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ABSTRACT 
 
According to the increasing complexity of network application and internet traffic, network processor as a 

subset of embedded processors have to process more computation intensive tasks. By scaling down the 

feature size and emersion of chip multiprocessors (CMP) that are usually multi-thread processors, the 

performance requirements are somehow guaranteed. As multithread processors are the heir of uni-thread 

processors and there isn’t any general design flow to design a multithread embedded processor, in this 

paper we perform a comprehensive design space exploration for an optimum uni-thread embedded 

processor based on the limited area and power budgets. Finally we run multiple threads on this 

architecture to find out the maximum thread level parallelism (TLP) based on performance per power and 

area optimum uni-thread architecture.   
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1. INTRODUCTION 

 
Embedded systems are designed to perform dedicated functions often with real-time computing 

constraints. While a PC or a general-purpose computer is designed to be flexible and can execute 

a wide range of applications. Embedded systems are used to control many devices in common use 

today [1]: more than 10 billion embedded processors have been sold in 2008 and more than 10.75 

billion in 2009 [2].  

 

In recent years embedded application and internet traffic have become heavier and sophisticated, 

so, future embedded processors will be encountered by more computation-intensive embedded 

applications and designing high performance processors is inevitable. By scaling down the feature 

size and emersion of chip multiprocessors (CMP) that are usually multi-thread processors, 

somehow the user’s performance requirements are guaranteed. Recently in numerous researches, 

multi-thread processors are used to design a fast processor especially in network and embedded 

systems [3-7, 19].  

 

In [20] a Markov model based on fine grain multithreading is implemented. Analytical Markov 

model is faster than simulation and has dispensable inaccuracy. In their method stalled threads are 
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defined as states and transitions indicate the cache contention between threads [20]. Cache and 

register file are of the most important parts in designing multithread CMPs because the 

performance of a processor is severely related to cache access and also number of the registers. 

Cache memories are usually used to improve the performance and power consumption by 

bridging the gap between the speed and power consumption of the main memory and CPU. 

Therefore, the system performance and power consumption is severely related to the average 

memory access time and power consumption which makes cache as a major part in designing 

embedded processor architectures. In [3, 4] cache misses are introduced as a factor for reducing 

memory level parallelism between threads. Thread criticality prediction has been used in [5-8]. In 

these methods for achieving better performance, resources are given to the so called most critical 

threads which have higher L2 cache misses.   

 

To improve packet-processing in network processors, [4, 8] have applied direct cache access 

(DCA) technique. In [4-9] processor architectures are based on simultaneous multithreading 

(SMT) and cache miss rate is used to evaluate the performance improvement. To find out the 

effect of cache access delay on performance, a comparison between multi-core and multi-thread 

processors has been performed in [12]. Likewise, victim cache is an approach to improve the 

performance of a multi-thread processor [5]. Most of the recent researches rely on comparing the 

multithread results with single-core single-thread processors. In the other word multi-thread 

processors are the heir of the single thread processors [6,7, 19]. Hence, evaluating the effective 

parameters such as cache and register file size is required for designing a multithread processor.  

 

The first purpose of this paper is to study the effect of cache size on the performance because, 

embedded processors have to process computation and data intensive applications and  larger 

cache sizes will present better performance. Generally, one of the easiest ways to improve the 

performance of embedded and network processors is increasing the cache size [14-20], and [6,7] 

but this improvement, severely increase the occupied area and power consumption of the 

processor. So, it is necessary to find a cache size that creates the best tradeoff between 

performance, power, and area of the processor.  From other point of view, according to the 

performance per area parameter, higher performance in a specified area budget is one of the most 

important needs of a high performance embedded processor. 

 

A negative point of the recent researches is that they don’t have any constraints on the cache size. 

Because of the limited area budget in embedded processors, in this paper we will find the 

optimum size of L1 and L2 cache and also, because of the longer latency of bigger caches, best 

size of memory hierarchy in relation to this parameter has been explored. As mentioned above, 

another inseparable part in designing embedded processors is register file. Same as cache 

memory, size of this component has fundamental effect on the processor performance. 

 

To improve the performance of an embedded processor, a large register file must be 

implemented. However, larger register files occupy more area and make a worse critical path 

[25]. Therefore, exploring the optimum size of the register file is the second purpose of this paper. 

