to give 

insight into the communications occurring between nodes and the computation performed by each 

node. It is achieved with around 5% performance overhead. 

 

In [13], Oyadama et al. have proposed an integrated approach for software profiling and 

architecture exploration. Profiling of the software is done using analytical model based on NN 

Technique. Profiler output helps in selecting the appropriate processor and also guides in Hw/Sw 

partitioning. Authors demonstrated the approach using ARM processors. The virtual prototype of 

the entire system, including HW IP, communication bus, processors, is built using MaxSim 

simulator from ARM. MaxSim provides Bus Functional Model (BFM) of the different 

components of the system. Hardware components are represented as SystemC modules. At last 

the performance of the entire system is evaluated by simulating this virtual prototype in MaxSim. 

Authors have claimed maximum error in performance estimation of SW by 17% with speed up of 

35 times with respect to Cycle Accurate simulators. Further improvement is claimed by the same 

authors in [14]. 

In this section, we will present various profiling approaches explored so far in academic and 
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industry by different researchers especially in the area of Embedded Software performance 

estimation. However more famous gprof, profiler for general computing software, is discussed as 

an exception. It is so because number of researchers has compared their results with gprof. 

 

3.1 GNU’s gprof  

 
Profiling using gprof [1], [2] can be done using the host system other than the actual target 

system, which leads to inaccuracies in the profiled data. Hence gprof is more suitable for 

profiling general computing software than embedded software. As well as profiling speed 

depends on host system’s speed. Changing the host platform affects the Instruction Set 

Architecture (ISA), the micro architecture and the compiler, which results into variances in the 

executable that is to be profiled. 

 

To use gprof, the application must be compiled with profiling option enabled. Basically, gprof 

looks into each of application functions and inserts code at the head and tail of each one to collect 

timing information. This code generates an interrupt to sample the Program Counter (PC). 

Depending on the value of the PC, gprof increments the execution time of the corresponding 

function by the sample time. Thus gprof produces statistical results, which implies that until and 

unless the application execution time is significantly longer than the sampling period, the profiled 

information will be inaccurate. Hence short executables are run multiple times so that profiling 

information accumulates for a substantial runtime.  

 

Profiling information is collected by runtime profiler like gprof, at cost of overhead in running the 

profiling software. However, runtime profiling overhead is negligibly small compared to time 

required to collect cycle accurate information by simulation. 

 

3.2 SnoopP Profiler 
 
SnoopP is a real-time, nonintrusive profiling tool which is targeted for soft-core processors 

instantiated on reconfigurable architectures [3]. It is the FPGA based profiling approach. 

Scope - It is especially meant for profiling the software application executing on soft-core 

processors instantiated on the same FPGA, on which SnoopP is implemented. Since SnoopP is 

nonintrusive, there is no execution overhead. It also provides real-time cycle accurate profiling 

information faster than cycle accurate simulation. 

 

Architecture - The generic SnoopP profiler architecture is presented in Fig.2. The number of code 

segments depends on the number of functions of the application needs to be profiled. Each 

segment comprises of two comparators and one counter. Comparators are responsible to check 

the value of the program counter (PC) between the specified low and high addresses. If the PC 

value is accessing an address location within the specified bounds, the corresponding counter of 

that segment will be incremented for each system clock. 
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Fig.2 Generic SnoopP Architecture 

 

Profiling steps – The entire application is first implemented in software. The functionality is first 

verified and then the code is compiled to generate the executable. From the assembled code or 

symbol table the upper and lower bound of addresses for the functions needs to be profiled are 

extracted. This information is used to determine the number of profiling counters and 

comparators are set in HDL for each counter. Then the SnoopP is synthesized for the targeted 

FPGA and profiles the application running on the soft-core processor. If the software 

implementation fails to meet the design specification, the profiling information is used by the 

partitioning tool to selectively implement certain components on the hardware. Then the HW/SW 

co-design is done to comprise hardware and software components. Again, the functional 

verification is carried out to ensure that the design is correct. The SnoopP is also re-synthesize 

and used to profile the components running on processor core. This cycle is iterated multiple 

times until the performance goals are achieved. 

