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ABSTRACT 

This paper investigates the global chaos synchronization of identical Pan systems (Pan, Xu and Zhou, 

2010) by sliding mode control. The stability results derived in this paper for the complete synchronization 

of identical Pan systems are established using Lyapunov stability theory. Since the Lyapunov exponents are 

not required for these calculations, the sliding mode control method is very effective and convenient to 

achieve global chaos synchronization of the identical Pan systems. Numerical simulations are shown to 

illustrate and validate the synchronization schemes derived in this paper for the identical Pan systems. 
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1. INTRODUCTION 

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1].  

Synchronization of chaotic systems is a phenomenon which may occur when two or more chaotic 

oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of 

the butterfly effect which causes the exponential divergence of the trajectories of two identical 

chaotic systems started with nearly the same initial conditions, synchronizing two chaotic systems 

is seemingly a very challenging problem. 

 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically. 

 

Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has 

been studied extensively and intensively in the literature [2-17]. Chaos theory has been applied to 

a variety of fields such as physical systems [3], chemical systems [4], ecological systems [5], 

secure communications [6-8], etc. 

 

In the last two decades, various schemes have been successfully applied for chaos 

synchronization such as PC method [2], OGY method [9], active control method [10-12], 

adaptive control method [13-14], time-delay feedback method [15], backstepping design method 

[16], sampled-data feedback method [17], etc. 
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In this paper, we derive new results based on the sliding mode control [18-20] for the global 

chaos synchronization of identical Pan systems ([21], Pan, 2010). In robust control systems, the 

sliding mode control method is often adopted due to its inherent advantages of easy realization, 

fast response and good transient performance as well as its insensitivity to parameter uncertainties 

and external disturbances. 

 

This paper has been organized as follows. In Section 2, we describe the problem statement and 

our methodology using sliding mode control (SMC). In Section 3, we discuss the global chaos 

synchronization of identical Pan systems. In Section 4, we summarize the main results obtained in 

this paper. 

 

2. PROBLEM STATEMENT AND OUR METHODOLOGY USING SMC 

In this section, we describe the problem statement for the global chaos synchronization for 

identical chaotic systems and our methodology using sliding mode control (SMC). 

Consider the chaotic system described by 

( )x Ax f x= +&          (1) 

where 
n

x ∈R is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system.  

We consider the system (1) as the master or drive system. 

As the slave or response system, we consider the following chaotic system described by the 

dynamics 

( )y Ay f y u= + +&         (2) 

where 
n

y ∈R is the state of the system and 
m

u ∈R is the controller to be designed.  

If we define the synchronization error as  

  ,e y x= −          (3) 

then the error dynamics is obtained as   

( , ) ,e Ae x y uη= + +&         (4) 

where  

( , ) ( ) ( )x y f y f xη = −         (5) 

The objective of the global chaos synchronization problem is to find a controller u such that 

lim ( ) 0
t

e t
→∞

=    for all (0) .n
e ∈R  

To solve this problem, we first define the control u as 
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( , )u x y Bvη= − +          (6) 

where B is a constant gain vector selected such that  ( , )A B  is controllable.  

Substituting (5) into (4), the error dynamics simplifies to 

e Ae Bv= +&           (7) 

which is a linear time-invariant control system with single input .v  

Thus, the original global chaos synchronization problem can be replaced by an equivalent 

problem of stabilizing the zero solution 0e = of the system (7) by a suitable choice of the sliding 

mode control. In the sliding mode control, we define the variable 

1 1 2 2( ) n ns e Ce c e c e c e= = + + +L        (8) 

where [ ]1 2 nC c c c= L is a constant vector to be determined. 

In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold 

defined by 

  { }| ( ) 0n
S x s e= ∈ =R  

which is required to be invariant under the flow of the error dynamics (7). 

When in sliding manifold ,S the system (7) satisfies the following conditions: 

  ( ) 0s e =          (9) 

which is the defining equation for the manifold S and 

  ( ) 0s e =&           (10) 

which is the necessary condition for the state trajectory ( )e t  of (7) to stay on the sliding manifold 

.S  

Using (7) and (8), the equation (10) can be rewritten as 

  [ ]( ) 0s e C Ae Bv= + =&         (11) 

Solving (11) for ,v we obtain the equivalent control law  

  
1

eq ( ) ( )  ( )v t CB CA e t−= −         (12) 

where C is chosen such that 0.CB ≠  

Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 
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1( )e I B CB C Ae

− = − &         (13) 

The row vector C is selected such that the system matrix of the controlled dynamics 
1( )I B CB C A

− −  is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the 

controlled system (13) is globally asymptotically stable.  