The high importance of this issue is based on the fact that some parameters encourage designer to 

have a large register file. Generally embedded processors are implemented in multi-issue 

architectures and out of order (OOO) instruction execution that has renaming logic [23-25], [7], 

[13]. On the other hand, because register files are shared in multi-thread processors, making the 

common case fast, force the designer to have a larger register file [31]. In [22] effects of register 

file size in SMT processors have been studied. However, high budget for the number of registers 

has used.  
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The main contribution of our paper is to show the maximum number of threads that can be 

executed on a single-thread / single-core optimum architecture based on optimum performance 

per power of the cache and register file. We answer to these 2 important questions:  

 

1- Is there any multi-thread architecture based on optimum single-thread architecture? (Area 

minimized architecture with limited power budget). 

2- How much performance improvements can be reached by running multiple threads on 

optimum single-thread architecture. (Optimum multi-thread architectural guidelines based on 

optimum area and power budget of cache and register file). 

 

2. SIMULATION ENVIRONMENT AND BENCHMARKS 
 

For simulation, we used Multi2sim version 2.3.1[30], a super scalar multi-thread multi-core 

simulation platform which has 6 stages of pipeline for X86 instructions set architecture. It can run 

programs in multi-issue platform.  We have changed and compiled the source code of the 

simulator on a 2.4 GHz, dual core processor with 4GB of RAM and 6MB of cache that run fedora 

10 as an operating system.  

 

Because embedded applications are so pervasive, homogenous applications cannot be a good 

choice for design space exploration (DSE). Hence we have done our DSE by heterogeneous 

applications from PacketBench [28] and MiBench[29]embedded benchmarks. Packetbench is a 

good platform to evaluate the workload characterization of network processors. Programs in this 

tool are categorized in 3 parts: 1-IP forwarding which is corresponding to current internet 

standards. 2-packet classification which is commonly used in firewalls and monitoring systems. 

3- Encryption which is a function that actually modifies the entire packet payload. Specific 

applications that we have used from each category are IPv4-Lctrie, Flow-Classification and 

IPSec. 

 

 MiBench is a combination of six deferent categories. We have selected 3 of them. 1-Dijkstar 

from network category. 2-susan (corners) from automotive and industrial control category and 3-

String-search from office category. For a given source vertex (node) in the graph, the Dijkstra 

algorithm finds the path with the lowest cost (i.e. the shortest path) between that vertex and every 

other vertex. It can also be used for finding costs of shortest paths from a single vertex to a single 

destination vertex by stopping the algorithm once the shortest path to the destination vertex has 

been determined [29]. Susan is an image recognition package. It was developed for recognizing 

corners and edges in Magnetic Resonance Images of the brain [29] and stringsearch searches for 

given words in phrases using a case insensitive comparison algorithm. 

 

3. EXPLORING CACHE ARCHITECTURE SPACE 
 

3.1 Performance Analysis 

 

This part is based on [26]. Authors of [26] did the exhaustive exploration of cache size for 

embedded application just based on performance and have introduced the cache size that 

produces lowest cycles for running an embedded application. Their research showed that there is 

a range for L1 and L2 cache for heterogeneous embedded applications. They showed that 

although performance is improved by increasing the cache size, however, over a threshold level 

performance is saturated and then decreased. Their range for cache size is too big so in this paper 

by considering another important parameter of embedded processor i.e. power or energy 

consumption, the range is reduced and just a few cache sizes for heterogeneous embedded 

applications are introduced.  
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Exploration of [20] reduced somehow 300 cache configurations to 36 configurations (6 sizes for 

L1 and 6 size for L2). Inthis paper, by considering both the dynamic and static power 

consumption of each configuration, we make more reduction on configurations of cache. We have 

calculated the best cache size for each application based on performance evaluation. Then the best 

performance for each application is calculated in the introduced size. From now we call this point 

of cache size the highest cache performance (HCP). HCP point produces lowest cycle simulation 

and HCP of all selected embedded applications are shown in fig.1.b in the right most column. 

Authors of [21] did somehow the same research based on [21] and [26], and they didn't consider 

power constraint of the cache which is very important in embedded processors.  

 

3.2 Energy Analysis  

 

To consider the power effects, we have used CACTI 5.0 [27], a tool from HP that is a 

platform for extracting parameters relevant to the cache size considering fabrication 

technology. Based on performance analysis of [26] there are 36 cache configurations for 

selected embedded applications. For calculating the power consumption of each 

configuration we have proposed the following model: Total energy that is consumed by a 

hardware module (here a cache) is calculated by adding total dynamic and static energy. 

 

 

 
 

Figure1. a) Cache size overlapping. B) LCE and HCP points. C) Average performance penalty 

and energy saving 

 

Dynamic energy is related to the supply voltage, module activity and output capacitance and 

clock frequency.  

Et =Etd+ Ets . 

Where, Et is total energy dissipation, Etd equals to the total dynamic energy and Ets is the total 

static energy (here in cache misses and the times that the cache is idle and there is no accesses to 

the specific level of cache). Any access to the cache is for reading or writing, so Etd is affected by 

both reads and writes, so: 

Etd = Edr + Edw . 