 

Overhead and Accuracy - Authors have compare the performance of SnoopP in terms of 

overhead and accuracy with respect to gprof. Dhrystone benchmark is profiled for Microblaze 

processor on Xilinx FPGA using gprof and SnoopP for 100 pass and 1 million pass. SnoopP has 

produced the results with not more than 0.06% variation, where as gprof has not produce any 

result for 100 pass. It is so because application has taken less than 10ms on a workstation to 

execute for 100 pass and this time is very less for gprof to collect profiling information.   The 

execution overhead is not more than 0.01% of the total execution time for SnoopP. Fidelity is also 

observed in the results produce by SnoopP over gprof in identifying which functions require the 

longest execution time.  

 

Limitation - The limitation of the SnoopP profiler is that it can profile only the functions which 

are residing in contiguous locations. If it is required to profile a function X that calls upon sub-

functions A,B and C; then four different counters needs to be set to count the number of clocks 

they consume and letter all are required to add together. Furthermore, if another function Y calls 

any one of the functions A, B and C; then it will become impossible to differentiate how long it 

has been executed by function X and Y individually. It is also not capable of counting how many 

times a function has been called. Another limiting factor is the large area overhead of SnoopP due 

to large counters to hold profiling information. 
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3.3 Airwolf 
 
Airwolf is also on-chip, real time, FPGA based software profiler, developed for Nios II processor 

to be synthesized on Altera FPGAs [4]. Contrary to gprof, Airwolf does not require to modify the 

executable of the application code. But Airwolf inserts extra code to each function before 

compilation, which is also known as source code instrumentation. A pair of software drivers is 

added around the software function block. Role of these drivers is to enable or disable a particular 

profiling counter in the Airwolf. This minimally disturbs the program and software behaviour 

during execution. Hence, Airwolf seems to be partially intrusive in nature. 

 

Scope – The scope of this approach is limited to profiling performance of a software application 

running on a single soft-core processor on Altera FPGA. However, the methodology can be easily 

adopted for other processor and FPGA. Airwolf cannot profile memory related events. 

 

Architecture – Airwolf contains 20 profiling counters as shown in Fig.3, which support profiling 

of up to 20 functions at a time. Each profiling counter consists of two counters: one is 32-bit hit 

counter and the other is 64-bit time counter. Time counter keeps track of execution time of the 

function and hit counter records how many times the function has been called. Hit Counter counts 

the positive edges on HCEN control signal and Time Counter counts the number of system clocks 

for the function being profiled when it is enabled by TCEN signal. 

 

Overhead and Accuracy – Authors have claim 66.2% improvement in accuracy in profiled results 

and 41.3% reduction in runtime performance overhead compared to software based gprof  

profiler. Authors of Address Tracer [5] have also compared their design with Airwolf and 

reported a marginal overhead of 0.23% in Airwolf over Address Tracer. 
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Fig.3 Airwolf Architecture 

 

Limitation – The profiled data generated by Airwolf will be erroneous due to the software driver 

which needs to be executed before the function returns. Hence the clocks consumed in returning 

the functions are ignored. Similarly driver at the starting of the function is inserted after the 

header of the function. Hence the system clocks consumed in initialization of header will be 
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ignored by the profiler. This leads to error in counting number of clock cycles for the 

corresponding function. This error will be significant for short functions. 

 

3.4 Address Tracer 

 
Address Tracer [5] is the combination of the SnoopP and Airwolf. It is fully non-intrusive FPGA 

based profiler. Apart from profiling the given function as discussed in SnoopP, Address Tracer 

can also keeps track on how many times a function is called. It can also profile the functions 

correctly even if two different functions call the same function, which is not possible with 

SnoopP. 

 

Scope – The scope of the methodology is found for profiling the software running on soft-core 

processors in FPGA. 

 

 
 

Fig.4 Architecture of a Segment in Address Tracer 

 

Architecture – Each piece of code required to be profiled is referenced as segment and a pair of 

counters is allotted to each such segment to facilitate profiling. The segment counter in Address 

Tracer is comprised of two counters: 32 bit hit counter and 64 bit time counter as in Airwolf. 

General architecture of each segment is shown in Fig.4. 

 

Overhead and Accuracy – There is no significant change in profiled results of Address Tracer 

over Airwolf. However the code size of each function is larger in case of Airwolf due to software 

drivers inserted in each function compared to Address Tracer. Hence a marginal 0.23% 

performance overhead is observed in Airwolf compared to Address Tracer and in case of gprof it 

is 20.37%. There is no performance overhead in case of Address Tracer. 