To design the sliding mode controller for (7), we apply the constant plus proportional rate 

reaching law 

  sgn( )  s q s k s= − −&           (14) 

where sgn( )⋅ denotes the sign function and the gains 0,q >  0k > are determined such that the 

sliding condition is satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control ( )v t as 

  [ ]1( ) ( ) ( ) sgn( )v t CB C kI A e q s−= − + +       (15) 

which yields 

  
[ ]

[ ]

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0

CB C kI A e q s e
v t

CB C kI A e q s e

−

−

− + + >
=

− + − <





      (16) 

Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically 

synchronized for all initial conditions (0), (0) n
x y R∈ by the feedback control law 

  ( ) ( , ) ( )u t x y Bv tη= − +          (17) 

where ( )v t is defined by (15) and B is a column vector such that ( , )A B is controllable. Also, the 

sliding mode gains ,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the 

closed-loop error dynamics as 

  [ ]1( ) ( ) sgn( )e Ae B CB C kI A e q s−= − + +&       (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate 

Lyapunov function defined by the equation 

  
21

( ) ( )
2

V e s e=          (19) 

which is a positive definite function on .n
R  

Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 
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2( ) ( ) ( ) sgn( )V e s e s e ks q s s= = − −& &        (20) 

which is a negative definite function on .n
R   

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the 

error dynamics (18), which has a globally defined, negative definite time derivative .V&   

Thus, by Lyapunov stability theory [22], it is immediate that the error dynamics (18) is globally 

asymptotically stable for all initial conditions (0) .n
e ∈R  

This means that for all initial conditions (0) ,n
e R∈ we have 

  lim ( ) 0
t

e t
→∞

=  

Hence, it follows that the master system (1) and the slave system (2) are globally and 

asymptotically synchronized for all initial conditions (0), (0) .n
x y ∈R  

This completes the proof. � 

 

3. GLOBAL SYNCHRONIZATION OF IDENTICAL PAN SYSTEMS USING 

SLIDING MODE CONTROL 

 
3.1 Theoretical Results 

In this section, we apply the sliding mode control results derived in Section 2 for the global chaos 

synchronization of identical Pan systems ([21], Pan, 2010). 

Thus, the master system is described by the Pan dynamics 

  

1 2 1

2 1 1 3

3 3 1 2

( )x a x x

x cx x x

x bx x x

= −

= −

= − +

&

&

&

         (21) 

where 1 2 3, ,x x x  are state variables and , ,a b c are positive, constant parameters of the system. 

The slave system is also described by the Pan dynamics 

  

1 2 1 1

2 1 1 3 2

3 3 1 2 3

( )y a y y u

y cy y y u

y by y y u

= − +

= − +

= − + +

&

&

&

          (22) 

where 1 2 3, ,y y y are state variables and 1 2 3, ,u u u are the controllers to be designed. 

The Pan systems (21) and (22) are chaotic when  

  10,   8 / 3a b= =   and  16.c =  
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Figure 1 illustrates the strange attractor of the chaotic Pan system (21). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Strange Attractor of the Pan System 

The chaos synchronization error is defined by 

  ,  ( 1, 2,3)i i ie y x i= − =         (23) 

The error dynamics is easily obtained as 

  

1 2 1 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

( )e a e e u

e ce y y x x u

e be y y x x u

= − +

= − + +

= − + − +

&

&

&

         (24) 

We write the error dynamics (24) in the matrix notation as 

   ( , )e Ae x y uη= + +&           (25) 

where 

  

0

0 0 ,

0 0

a a

A c

b

− 
 

=  
 − 

  1 3 1 3

1 2 1 2

0

( , )x y y y x x

y y x x

η

 
 

= − + 
 − 

  and   

1

2

3

u

u u

u

 
 

=  
  

.    (26) 

The sliding mode controller design is carried out as detailed in Section 2. 

First, we set u as 
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  ( , )u x y Bvη= − +          (27) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

  

1

1 .

1

B

 
 

=  
  

           (28) 

In the chaotic case, the parameter values are  

   10,   8 / 3a b= =   and  16.c =  

The sliding mode variable is selected as 

  [ ] 1 2 36 6 1 6 6s Ce e e e e= = = + +         (29) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 6k = and 0.1.q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to 

speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

  1 2 3( ) 5.5385 7.3846 0.2564 0.0077 sgn( )v t e e e s= − − − −     (30) 

Thus, the required sliding mode controller is obtained as 

  ( , )u x y Bvη= − +           (31) 

where ( , ),x y Bη and ( )v t are defined as in the equations (26), (28) and (30). 

By Theorem 1, we obtain the following result. 

Theorem 2. The identical  Pan systems (21) and (22) are globally and asymptotically 

synchronized for all initial conditions with the sliding mode controller u defined by (31). � 

3.2 Numerical Results 

In this section For the numerical simulations, the fourth-order Runge-Kutta method with time-

step 
6

10h
−

= is used to solve the Pan systems (21) and (22) with the sliding mode controller 

u given by (31) using MATLAB. 

In the chaotic case, the parameter values are given by 10,   8 / 3a b= =   and  16.c =  

 The sliding mode gains are chosen as   
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  6k =  and  0.1.q =  

 The initial values of the master system (21) are taken as 

  1 2 3(0) 30,  (0) 25,  (0) 10x x x= = =  

and the initial values of the slave system (22) are taken as 

1 2 3(0) 14,  (0) 10,  (0) 26y y y= = =  

Figure 2 illustrates the complete synchronization of the identical Pan systems (21) and (22). 

 

Figure 2.  Complete Synchronization of Identical Pan Systems 
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4. CONCLUSIONS 

In this paper, we have deployed sliding mode control (SMC) to achieve global chaos 

synchronization for the identical Pan systems (2010). Our synchronization results for the identical 

Pan systems have been proved using Lyapunov stability theory. Since the Lyapunov exponents 

are not required for these calculations, the sliding mode control method is very effective and 

convenient to achieve global chaos synchronization for the identical Pan systems. Numerical 

simulations are also shown to illustrate the effectiveness of the synchronization results derived in 

this paper using the sliding mode control. 
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