Where Edr and Edw are dynamic read and write energy dissipations, respectively. In this paper we 

explore the cache memory in all levels including instruction cache level-1 (L1), data cache level-1 
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(D1) and unified cache level-2 (L2). Edr is related to the number of reads (Nread) from all caches 

(number of read multiplied by dynamic energy of cache read), so: 

Edr = [Nread(L1) * Edr(L1)] + [Nread(D1) * Edr(D1)]+ [Nread(L2) * Edr(L2)] + [Nread(Maim_memory) * Edr(Main_memory)]. 

And, 

Edw = [Nwrite(L1) * Edw(L1)] + [Nwrite(D1) * Edw(D1)] + [Nwrite(L2) * Edw(L2] + [Nwrite(Main_memory) * Edw(Main_memory)]. 

Where, Nwrite is the number of writes and for example Edw (D1) represents the dynamic energy of 

a write to D1. On the other hand, Ets is calculated from accumulating the consumed static energy 

(Es) of all caches. In case of a cache miss, miss penalty which is related to the idle cache must be 

tolerated by the system. In this way, for a cache, miss penalty is considered as the cycles which 

are required for accessing the lower layer cache). Therefore: 

Es = (Nmiss+ idle cycles )* static energy per access * miss penalty (cycle). 

Miss penalty is the cycle time consumed to access a next level cache and, 

Ets=Es(L1)+ Es(D1)+ Es(L2). 

Based on this model, each access consumes some energy considering the cache configuration and 

miss penalty. Although any access may lead to a miss or hit, however, any events cause some 

energy dissipation [34]. We have calculated the energy consumption of each cache configuration 

(dynamic and total separately) by using the proposed model, which considers the effect of all 

parameters i.e. number of cache misses/hits, access time of cache, cache level, type of accesses 

(read or write), and static/ dynamic energy on the energy dissipation of the cache.  

 

Based on the energy analysis results, we introduced another point for cache configuration called 

lowest cache energy (LCE). LCEs are shown in fig.1.b in middle column and indicate the lowest 

energy consumption for each application. Results of fig.1.b  show that for all applications, sizes 

of LCE is smaller than HCP so, LCE and HCP are the left and right margins of the cache size 

ranges, respectively, and they introduce a range for L1 and L2 considering both performance and 

energy consumption. To make a better sense for these ranges fig.1.a indicates the cache size 

overlapping of all applications in L1 and L2 ranges. Based on this figure, L1 (L2) range is from 

minimum L1 (L2) sizes for LCE column to maximum L1 (L2) sizes for HCP column. So in this 

way and based on fig1.a, L1 ranges from 8KB to 128KB and L2 ranges from 16KB to 128KB and 

we choose the cache sizes that have the most overlapping between all benchmarks. By using this 

ordinary and simple overlapping algorithm 36 cache configurations are reduced to 12.  

 

These ranges specify an important point: any size for L1 and L2 out of this range is not 

recommended because the right side of these ranges leads to the maximum performance and the 

left side have the minimum power consumption for caches in selected embedded applications. 

Based on [20-26] the configuration of L1=32KB andL2 = 64KB are an applicable cache size for 

selected heterogeneous embedded applications. So we use it as the base of comparisons. Fig.1.c 

shows the average performance penalty (Pp column) of all 12 configurations related to this size 

which are labeled by cfg5 in the fig.1.c in the left most columns. As shown in fig.1.a, we can 

choose 16, 32, 64 and 128 KB for L1 and 32, 64, 128 KB for L2. 
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Table1. Performance penalty and energy saving of register file 

 

 

So at most we have 12 points, (3 points for L1 and 4 points for L2) that are candidates to be the 

performance per energy optimum cache sizes useful for embedded processors.All of these 12 

configurations are listed in fig.1.c. Since, performance per energy is one of the most important 

parameters in cache design for embedded processors, as indicated in the results; a cache size can 

be applicable only when satisfies these constraints. Based on fig.1.c cfg numbers from 1 to 4 have 

positive dynamic energy saving and negligible performance penalty. These sizes are the 

candidates for optimum and best cache configurations from performance and dynamic energy 

points of view.  

 

Although cfg numbers 9, 11, and 12 create performance improvements but they consume higher 

dynamic energy and have no energy saving related to L1=32, L2 = 64 KB based on fig.1.c, so, 

they are not applicable cache sizes for selected embedded applications based on performance per 

power points of view. Therefore they are eliminated from search space and 12 configurations are 

reduced to 5 (cfg 1 to 5) it means 58% reduction in search space. From area point of view cfg 2 

and cfg 3 are the best candidate for selected embedded application because they are smaller than 

others and also have positive energy saving and very low performance penalty. For running 

multiple threads we will use cfg 2 because it has 3% performance penalty that is tolerable by 

embedded applications [3-5].   
 