 

Limitation – The area of the profiler increases with increased number of functions to be profiled. 

Another limitation is that it cannot profile memory accesses. Profiling of multiprocessor system is 

also not supported. 

 

3.5 FLAT 

 
Frequent loop analysis tool developed by Ann and Vahid [6], is the first ever dynamic software 

optimization tool meant for embedded software performance analysis. It is very size and power 

efficient and fully nonintrusive to software execution. This tool not only detects highly critical 

regions of the software but also provides the relative frequencies of execution for different loops. 

This feature is highly important for HW/SW Partitioning.  

 

Motivation behind development of FLAT was an observation that 51% of execution time was 

occupied by loops having less than 32 instructions in one of the standard benchmark. Hence the 
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problem of critical region detection is actually the problem of detecting frequently executing 

loops and subroutines for software optimization and HW/SW partitioning. 

 

Scope – The scope of the FLAT approach is found to profile any SW application in SoC platform 

on a FPGA. It is suitable for any embedded system application.  

 

Architecture - It is cached-based architecture as shown in Fig.5. The architecture of frequent loop 

detector employs a 2-way set-associative 32-entry cache, with each entry capable of storing 32 bit 

frequency counter. The cache is used to store frequency counts of different critical loops and is 

indexed into using sbb instruction addresses. Here sbb is representing any short backward jump 

instruction. Whenever any loop counter saturates, the cache contents for all counters will be right 

shifted by one bit position and hence maintain the relative frequency. The frequent loop cache 

controller handles the operation of the frequent loop cache. When the sbb signal is asserted, a 

read of the frequent loop cache is done using the sbb address as the index. If the result is a hit, the 

frequency is read from the cache, incremented and written back in the next cycle. If the result is a 

compulsory miss, the instruction is added to the cache with a frequency data value of one. If there 

is a conflict miss, the new address replaces the old address in the cache with a frequency of one.  

Set Associative cache is implemented to allow for multiple frequent loops to be mapped to the 

same set without conflict. If conflicts still occur, the replacement policy will replace the least 

frequent value in the set with the new incoming sbb. 

 

 
 

Fig.5 Frequent Loop Analysis Tool Architecture 

 

Overhead and Accuracy - Authors have represented a small area, power efficient on-chip 

profiling architecture to detect the most frequent loops of the software application in a 

nonintrusive manner. The proposed detector’s versatility is verified and validated by 19 

embedded system benchmarks. The power overhead is hardly 1% to 2% and can be minimized to 

even 0.02% compared to 32 bit MIPS 4Kp processor using coalescing and sampling methods. 

The resulting area overhead is 6.68 % to 12.8 % compared to reported area of MIPS 4Kp 

processor. There is no runtime overhead. The accuracy depends on the size of the on-chip cache 

in the FPGA and it is at least 80% for most of the benchmarks used except two for which 

accuracy is 72%. 

 

Limitation – FLAT is developed on the basis that all inner loops employs short backward branch 

(sbb) and the tool detects such sbb and profiles the application to identify most costlier loops. 

However, unstructured assembly code generated by hand or by compiler optimization, could 

result in loops with different structures. Such loops cannot be profiled by the FLAT tool. One 

more point to be noticed is that all soft-core processor needs to be modified to generate sbb 

signal, whenever a short backward branch instruction is executed. 
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3.6 DAProf 
 

DAProf stands for Dynamic Application Profiler. The first architecture of DAProf proposed in [9] 

is targeted to characterize the most costly 32 loops in the application, which is more than enough 

for current average complex application. This design was supporting only single threaded 

application. In [10] DAProf is extended for multitask support, too. This version of DAProf is 

capable of profiling an executing application by monitoring the application’s short backward 

branches, function calls, function returns, as well as context switches. Using this information it is 

possible to characterize frequently executed loops within multitasked applications. It implies that 

DAProf is capable of profiling RTOS based embedded software. However in latest publication 

[11], authors have produced more regress results and highlight that DAProf is not up to the mark 

to profile multitask applications. Interface of DAProf with microprocessor is shown in Fig.6.    

Scope – DAProf is nonintrusive, low level, dynamic, SoC (ASIC) based profiler which is 

customized to profile ARM processor based application. Profiler Cache is a small memory, which 

maintains the current profiling results and intermediate information needed for loop 

identification, iteration and execution profiling statistics. Profiler Controller is ultimately 

responsible for determining which profile cache entry should be replaced when new loops are 

executed. 

 

 
 

Fig.6 DAProf Interface with Microprocessor 

 

Architecture – DAProf is mainly consisting of three functional units as shown in Fig.7. First is 

Profiler Task Filter and second is Profiler FIFO and the third is Profiler Controller. The profiler 

task filter provides great flexibility in profiling a multitasked application by allowing designer the 

option to selectively profile specific tasks, functions, library code, system calls, etc., while 

filtering out those elements which are not of immediate interest. The profiler FIFO stores the 

address of interest, short backward branch offset and an encoding indicating the nature of 

profiling event. In addition Profiler FIFO is also responsible for synchronizing between the 

operating frequency of microprocessor and Profiler Task Filter and internal design of DAProf. 

 

Overhead and Accuracy – Authors have presented an exhaustive analysis of area overhead versus 

accuracy of DAProf profiler. DAProf with and without function call support have been analyzed. 

Authors have claimed 98% accuracy in loop execution count and 95% accuracy in estimated 

execution time. This accuracy is reported in DAProf with function call support and fully 

associative cache to profile the tasks in a software application with as little as 20% area overhead, 

on SoC synthesized using UMC 0.18 Micron Library, compared to an area covered by an ARM9 

processor executing at 533MHz. Authors have also reported comparative performance of DAProf 

which covers 76% of the total execution time over FLAT tool that covers only 62%. 
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Fig.7 Functional Units of DAProf 

 

Limitation – It is required to modify the original processor core to provide profiling event signals 

to DAProf, like SBB, FUNC and RET. Another limitation of DAProf is that it is more suitable for 

single threaded application. In case of multitasking applications context switches can leads to 

reduced accuracy of the DAProf and hence more efforts are required to investigate other 

possibilities to extend DAProf to profile multitasking applications. 

 

3.7 MPPA 

 
MPPA stands for Multiprocessor Profiling Architecture and is proposed by Po-Hui Chen et al. 

for MPSoC embedded systems [7].  

 

Scope – This approach is suitable for monitoring all processors and system wide events in 

MPSoC environment on an FPGA. The integration of MPPA and LION3 processors is shown in 

Fig.8. Since there are no architecture dependent steps, this methodology can be followed for any 

other profiling framework for any architecture.  
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Fig.8 Integration of MPPA and LION3 based system 
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Fig.9 MPPA Profiler Block Diagram 

 

Architecture – MPPA is consisted of two parts: Event Sensing and Event Collecting, as shown in 

Fig.9. Event sensors are embedded in the components and interconnect to sense low level events. 

All event sensors pass the occurrence of profiling event to the monitor unit where it will be 

recorded in the profiling counters. Proposed MPPA profiler is implemented for LION3 based 

MPSoC system on a single Virtex5 FPGA. LION3 is, open source, synthesizable soft processor 

core based on SPARC V8 architecture with 7 stage pipeline and multiprocessor support.  AMBA-

2.0 AHB/APB bus interface is used as communication bus. 

 

Linux is used as OS for the system and device driver is written for the MPPA hardware. Monitor 

module of the profiler is made of two major blocks: Bus Interface and Monitor Core, as shown in 

Fig.9. All performance counters are memory mapped. Hence any processor can read these 

counters and make it available to the user for analysis. And no extra interface is needed to be 

developed. These counters are accessed in Linux OS by writing device drivers instead of system 

calls that improve cache performance and scalability. 

 

Overhead and Accuracy – Authors have claimed only 0.66% gate count overhead by the profiler 

hardware. Performance statistics, in terms of CPU cycles, for a dual threaded program which 

processes a large integer array have been estimated by the proposed profiler. The results are 

found 93.41% accurate against manually calculated cycles. 

 

Limitation – Profiling counter overflow is not handled in the present MPPA approach. This may 

leads to inconsistent results. In large multiprocessor systems often it is required to gather profile 

information upon occurrence of certain event. However, there is no interrupt (event) or time 

based sampling of profiling data. 