4. EXPLORING OPTIMUM REGISTER FILE ARCHITECTURE 
 
Performance evaluation of register file size have done by multi2sim but for power evaluation we 

have used McPAT [32] an integrated power, area, and timing modeling framework that supports 

comprehensive design space exploration for multi-core and many-core processor configurations 

ranging from 90nm to 22nm and beyond. McPAT can model both a reservation-station-model and 

a physical-register-file model based on real architectures.  

 

To calculate the optimum size of register file, we have applied the parameters used for calculating 

best cache size, however, to find out just the effect of register file size on the performance, we 

used the best cache size (L1 and L2) concluded in the previous section for the cache size and run 

the simulator accordingly. Table1 shows the results of this part. In this table, 2 columns show the 

performance effect or performance penalty i.e. Pp and energy effect or energy saving i.e. Es of 

register file size. This table shows that although for all applications the best size of register file is 

64 (in average) and above but in sizes near the half of this size, performance penalty is lower that 

3%. 

Also table1 shows that reducing the register file size always decrease the performance but 

sometimes, by doubling the register file size we don't have noticeable performance improvement. 
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So the first point that the highest performance is reached, is introduced as the best size for register 

file i.e. 80 registers. Based on power point of view the register file size=48 is the optimum size 

for selected embedded applications.     

 

5. EXPLORING OPTIMUM MULTITHREAD ARCHITECTURE 
 

In this part based on optimum sizes of cache and registerfile we introduce an optimum 

performance per power multi-thread architecture for selected embedded applications. It means 

Multi-threading upon uni-thread processor by running multiple thread on optimum single-thread/ 

single-core area minimized embedded processor. There are 3 type of multithreading that called 

Interleaved multithreading (IMT), Blocked multithreading (BMT) and Simultaneous 

multithreading (SMT) [33]. IMT: An instruction of another thread is fetched and fed into the 

execution pipeline at each processor cycle. BMT: The instructions of a thread are executed 

successively until an event occurs that may cause latency. This event induces a context switch. 

SMT: Instructions are simultaneously issued from multiple threads to the execution units of a 

superscalar processor. Thus, the wide superscalar instruction issue is combined with the multiple-

context approach. 

 

Researches show that SMT deliver highest performance improvements [3-7] so in this paper we 

used SMT architecture to access highest performance for embedded applications. The parameters 

we used for simulation to create multi-thread architecture are listed in table 2. Based on this table 

we used maximum sharing strategy to reach highest feasible performance improvements based on 

limited power and area budget. As multithreading creates some hardware redundancy, we used 

shared L1 cache and L2 cache, shared register file and shared all the parameters that can be 

shared between multiple threads. It means using minimum hardware for single-thread / single-

core architectures that in average create just lower than 3% performance penalty and up to 7% 

energy saving for selected embedded applications.  

 

The contribution is to answering this question: Is it feasible to run multiple threads on a single 

thread with limited area and power budget? If so, then what is the maximum number of threads 

that can be run on this architecture? And what is the maximum performance improvement? 

Results of this simulation are shown in figure 3. The results show that we can run up to 2 threads 

on a single-thread-single-core architecture and reach up to 31% performance improvement for 

susan corners benchmark and 17% performance improvements in average for selected embedded 

applications by running 2 threads on a single-thread processor with minimum area and power 

budget. 

 

Table2. Processor parameters and sharing strategy. 
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  Figure3. Effect of multi-threading on the area minimized and optimum uni-thread architecture. 

 

6. CONCLUSION 
 

In this paper we performed an exhaustive design space exploration to find multi-thread 

architectural guideline for embedded application. Because multi-thread architectures are the heir 

of single-thread architectures we explored the optimum single-thread architecture based on cache 

and register file size as they are the most important components in embedded processors. We 

introduced optimum cache and register file size based on performance per power. We have 

executed multiple threads on a single-thread processor with limited area and power budget and 

results show that it is feasible to create multi-threading in a uni-thread architecture.  

 

Because multi-threading causes to a hardware redundancy we explored the optimum size of cache 

and register file of the processor to have low  area and just have negligible performance penalty 

(lower than 3%) and about 7% energy saving compared to the highest performance configuration. 

By this method, we created some room for hardware multi-threading. Our explorations show that 

running two threads on a single-thread processor with limited area and power budget, in average, 

leads to 17% performance improvements for selected representative embedded applications.             
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