 

3.8 DPOP Framework 
 
DPOP stands for Dynamic Profiling and Optimization. Dynamic profiling opens opportunity to 

monitor how system responds to changes in environmental conditions or changes in the 
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underlying platform. Effectiveness of the methodology is demonstrated in reference to Forest Fire 

Detection and Propagation Tracking and Building Monitor applications [8].  Authors have 

proposed four different dynamic profiling methods suitable for applications with diverse 

behavior.  

 

Scope – Dynamic profiling and optimization is required in many applications like HW/SW 

partitioning, Energy optimization, Disaster response application, etc. DPOP framework is 

customized for performance optimization of sensor nodes of wireless sensor network (WSN). 

 

Architecture – For dynamically profiling a sensor-based application, DPOP environment requires 

profiling methods to be incorporated within each node to monitor the execution behavior for 

individual sensor nodes. At the same time, to optimize the entire sensor-based system, a global 

view of the entire system is also needed. However, in current DPOP framework profiling at 

individual node is supported. The broad picture of the framework is as shown in Fig.10. It is 

comprised of Profiler and Optimizer. Profiler collects the vital runtime performance statistics. 

Optimizer evaluates these statistics by comparing with end user design metric specification and 

tunes the behavior and architecture of underline node in order to minimize the overall cost.  

 

 
 

Fig.10 DPOP Framework 

 

Overhead and Accuracy – Profiler is aimed to optimize each node independently, a cluster of 

nodes or entire network in order to minimize energy consumption without incurring significant 

code size and network traffic overhead. Authors have proposed four different profilers with 

diverse strategies as depicted in Table 1. In case of Fire Detection and Propagation Tracking 

application profiling method PM3 yields the lowest traffic overhead of 7.9%. And in case of 

Building Monitor application, PM1 incurs lowest traffic overhead of 11.6%. Across all profiling 

methodologies, energy and code size overhead remains reasonably low with maximum of 0.06 

mA-Hr and 3.5% respectively. On an average, DPOP can yield up to 83% improvement in overall 

design cost compared to statically optimized node configuration. 

 
TABLE I 

PROFILING STRATEGIES IN DPOP ENVIRONMENT 

 

Profiling Strategy PM1 PM2 PM3 PM4 

What to profile Sensor sampling rate ● ● ● ● 

Time between successive packets ● ● ●  

Whom to profile Individual Nodes ● ● ● ● 

When to profile? Profiler module directed ● ●  ● 

Periodic   ●  

How to profile? Piggybacked ●    

Separate profile packets  ● ● ● 
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Limitation – The proposed DPOP framework is limited to profile only the individual node. It 

can’t profile cluster of node and Entire Network as a single system. 

 

3.9 WOoDSTOCK 
 
WOoDSTOCK is a real-time, on-chip system profiler that Watches Over Data STreaming On 

Computing element links [15].  

 

Scope – WOoDSTOCK profiles system performance by adding monitors to the circuit on the 

FPGA, which keep track of the communications done between different computing elements 

(CE) and gauge their utilization. Thus by monitoring communication links between different CEs, 

it becomes possible to generate a broad picture of system performance, which highlights the 

computing elements that cause bottlenecks in the design. 
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Fig. 11 WOoDSTOCK Architecture 

 

Architecture – Connections between WOoDSTOCK and a multi-CE system are shown in Fig.11. 

A monitor is part of WOoDSTOCK that records the behaviour of traffic on all internal input and 

output links connected to its CE through internal counters. The content of these counters is used 

to find the total starving or stalling time for a CE during the profiling period. Processor 0 is the 

base processor and responsible to determine the run-time for the monitors based on its executing 

Program Counter (PC_EX). Authors have used Xilinx Virtex2 FPGA and Microblaze soft-core 

processor to implement and verify the operation of WOoDSTOCK. The performance of the 

profiler is demonstrated using two applications of different nature: one is based on pipeline and 

the other based on branching. 

 

Overhead and Accuracy – System design is started from an initial configuration which is refined 

subsequently to a new configuration which is free from stalling and starving. This leads to an 

average performance improvement by 50% and reduces overall run-time compared to initial 

configuration. Profiling counters are of 46-bits to allow a maximum system profile period of eight 
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days at 100 MHz. Each counter utilizes 115.8 LUTs and 66.2 Flip-flops for pipeline application 

and 116 LUTs and 59.8 Flip-flops for branching example. 

 

Limitation – WOoDSTOCK does not profile the software application running on the processors 

just like other profilers discussed in this paper, rather it profiles the communication traffic. Since 

WOoDSTOCK is unaware about the actual computation being performed on a particular CE, the 

obvious limitation of WOoDSTOCK is that it could not find the actual cause of bottleneck in 

designing of CE. 

 

3.10  Micro Profiler (µP) 
 
Micro-Profiler is the software application profiler developed to assist designers of Application 

Specific Instruction-set Processor (ASIP) [12].  There are two instrumentation approaches in use: 

one is source level and the other is assembly level. The former is better in terms of speed and 

flexibility where as the latter is good for accuracy. µP is an attempt to fill this gap and offers 

better accuracy along with reasonable speed. The key idea in µP profiler is to apply source level 

profiling, yet precisely counting all primitive operations during execution of an application. This 

become possible by source code level fine grain instrumentation, which inserts extra code in the 

original application code to collect particular run time statistics without modifying the program 

semantics.  

 

Scope – µP provides designer with important runtime statistics of the application, such as the 

usage of C operators for different data types, dynamic value ranges of the variables and the 

constants, coarse performance estimates, etc. for effective pre-architecture exploration to design 

or customize an ASIP. It can also profile the memory accesses with accuracy close to ISS. 

 

Architecture – uP is software based intrusive profiler, which analyzes the code statically to 

produce the profiling results. In this approach the original C code is transformed to Three 

Instruction Code. Each line of such code contains at most only one operation. This increases the 

profiling granularity. LANCE compiler is used to produce such intermediate representation in 

form of C syntax from original C code. Execution time overhead is minimized by introducing the 

profiling code at the end of each block only. This code maintains aggregate counters for the entire 

block, while still being able to provide statement-true information. 

 

Fig.12 shows a piece of C code and corresponding Three Address Code to highlight the 

limitations of profiling at C source code level. The 3rd statement will be interpreted as a single C 

statement as like others, where as actually it will be mapped to multiple assembly instructions. 

Hence C level profiling granularity is too coarse for design of an ASIP ISA. In Three Address 

Code, all primitive C operations including type cast, pointer scaling, etc. are made more explicit 

and hence can be profiled like regular operations. All high level memory operations like access of 

Arrays, Global Variables and Structures are mapped to explicit LOAD/STORE operations via 

pointers as shown in Fig.12(b). 

 

In spite of code overhead, execution of instrumented code is an order of magnitude faster than 

that of Instruction Set Simulator. The accuracy in profiling the memory accesses is close to ISS. 

For an application consisting of n IR statements the cycle count estimate is given by the formula: 

1

( ) ( )
n

i

Cycles E Si W Si
=

= ×∑
 

Where E(Si) and W(Si) are the execution count and weight for statement Si, respectively. 
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// Explicit Address Generation

T1 = (char *) a;

// Constant propagation and 

// folding of (p*2*sizeof(float)) to 40

T2 = 40 + T1;

T3 = (float *) T2;

// Explicit memory access

T4 = *T3;

IncrBBExeCnt();

goto LL2;

IncrBBExeCnt();

If (flag) goto LL1;

LL1: T4 = b;

IncrBBExtCnt();

LL2: f = T4;

IncrBBExeCnt();

Int p, flag; float b, a[20]; /* line 1 */

p = 5; /* line 2 */

f = (flag) ? b : (a[p*2])

(a)

(b)Micro Profiler
 

 

Fig.12 (a) C statements (b) Intermediate representation 

 

Overhead and Accuracy – With high level optimization in LANCE compiler, the average 

deviation reported in cycle count is not more than 11% compared to ISS. Optimization at 

Intermediate Representation leads to average deviation of 23% in predicting the operator count. 

For simplicity operators are classified into five basic categories: Arithmetic, Logical, Compare, 

Load/Store and Multiply/Division/Modulo.  

 

Authors have proposed architecture exploration of ASIP for mpeg3 with the information provided 

by the uP. Architecture exploration has started with initial reference architecture having 32bit 

instruction word size, code size 83.08 KB, 18.81K logic gates, no FPU support, clock of 23.60 

nS. After repeated cycles of refinement based on profiling information provided by uP, final ISA 

was proposed with 24 bit instruction word size, code size 11.52 KB, 15.61 K logic gates, with 

FPU support, clock of 39.68 nS. The original architecture needs 132,649 K cycles/frame. Hence it 

cannot meet the requirement of playing 38frames/second. However, it has been solved by 410K 

cycles/frame in finally refined architecture. 

 

Results reflect, slow down of clock by 16.08ns, reduction in code size by 14%, 83% area saving 

and top of all, final mpeg3 engine is 300 times faster than original architecture. 

 

Limitation – The limitation of µP is that it cannot instrument library functions. Hence code 

comprised of so many library functions may lead to inaccuracy in the profiled data. 

 

3.11  Artificial Neural Network Based Techniques 
 
In [13][14], Oyamada et al. has explored and presented Artificial Neural Network as promising 

higher-level performance estimation technique for embedded software. In higher-level 

performance estimation, it is not required to fully compile the software application to generate 

executable binary. Hence there is no execution of the application involved. Profiling information 

is not captured real-time, this increases the profiling process by many fold. Higher-level 
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prediction is already in use, since a long for simple architectures with no cache, pipeline or 

branch prediction features. Such performance estimators are modeled using some linear 

equations. Important advancement in ANN based technique is that it can easily capture the 

nonlinearity introduced due to features just mentioned. Feed Forward Error Back Propagation 

neural network is used in this approach. 

 

 

 
 

Fig.13 Training Phase of the Estimator 

 

 
 

Fig.14 Utilization Phase of the Estimator 

 

Scope – The scope of this methodology is found mainly in design space exploration of embedded 

software, for instance considering various algorithmic alternatives for designing of tasks, 

assignment of tasks to different computing elements, etc. This is mainly due to its nature to 

profile the application quickly. This methodology can also be used for automatic classification of 

the software application, whether it belongs to dataflow dominated or control dominated class. 

  

Architecture – This is the software based profiling methodology which is utilized in two steps as 

shown in Fig.13 and Fig.14: Training and Utilization. The network is trained using the MatLab 

software on the host machine. Standard benchmark is profiled and number of instructions and 

cycles executed are identified and classified broadly as shown in Fig.13. This data is then applied 

as input to train the network. The output of the network is the estimated cycle count which will be 

compared with the actual profiled number of cycles. The error in cycle count is in turn use to 

correct the weights of the network. This is how the network is train which is now ready to 

estimate cycle count for any other application from the similar domain to which training set 

belongs. Hence a library of trained neural networks can be prepared for different processor 

architectures and applications of different domain for ready use in future for fast design space 

exploration.  

 

After the training phase, the estimation tool is ready to be used. Fig.14 presents the main steps in 

this phase. An application is compiled for a given target processor, and the number of executed 

instructions of each type is obtained by a dynamic instruction count. These counts are presented 

to the neural network, so that it can estimate the total number of cycles consumed by the 

application. 
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Overhead and Accuracy – The approach has been validated using PowerPC 750, ADSP21xx and 

a Java Microcontroller using a set of 39 benchmarks. Authors have demonstrated use of this 

technique using PowerPC 750 as target architecture and speed up to 190 times is reported 

compared to cycle accurate simulator with reasonably acceptable mean error of 7.90%. The mean 

error is further reduced to 6.48% by using domain specific ANN to estimate the performance. 

This is equivalent to execution cycle accuracy of 92.10% and 93.52%, respectively. 

 

Limitation – However the approach is fast to estimate the cycle count once the network is trained, 

the training phase is considerably long for every new neural network. Hence it is required to 

identify some methods that can expedite the process of training the neural network. Every 

application to be profiled, which is written in higher level language needs to be compiled to count 

instructions of different class. 

 

4. Discussion 

 
A summary of all eleven presented embedded software profiling methodologies based on the 

classification criteria introduced in Section II is given in Table II. 

 

As can be seen, most of the methodologies share many common characteristics. For example, 

most are Nonintrusive, Low-level and dynamic in nature. Most do not support profiling of 

multitask applications. If we talk about accuracy, SnoopP profiler gives nearly 100% accurate 

profiling information. It is so because it pickup program counter value without any software 

overhead. However it selectively profiles application segments and needs resynthesis of profiler 

for every new configuration to be profiled. Whereas gprof incurs maximum error and it seems to 

be more appropriate for profiling general computing software rather than embedded software. 

 

TABLE II 

CLASSIFICATION AND COMPARISION OF DIFFERENT PROFILING APPROACHES 
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1 GNU’s 

gprof 
● ●     ●  ● 

 Not Mentioned 20.37% PO over Address 

Tracer [5] 

2 SnoopP   ● ●   ● ●  99.94% ECA Large Area and 0.01%  EO 

3 Airwolf 

○  ○ ●   ● ● 

 66.20 % ECA over gprof 0.23% PO over Address 

Tracer [5] and 41% 
reduction in PO over gprof 

4 Addres

s Tracer 
  ● ●   ● ● 

 Close to Airwolf Large Area  

5 FLAT 
 

SoC based 

synthesized 

using 0.18 uN 

USMC Library 

●   ● ● 
 80% ECA 2.4%  power overhead 

6.68 to 12.8 %  AO 

6 DAProf  ●   ● 

●  

98% Loop Count Accurate  

and 95% Execution Count 
Accurate 

20% AO compared to 

ARM9 

7 MPPA ○  ○ ●   ● 

 ● 

93.41% ECA 0.66% LGO 

8 DPOP 

● ● 

 

●   ●  ● 

83 % improvement in 

design cost over hand 

optimized sensor node 

1.7 to 2.4 % Code Overhead 

7.9 to 14.8 % Traffic 

Overhead 

0.01 to 0.06 mAH Energy 

Overhead 
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9 WOoD

STOC

K 

  

● ●   ●  ● 

50% Performance 

Improvement 

Average 116 LUTs and 60 

Flip-flops per counter of 

profiler 

10 µP ● ●   ● ●  
- NA - 

300 Times Performance 
Gain 

Not Reported 

11 ANN 

Based  ●   ● ●  - NA - 

92.10 % to 93.52%  CCA  

Not Mentioned 190 times speed up over 

CAS 

 

 

Most of the approaches are profiling the software application running on the processor core with 

two exceptions; DPOP and WOoDSTOCK. DPOP framework is mainly meant for optimizing the 

traffic/energy/code size in every node of wireless sensor network. WOoDSTOCK is the approach 

in which performance of the system is gauge by monitoring the communication traffic between 

computing elements of the system. Similarly there is one more dimension in which significant 

research has been done, which is profiler based on monitoring the frequently executing loops.  

 

Vahid et al. had given this concept in FLAT profiler which has been further extended by Nair et 

al. in developing DAProf. The most recent approach is DAProf, which greatly enhances the 

performance of WARP processors. Warp processing is the technology that dynamically detects 

the potential kernels of an executing binary which are suitable for HW implementation without 

any designer efforts and hence addresses the critical issue of HW/SW partitioning. Such dynamic 

profilers are very suitable, especially for dynamic optimization approaches. 

 

Micro Profiler is another exception which is specially meant for architecture optimization of 

ASIP. Performance of ASIP can be greatly improved with optimized hardware by profiling every 

new refined architecture with uP successively. 

 

Another important point to be focused is that most of the embedded systems today are realized on 

a single FPGA in SoC form. Hence FPGA based profilers seem to be more efficient for profiling 

application running on a soft or hard core processor synthesized on an FPGA. However such 

profilers are quite processor architecture dependent and not fast enough for rapid system level 

design space exploration. Hence people are motivated towards Artificial Neural Network based 

profilers. Such profilers are very fast and accuracy offered is also reasonably good. Such profilers 

are quite helpful for fast design space exploration at system level.  

 

5. Conclusion 

 
The survey presented in this paper may be greatly helpful to the researchers and engineers who 

want to identify a most suitable embedded software profiler based on their system or application 

requirement. The survey also gives numerous new research directions which are represented as 

limitations in discussion of each approach. In this survey an attempt is made to cover all possible 

approaches addressed by different authors in the domain of embedded software profiling in last 

seven to eight years. An exhaustive comparison based on various criterions is also provided for 

ready reference. 

 

A special attention is expected to develop profiler for OS based or multitasking embedded 

software. 

 

Another area that needs to be addressed is to compile a library of trained neural networks for 

different processor architectures. Such neural networks can be trained by different domain 

specific applications to increase their accuracy. This kind of library based approach can increase 

the high level design space exploration and processor choice by many folds. 
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